Skip to main content
Top
Published in: BMC Medicine 1/2019

Open Access 01-12-2019 | Alzheimer's Disease | Review

ApoE4: an emerging therapeutic target for Alzheimer’s disease

Authors: Mirna Safieh, Amos D. Korczyn, Daniel M. Michaelson

Published in: BMC Medicine | Issue 1/2019

Login to get access

Abstract

Background

The growing body of evidence indicating the heterogeneity of Alzheimer’s disease (AD), coupled with disappointing clinical studies directed at a fit-for-all therapy, suggest that the development of a single magic cure suitable for all cases may not be possible. This calls for a shift in paradigm where targeted treatment is developed for specific AD subpopulations that share distinct genetic or pathological properties. Apolipoprotein E4 (apoE4), the most prevalent genetic risk factor of AD, is expressed in more than half of AD patients and is thus an important possible AD therapeutic target.

Review

This review focuses initially on the pathological effects of apoE4 in AD, as well as on the corresponding cellular and animal models and the suggested cellular and molecular mechanisms which mediate them. The second part of the review focuses on recent apoE4-targeted (from the APOE gene to the apoE protein and its interactors) therapeutic approaches that have been developed in animal models and are ready to be translated to human. Further, the issue of whether the pathological effects of apoE4 are due to loss of protective function or due to gain of toxic function is discussed herein. It is possible that both mechanisms coexist, with certain constituents of the apoE4 molecule and/or its downstream signaling mediating a toxic effect, while others are associated with a loss of protective function.

