Skip to main content
Top
Published in: BMC Medicine 1/2019

Open Access 01-12-2019 | Correspondence

Commentary on a recent article on the effects of the ‘Daily Mile’ on physical activity, fitness and body composition: addressing key limitations

Authors: Andy Daly-Smith, Jade L. Morris, Matthew Hobbs, Jim McKenna

Published in: BMC Medicine | Issue 1/2019

Login to get access

Abstract

A recent pilot study by Chesham et al. in BMC Medicine established some initial effects of the Daily Mile™ using a quasi-experimental repeated measures design, with valid and reliable outcome assessments for moderate-to-vigorous physical activity, fitness and body composition. Their contribution is important and welcome, yet, alone, it is insufficient to justify the recent UK-wide adoption of the Daily Mile within the Childhood Obesity Plan. The study concluded that the Daily Mile had positive effects on moderate-to-vigorous physical activity, fitness and body composition, suggesting that intervention effectiveness was confirmed. However, only some of the significant limitations of the work were addressed. Herein, we identify and discuss six key limitations, which, combined, suggest a more tentative conclusion. In summary, evidence supporting the effectiveness of the Daily Mile is in its infancy and requires refinement to fully justify its widespread adoption. Further, we need to be cautious considering that the full range of its impacts, both positive and negative, remain to be fully established.
Literature
1.
go back to reference Tremblay MS, Barnes JD, González SA, Katzmarzyk PT, Onywera VO, Reilly JJ, et al. Global matrix 2.0: report card grades on the physical activity of children and youth comparing 38 countries. J Phys Act Health. 2016;13(11 Suppl 2):S343–66.CrossRef Tremblay MS, Barnes JD, González SA, Katzmarzyk PT, Onywera VO, Reilly JJ, et al. Global matrix 2.0: report card grades on the physical activity of children and youth comparing 38 countries. J Phys Act Health. 2016;13(11 Suppl 2):S343–66.CrossRef
3.
go back to reference Nettlefold L, McKay HA, Warburton DER, McGuire KA, Bredin SSD, Naylor PJ. The challenge of low physical activity during the school day: at recess, lunch and in physical education. Br J Sports Med. 2011;45(10):813–9.CrossRef Nettlefold L, McKay HA, Warburton DER, McGuire KA, Bredin SSD, Naylor PJ. The challenge of low physical activity during the school day: at recess, lunch and in physical education. Br J Sports Med. 2011;45(10):813–9.CrossRef
4.
go back to reference Beets M, Okely A, Weaver R, Webster C, Lubans D, Brusseau T, et al. The theory of expanded, extended, and enhanced opportunities for youth physical activity promotion. Int J Behav Nutr Phys Act. 2016;13(1):120.CrossRef Beets M, Okely A, Weaver R, Webster C, Lubans D, Brusseau T, et al. The theory of expanded, extended, and enhanced opportunities for youth physical activity promotion. Int J Behav Nutr Phys Act. 2016;13(1):120.CrossRef
5.
go back to reference Daly-Smith AJ, Zwolinsky S, McKenna J, Tomporowski PD, Defeyter MA, Manley A. Systematic review of acute physically active learning and classroom movement breaks on children’s physical activity, cognition, academic performance and classroom behaviour: understanding critical design features. BMJ Open Sport Exerc Med. 2018;4:e000341.CrossRef Daly-Smith AJ, Zwolinsky S, McKenna J, Tomporowski PD, Defeyter MA, Manley A. Systematic review of acute physically active learning and classroom movement breaks on children’s physical activity, cognition, academic performance and classroom behaviour: understanding critical design features. BMJ Open Sport Exerc Med. 2018;4:e000341.CrossRef
6.
