Skip to main content
Top
Published in: BMC Medicine 1/2019

Open Access 01-12-2019 | Correspondence

Response to Daly-Smith et al.’s commentary on ‘The Daily Mile makes primary school children more active, less sedentary and improves their fitness and body composition: a quasi-experimental pilot study’

Authors: Ross A. Chesham, Josephine N. Booth, Emma L. Sweeney, Gemma C. Ryde, Trish Gorely, Naomi E. Brooks, Colin N. Moran

Published in: BMC Medicine | Issue 1/2019

Login to get access

Abstract

We thank Daly-Smith et al. for taking the time to read the results of our pilot research study, describing it as an important and welcome contribution. Nonetheless, the authors argue six points against our conclusion. We contend that we addressed three of these points in our original discussion and disagree with their remaining points. Overall, their Commentary adds little to the topic of research into the Daily Mile™ that we had not already raised in our discussion. Additionally, they attribute statements to us that we did not make and ignore the raising of key issues in our original article. Given this, we stand by our original peer-reviewed conclusion that introducing the Daily Mile™ to the primary school day appears to be an effective intervention for increasing levels of moderate to vigorous physical activity, reducing sedentary time, increasing physical fitness and improving body composition, and that these findings have relevance for teachers, policy-makers, public health practitioners and health researchers.
Literature
2.
go back to reference Chesham RA, Booth JN, Sweeney EL, Ryde GC, Gorely T, Brooks NE, Moran CN. The daily mile makes primary school children more active, less sedentary and improves their fitness and body composition: a quasi-experimental pilot study. BMC Med. 2018;16:64.CrossRef Chesham RA, Booth JN, Sweeney EL, Ryde GC, Gorely T, Brooks NE, Moran CN. The daily mile makes primary school children more active, less sedentary and improves their fitness and body composition: a quasi-experimental pilot study. BMC Med. 2018;16:64.CrossRef
3.
go back to reference Kohl HW, Craig CL, Lambert EV, Inoue S, Alkandari JR, Leetongin G, Kahlmeier S. The pandemic of physical inactivity: global action for public health. Lancet. 2012;380(9838):294–305.CrossRef Kohl HW, Craig CL, Lambert EV, Inoue S, Alkandari JR, Leetongin G, Kahlmeier S. The pandemic of physical inactivity: global action for public health. Lancet. 2012;380(9838):294–305.CrossRef
8.
go back to reference Leger LA, Mercier D, Gadoury C, Lambert J. The multistage 20 metre shuttle run test for aerobic fitness. J Sports Sci. 1988;6(2):93–101.CrossRef Leger LA, Mercier D, Gadoury C, Lambert J. The multistage 20 metre shuttle run test for aerobic fitness. J Sports Sci. 1988;6(2):93–101.CrossRef
9.
go back to reference Tomkinson GR, Lang JJ, Tremblay MS, Dale M, LeBlanc AG, Belanger K, Ortega FB, Leger L. International normative 20 m shuttle run values from 1 142 026 children and youth representing 50 countries. Br J Sports Med. 2017;51(21):1545–54.CrossRef Tomkinson GR, Lang JJ, Tremblay MS, Dale M, LeBlanc AG, Belanger K, Ortega FB, Leger L. International normative 20 m shuttle run values from 1 142 026 children and youth representing 50 countries. Br J Sports Med. 2017;51(21):1545–54.CrossRef
10.
go back to reference Weststrate JA, Deurenberg P. Body composition in children: proposal for a method for calculating body fat percentage from total body density or skinfold-thickness measurements. Am J Clin Nutr. 1989;50(5):1104–15.CrossRef Weststrate JA, Deurenberg P. Body composition in children: proposal for a method for calculating body fat percentage from total body density or skinfold-thickness measurements. Am J Clin Nutr. 1989;50(5):1104–15.CrossRef
11.