Conclusion

ApoE4 is a promising AD therapeutic target that remains understudied. Recent studies are now paving the way for effective apoE4-directed AD treatment approaches.
Literature
1.
go back to reference Giacobini E, Gold G. Alzheimer disease therapy--moving from amyloid-β to tau. Nat Rev Neurol. 2013;9(12):677–86.PubMedCrossRef Giacobini E, Gold G. Alzheimer disease therapy--moving from amyloid-β to tau. Nat Rev Neurol. 2013;9(12):677–86.PubMedCrossRef
2.
go back to reference Iqbal K, Liu F, Gong C-X. Alzheimer disease therapeutics: focus on the disease and not just plaques and tangles. Biochem Pharmacol. 2014;88(4):631–9.PubMedPubMedCentralCrossRef Iqbal K, Liu F, Gong C-X. Alzheimer disease therapeutics: focus on the disease and not just plaques and tangles. Biochem Pharmacol. 2014;88(4):631–9.PubMedPubMedCentralCrossRef
4.
go back to reference Iturria-Medina Y, Hachinski V, Evans AC. The vascular facet of late-onset Alzheimer’s disease: an essential factor in a complex multifactorial disorder. Curr Opin Neurol. 2017;30(6):623–9.PubMedCrossRef Iturria-Medina Y, Hachinski V, Evans AC. The vascular facet of late-onset Alzheimer’s disease: an essential factor in a complex multifactorial disorder. Curr Opin Neurol. 2017;30(6):623–9.PubMedCrossRef
5.
go back to reference Vijayan M, Kumar S, Bhatti JS, Reddy PH. Molecular links and biomarkers of stroke, vascular dementia, and Alzheimer’s disease. Prog Mol Biol Transl Sci. 2017;146:95–126.PubMedCrossRef Vijayan M, Kumar S, Bhatti JS, Reddy PH. Molecular links and biomarkers of stroke, vascular dementia, and Alzheimer’s disease. Prog Mol Biol Transl Sci. 2017;146:95–126.PubMedCrossRef
6.
go back to reference Naj AC, Schellenberg GD. Alzheimer’s disease genetics consortium (ADGC). Genomic variants, genes, and pathways of Alzheimer’s disease: an overview. Am J Med Genet B Neuropsychiatr Genet. 2017;174(1):5–26.PubMedPubMedCentralCrossRef Naj AC, Schellenberg GD. Alzheimer’s disease genetics consortium (ADGC). Genomic variants, genes, and pathways of Alzheimer’s disease: an overview. Am J Med Genet B Neuropsychiatr Genet. 2017;174(1):5–26.PubMedPubMedCentralCrossRef
7.
go back to reference Apostolova LG, Risacher SL, Duran T, et al. Associations of the top 20 Alzheimer disease risk variants with brain amyloidosis. JAMA Neurol. 2018;75(3):328–41.PubMedPubMedCentralCrossRef Apostolova LG, Risacher SL, Duran T, et al. Associations of the top 20 Alzheimer disease risk variants with brain amyloidosis. JAMA Neurol. 2018;75(3):328–41.PubMedPubMedCentralCrossRef
9.
go back to reference Ngandu T, Lehtisalo J, Solomon A, et al. A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): a randomised controlled trial. Lancet. 2015;385(9984):2255–63.PubMedCrossRef Ngandu T, Lehtisalo J, Solomon A, et al. A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): a randomised controlled trial. Lancet. 2015;385(9984):2255–63.PubMedCrossRef
10.
go back to reference Strittmatter WJ, Roses AD. Apolipoprotein E and Alzheimer’s disease. Annu Rev Neurosci. 1996;19(1):53–77.PubMedCrossRef Strittmatter WJ, Roses AD. Apolipoprotein E and Alzheimer’s disease. Annu Rev Neurosci. 1996;19(1):53–77.PubMedCrossRef
11.
go back to reference Michaelson DM. APOE ε4: the most prevalent yet understudied risk factor for Alzheimer’s disease. Alzheimers Dement. 2014;10(6):861–8.PubMedCrossRef Michaelson DM. APOE ε4: the most prevalent yet understudied risk factor for Alzheimer’s disease. Alzheimers Dement. 2014;10(6):861–8.PubMedCrossRef
12.
go back to reference Holtzman DM, Herz J, Bu G. Apolipoprotein E and apolipoprotein E receptors: normal biology and roles in Alzheimer disease. Cold Spring Harb Perspect Med. 2012;2(3):a006312.PubMedPubMedCentralCrossRef Holtzman DM, Herz J, Bu G. Apolipoprotein E and apolipoprotein E receptors: normal biology and roles in Alzheimer disease. Cold Spring Harb Perspect Med. 2012;2(3):a006312.PubMedPubMedCentralCrossRef
13.
go back to reference Di Battista AM, Heinsinger NM, Rebeck GW. Alzheimer’s disease genetic risk factor APOE-ε4 also affects normal brain function. Curr Alzheimer Res. 2016;13(11):1200–7.PubMedCrossRef Di Battista AM, Heinsinger NM, Rebeck GW. Alzheimer’s disease genetic risk factor APOE-ε4 also affects normal brain function. Curr Alzheimer Res. 2016;13(11):1200–7.PubMedCrossRef
14.