go back to reference Watson A, Timperio A, Brown H, Best K, Hesketh KD. Effect of classroom-based physical activity interventions on academic and physical activity outcomes: a systematic review and meta-analysis. Int J Behav Nutr Phys Act. 2017;14(1):114.CrossRef Watson A, Timperio A, Brown H, Best K, Hesketh KD. Effect of classroom-based physical activity interventions on academic and physical activity outcomes: a systematic review and meta-analysis. Int J Behav Nutr Phys Act. 2017;14(1):114.CrossRef
7.
go back to reference Chesham RA, Booth JN, Sweeney EL, Ryde GC, Gorely T, Brooks NE, et al. The daily mile makes primary school children more active, less sedentary and improves their fitness and body composition: a quasi-experimental pilot study. BMC Med. 2018;16:64.CrossRef Chesham RA, Booth JN, Sweeney EL, Ryde GC, Gorely T, Brooks NE, et al. The daily mile makes primary school children more active, less sedentary and improves their fitness and body composition: a quasi-experimental pilot study. BMC Med. 2018;16:64.CrossRef
8.
go back to reference Carson V, Spence JC. Seasonal variation in physical activity among children and adolescents: a review. Pediatr Exerc Sci. 2010;22(1):81–92.CrossRef Carson V, Spence JC. Seasonal variation in physical activity among children and adolescents: a review. Pediatr Exerc Sci. 2010;22(1):81–92.CrossRef
9.
go back to reference Chan CB, Ryan DA. Assessing the effects of weather conditions on physical activity participation using objective measures. Int J Environ Res Public Health. 2009;6(10):2639–54.CrossRef Chan CB, Ryan DA. Assessing the effects of weather conditions on physical activity participation using objective measures. Int J Environ Res Public Health. 2009;6(10):2639–54.CrossRef
10.
go back to reference Mattocks C, Leary S, Ness A, Deere K, Saunders J, Kirkby J, et al. Intraindividual variation of objectively measured physical activity in children. Med Sci Sports Exerc. 2007;39(4):622–9.CrossRef Mattocks C, Leary S, Ness A, Deere K, Saunders J, Kirkby J, et al. Intraindividual variation of objectively measured physical activity in children. Med Sci Sports Exerc. 2007;39(4):622–9.CrossRef
11.
go back to reference Atkin AJ, Sharp SJ, Harrison F, Brage S, Van Sluijs EMF. Seasonal variation in children’s physical activity and sedentary time. Med Sci Sports Exerc. 2016;48(3):449–56.CrossRef Atkin AJ, Sharp SJ, Harrison F, Brage S, Van Sluijs EMF. Seasonal variation in children’s physical activity and sedentary time. Med Sci Sports Exerc. 2016;48(3):449–56.CrossRef
12.
go back to reference Shephard RJ, Aoyagi Y. Seasonal variations in physical activity and implications for human health. Eur J Appl Physiol. 2009;107(3):251–71.CrossRef Shephard RJ, Aoyagi Y. Seasonal variations in physical activity and implications for human health. Eur J Appl Physiol. 2009;107(3):251–71.CrossRef
13.
go back to reference Love RE, Adams J, van Sluijs EMF. Equity effects of children’s physical activity interventions: a systematic scoping review. Int J Behav Nutr Phys Act. 2017;14(1):134.CrossRef Love RE, Adams J, van Sluijs EMF. Equity effects of children’s physical activity interventions: a systematic scoping review. Int J Behav Nutr Phys Act. 2017;14(1):134.CrossRef
14.
go back to reference Coday M, Boutin-Foster C, Goldman Sher T, Tennant J, Greaney ML, Saunders SD, et al. Strategies for retaining study participants in behavioral intervention trials: retention experiences of the NIH behavior change consortium. Ann Behav Med. 2005;29 Suppl:55–65.CrossRef Coday M, Boutin-Foster C, Goldman Sher T, Tennant J, Greaney ML, Saunders SD, et al. Strategies for retaining study participants in behavioral intervention trials: retention experiences of the NIH behavior change consortium. Ann Behav Med. 2005;29 Suppl:55–65.CrossRef
15.
go back to reference Raudenbush SW, Bryk AS. Hierarchical linear models: applications and data analysis methods. Thousand Oaks: SAGE; 2002. p. 485. Raudenbush SW, Bryk AS. Hierarchical linear models: applications and data analysis methods. Thousand Oaks: SAGE; 2002. p. 485.