go back to reference Atkin AJ, Sharp SJ, Harrison F, Brage S, Van Sluijs EM. Seasonal variation in children’s physical activity and sedentary time. Med Sci Sports Exerc. 2016;48(3):449–56.CrossRef Atkin AJ, Sharp SJ, Harrison F, Brage S, Van Sluijs EM. Seasonal variation in children’s physical activity and sedentary time. Med Sci Sports Exerc. 2016;48(3):449–56.CrossRef
12.
go back to reference Bouchard C, An P, Rice T, Skinner JS, Wilmore JH, Gagnon J, Perusse L, Leon AS, Rao DC. Familial aggregation of VO(2max) response to exercise training: results from the HERITAGE family study. J Appl Physiol. 1999;87(3):1003–8.CrossRef Bouchard C, An P, Rice T, Skinner JS, Wilmore JH, Gagnon J, Perusse L, Leon AS, Rao DC. Familial aggregation of VO(2max) response to exercise training: results from the HERITAGE family study. J Appl Physiol. 1999;87(3):1003–8.CrossRef
13.
go back to reference Sherar LB, Griew P, Esliger DW, Cooper AR, Ekelund U, Judge K, Riddoch C. International Children’s Accelerometry database (ICAD): design and methods. BMC Public Health. 2011;11:485.CrossRef Sherar LB, Griew P, Esliger DW, Cooper AR, Ekelund U, Judge K, Riddoch C. International Children’s Accelerometry database (ICAD): design and methods. BMC Public Health. 2011;11:485.CrossRef
14.
go back to reference Migueles JH, Cadenas-Sanchez C, Ekelund U, Delisle Nystrom C, Mora-Gonzalez J, Lof M, Labayen I, Ruiz JR, Ortega FB. Accelerometer data collection and processing criteria to assess physical activity and other outcomes: a systematic review and practical considerations. Sports Med. 2017;47(9):1821–45.CrossRef Migueles JH, Cadenas-Sanchez C, Ekelund U, Delisle Nystrom C, Mora-Gonzalez J, Lof M, Labayen I, Ruiz JR, Ortega FB. Accelerometer data collection and processing criteria to assess physical activity and other outcomes: a systematic review and practical considerations. Sports Med. 2017;47(9):1821–45.CrossRef
15.
go back to reference Evenson KR, Catellier DJ, Gill K, Ondrak KS, McMurray RG. Calibration of two objective measures of physical activity for children. J Sports Sci. 2008;26(14):1557–65.CrossRef Evenson KR, Catellier DJ, Gill K, Ondrak KS, McMurray RG. Calibration of two objective measures of physical activity for children. J Sports Sci. 2008;26(14):1557–65.CrossRef
16.
go back to reference Trost SG, Loprinzi PD, Moore R, Pfeiffer KA. Comparison of accelerometer cut points for predicting activity intensity in youth. Med Sci Sports Exerc. 2011;43(7):1360–8.CrossRef Trost SG, Loprinzi PD, Moore R, Pfeiffer KA. Comparison of accelerometer cut points for predicting activity intensity in youth. Med Sci Sports Exerc. 2011;43(7):1360–8.CrossRef
17.
go back to reference Ryde GC, Booth JN, Brooks NE, Chesham RA, Moran CN, Gorely T. The daily mile: what factors are associated with its implementation success? PLoS One. 2018;13(10):e0204988.CrossRef Ryde GC, Booth JN, Brooks NE, Chesham RA, Moran CN, Gorely T. The daily mile: what factors are associated with its implementation success? PLoS One. 2018;13(10):e0204988.CrossRef
18.
go back to reference Gorely T, Booth J, Brooks N, Chesham R, Moran C. Does exercise during the school day boost children's attention and memory? J Phys Act Health. 2018;15(10):S5. Gorely T, Booth J, Brooks N, Chesham R, Moran C. Does exercise during the school day boost children's attention and memory? J Phys Act Health. 2018;15(10):S5.
Metadata
Title
Response to Daly-Smith et al.’s commentary on ‘The Daily Mile makes primary school children more active, less sedentary and improves their fitness and body composition: a quasi-experimental pilot study’
Authors
Ross A. Chesham
Josephine N. Booth
Emma L. Sweeney
Gemma C. Ryde
Trish Gorely
Naomi E. Brooks
Colin N. Moran
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Medicine / Issue 1/2019
Electronic ISSN: 1741-7015
DOI
https://doi.org/10.1186/s12916-019-1336-3

Other articles of this Issue 1/2019

BMC Medicine 1/2019 Go to the issue