go back to reference Martínez-Morillo E, Hansson O, Atagi Y, et al. Total apolipoprotein E levels and specific isoform composition in cerebrospinal fluid and plasma from Alzheimer’s disease patients and controls. Acta Neuropathol. 2014;127(5):633–43.PubMedCrossRef Martínez-Morillo E, Hansson O, Atagi Y, et al. Total apolipoprotein E levels and specific isoform composition in cerebrospinal fluid and plasma from Alzheimer’s disease patients and controls. Acta Neuropathol. 2014;127(5):633–43.PubMedCrossRef
15.
go back to reference Feingold KR, Grunfeld C. Introduction to lipids and lipoproteins. South Dartmouth: MDText.com, Inc.; 2000. Feingold KR, Grunfeld C. Introduction to lipids and lipoproteins. South Dartmouth: MDText.com, Inc.; 2000.
17.
18.
go back to reference Drummond E, Wisniewski T. Alzheimer’s disease: experimental models and reality. Acta Neuropathol. 2017;133(2):155–75.PubMedCrossRef Drummond E, Wisniewski T. Alzheimer’s disease: experimental models and reality. Acta Neuropathol. 2017;133(2):155–75.PubMedCrossRef
20.
go back to reference Chapman J, Korczyn AD, Karussis DM, Michaelson DM. The effects of APOE genotype on age at onset and progression of neurodegenerative diseases. Neurol. 2001;57(8):1482–5.CrossRef Chapman J, Korczyn AD, Karussis DM, Michaelson DM. The effects of APOE genotype on age at onset and progression of neurodegenerative diseases. Neurol. 2001;57(8):1482–5.CrossRef
21.
go back to reference Rannikmae K, Kalaria RN, Greenberg SM, et al. APOE associations with severe CAA-associated vasculopathic changes: collaborative meta-analysis. J Neurol Neurosurg Psychiatry. 2014;85(3):300–5.PubMedCrossRef Rannikmae K, Kalaria RN, Greenberg SM, et al. APOE associations with severe CAA-associated vasculopathic changes: collaborative meta-analysis. J Neurol Neurosurg Psychiatry. 2014;85(3):300–5.PubMedCrossRef
23.
go back to reference Shi Y, Yamada K, Liddelow SA, et al. ApoE4 markedly exacerbates tau-mediated neurodegeneration in a mouse model of tauopathy. Nature. 2017;549(7673):523–7.PubMedPubMedCentralCrossRef Shi Y, Yamada K, Liddelow SA, et al. ApoE4 markedly exacerbates tau-mediated neurodegeneration in a mouse model of tauopathy. Nature. 2017;549(7673):523–7.PubMedPubMedCentralCrossRef
24.
go back to reference Treves TA, Bornstein NM, Chapman J, et al. APOE-epsilon 4 in patients with Alzheimer disease and vascular dementia. Alzheimer Dis Assoc Disord. 1996;10(4):189–91.PubMedCrossRef Treves TA, Bornstein NM, Chapman J, et al. APOE-epsilon 4 in patients with Alzheimer disease and vascular dementia. Alzheimer Dis Assoc Disord. 1996;10(4):189–91.PubMedCrossRef
25.
go back to reference Shin S, Walz KA, Archambault AS, et al. Apolipoprotein E mediation of neuro-inflammation in a murine model of multiple sclerosis. J Neuroimmunol. 2014;271(1–2):8–17.PubMedPubMedCentralCrossRef Shin S, Walz KA, Archambault AS, et al. Apolipoprotein E mediation of neuro-inflammation in a murine model of multiple sclerosis. J Neuroimmunol. 2014;271(1–2):8–17.PubMedPubMedCentralCrossRef
26.
go back to reference Chapman J, Vinokurov S, Achiron A, et al. APOE genotype is a major predictor of long-term progression of disability in MS. Neurol. 2001;56(3):312–6.CrossRef Chapman J, Vinokurov S, Achiron A, et al. APOE genotype is a major predictor of long-term progression of disability in MS. Neurol. 2001;56(3):312–6.CrossRef
27.
go back to reference Liu B, Shen Y, Cen L, Tang Y. Apolipoprotein E gene polymorphism in a Chinese population with vascular dementia: a meta-analysis. Dement Geriatr Cogn Disord. 2012;33(2–3):96–103.PubMedCrossRef Liu B, Shen Y, Cen L, Tang Y. Apolipoprotein E gene polymorphism in a Chinese population with vascular dementia: a meta-analysis. Dement Geriatr Cogn Disord. 2012;33(2–3):96–103.PubMedCrossRef
28.
go back to reference Li L, Bao Y, He S, et al. The association between apolipoprotein E and functional outcome after traumatic brain injury. Medicine (Baltimore). 2015;94(46):e2028.CrossRef Li L, Bao Y, He S, et al. The association between apolipoprotein E and functional outcome after traumatic brain injury. Medicine (Baltimore). 2015;94(46):e2028.CrossRef
29.
go back to reference Kassam I, Gagnon F, Cusimano MD. Association of the APOE-ε4 allele with outcome of traumatic brain injury in children and youth: a meta-analysis and meta-regression. J Neurol Neurosurg Psychiatry. 2016;87(4):433–40.PubMedCrossRef Kassam I, Gagnon F, Cusimano MD. Association of the APOE-ε4 allele with outcome of traumatic brain injury in children and youth: a meta-analysis and meta-regression. J Neurol Neurosurg Psychiatry. 2016;87(4):433–40.PubMedCrossRef