16.
go back to reference Evenson KR, Catellier DJ, Gill K, Ondrak KS, McMurray RG. Calibration of two objective measures of physical activity for children. J Sports Sci. 2008;26(14):1557–65.CrossRef Evenson KR, Catellier DJ, Gill K, Ondrak KS, McMurray RG. Calibration of two objective measures of physical activity for children. J Sports Sci. 2008;26(14):1557–65.CrossRef
17.
go back to reference Banda JA, Haydel KF, Davila T, Desai M, Bryson S, Haskell WL, et al. Effects of varying epoch lengths, wear time algorithms, and activity cut-points on estimates of child sedentary behavior and physical activity from accelerometer data. PLoS One. 2016;11(3):e0150534.CrossRef Banda JA, Haydel KF, Davila T, Desai M, Bryson S, Haskell WL, et al. Effects of varying epoch lengths, wear time algorithms, and activity cut-points on estimates of child sedentary behavior and physical activity from accelerometer data. PLoS One. 2016;11(3):e0150534.CrossRef
18.
go back to reference Migueles JH, Cadenas-Sanchez C, Ekelund U, Delisle Nyström C, Mora-Gonzalez J, Löf M, et al. Accelerometer data collection and processing criteria to assess physical activity and other outcomes: a systematic review and practical considerations. Sports Med. 2017;47(9):1821–45.CrossRef Migueles JH, Cadenas-Sanchez C, Ekelund U, Delisle Nyström C, Mora-Gonzalez J, Löf M, et al. Accelerometer data collection and processing criteria to assess physical activity and other outcomes: a systematic review and practical considerations. Sports Med. 2017;47(9):1821–45.CrossRef
19.
go back to reference Ridgers ND, Timperio A, Cerin E, Salmon J. Compensation of physical activity and sedentary time in primary school children. Med Sci Sports Exerc. 2014;46(8):1564–9.CrossRef Ridgers ND, Timperio A, Cerin E, Salmon J. Compensation of physical activity and sedentary time in primary school children. Med Sci Sports Exerc. 2014;46(8):1564–9.CrossRef
20.
go back to reference Flay BR, Biglan A, Boruch RF, Castro FG, Gottfredson D, Kellam S, et al. Standards of evidence: criteria for efficacy, effectiveness and dissemination. Prev Sci. 2005;6(3):151–75.CrossRef Flay BR, Biglan A, Boruch RF, Castro FG, Gottfredson D, Kellam S, et al. Standards of evidence: criteria for efficacy, effectiveness and dissemination. Prev Sci. 2005;6(3):151–75.CrossRef
21.
go back to reference Breheny K, Adab P, Passmore S, Martin J, Lancashire E, Hemming K, et al. A cluster randomised controlled trial evaluating the effectiveness and cost-effectiveness of the daily mile on childhood obesity and wellbeing; the Birmingham daily mile protocol. BMC Public Health. 2018;18:126.CrossRef Breheny K, Adab P, Passmore S, Martin J, Lancashire E, Hemming K, et al. A cluster randomised controlled trial evaluating the effectiveness and cost-effectiveness of the daily mile on childhood obesity and wellbeing; the Birmingham daily mile protocol. BMC Public Health. 2018;18:126.CrossRef
22.
go back to reference Chalkley AE, Routen AC, Harris JP, Cale LA, Gorely T, Sherar LB. Marathon kids UK: study design and protocol for a mixed methods evaluation of a school-based running programme. BMJ Open. 2018;8(5):e022176.CrossRef Chalkley AE, Routen AC, Harris JP, Cale LA, Gorely T, Sherar LB. Marathon kids UK: study design and protocol for a mixed methods evaluation of a school-based running programme. BMJ Open. 2018;8(5):e022176.CrossRef
Metadata
Title
Commentary on a recent article on the effects of the ‘Daily Mile’ on physical activity, fitness and body composition: addressing key limitations
Authors
Andy Daly-Smith
Jade L. Morris
Matthew Hobbs
Jim McKenna
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Medicine / Issue 1/2019
Electronic ISSN: 1741-7015
DOI
https://doi.org/10.1186/s12916-019-1335-4

Other articles of this Issue 1/2019

BMC Medicine 1/2019 Go to the issue