30.
go back to reference Xiying M, Wenbo W, Wangyi F, Qinghuai L. Association of apolipoprotein E polymorphisms with age-related macular degeneration subtypes: an updated systematic review and meta-analysis. Arch Med Res. 2017;48(4):370–7.PubMedCrossRef Xiying M, Wenbo W, Wangyi F, Qinghuai L. Association of apolipoprotein E polymorphisms with age-related macular degeneration subtypes: an updated systematic review and meta-analysis. Arch Med Res. 2017;48(4):370–7.PubMedCrossRef
31.
go back to reference Espina M, Arcinue CA, Ma F, et al. Outer retinal tubulations response to anti-VEGF treatment. Br J Ophthalmol. 2016;100(6):819–23.PubMedCrossRef Espina M, Arcinue CA, Ma F, et al. Outer retinal tubulations response to anti-VEGF treatment. Br J Ophthalmol. 2016;100(6):819–23.PubMedCrossRef
32.
go back to reference Koch G, Di Lorenzo F, Loizzo S, et al. CSF tau is associated with impaired cortical plasticity, cognitive decline and astrocyte survival only in APOE4-positive Alzheimer’s disease. Sci Rep. 2017;7(1):13728.PubMedPubMedCentralCrossRef Koch G, Di Lorenzo F, Loizzo S, et al. CSF tau is associated with impaired cortical plasticity, cognitive decline and astrocyte survival only in APOE4-positive Alzheimer’s disease. Sci Rep. 2017;7(1):13728.PubMedPubMedCentralCrossRef
33.
go back to reference Chen Y, Durakoglugil MS, Xian X, Herz J. ApoE4 reduces glutamate receptor function and synaptic plasticity by selectively impairing ApoE receptor recycling. Proc Natl Acad Sci U S A. 2010;107(26):12011–6.PubMedPubMedCentralCrossRef Chen Y, Durakoglugil MS, Xian X, Herz J. ApoE4 reduces glutamate receptor function and synaptic plasticity by selectively impairing ApoE receptor recycling. Proc Natl Acad Sci U S A. 2010;107(26):12011–6.PubMedPubMedCentralCrossRef
34.
35.
go back to reference Chung W-S, Verghese PB, Chakraborty C, et al. Novel allele-dependent role for APOE in controlling the rate of synapse pruning by astrocytes. Proc Natl Acad Sci. 2016;113(36):10186–91.PubMedCrossRefPubMedCentral Chung W-S, Verghese PB, Chakraborty C, et al. Novel allele-dependent role for APOE in controlling the rate of synapse pruning by astrocytes. Proc Natl Acad Sci. 2016;113(36):10186–91.PubMedCrossRefPubMedCentral
36.
go back to reference Masuda T, Shimazawa M, Hashimoto Y, et al. Apolipoprotein E2 and E3, but not E4, promote retinal pathologic neovascularization. Invest Ophthalmol Vis Sci. 2017;58(2):1208–17.PubMedCrossRef Masuda T, Shimazawa M, Hashimoto Y, et al. Apolipoprotein E2 and E3, but not E4, promote retinal pathologic neovascularization. Invest Ophthalmol Vis Sci. 2017;58(2):1208–17.PubMedCrossRef
37.
go back to reference Mishra A, Ferrari R, Heutink P, et al. Gene-based association studies report genetic links for clinical subtypes of frontotemporal dementia. Brain. 2017;140(5):1437–46.PubMedCrossRef Mishra A, Ferrari R, Heutink P, et al. Gene-based association studies report genetic links for clinical subtypes of frontotemporal dementia. Brain. 2017;140(5):1437–46.PubMedCrossRef
38.
go back to reference Stevens M, van Duijn CM, de Knijff P, et al. Apolipoprotein E gene and sporadic frontal lobe dementia. Neurol. 1997;48(6):1526–9.CrossRef Stevens M, van Duijn CM, de Knijff P, et al. Apolipoprotein E gene and sporadic frontal lobe dementia. Neurol. 1997;48(6):1526–9.CrossRef
39.
go back to reference Hofman A, Ott A, Breteler MM, et al. Atherosclerosis, apolipoprotein E, and prevalence of dementia and Alzheimer’s disease in the Rotterdam study. Lancet. 1997;349(9046):151–4.PubMedCrossRef Hofman A, Ott A, Breteler MM, et al. Atherosclerosis, apolipoprotein E, and prevalence of dementia and Alzheimer’s disease in the Rotterdam study. Lancet. 1997;349(9046):151–4.PubMedCrossRef
40.
go back to reference McCarron MO, Delong D, Alberts MJ. APOE genotype as a risk factor for ischemic cerebrovascular disease: a meta-analysis. Neurol. 1999;53(6):1308–11.CrossRef McCarron MO, Delong D, Alberts MJ. APOE genotype as a risk factor for ischemic cerebrovascular disease: a meta-analysis. Neurol. 1999;53(6):1308–11.CrossRef
41.
go back to reference Newman MF, Laskowitz DT, White WD, et al. Apolipoprotein E polymorphisms and age at first coronary artery bypass graft. Anesth Analg. 2001;92(4):824–9.PubMedCrossRef Newman MF, Laskowitz DT, White WD, et al. Apolipoprotein E polymorphisms and age at first coronary artery bypass graft. Anesth Analg. 2001;92(4):824–9.PubMedCrossRef
42.
go back to reference Schneider JA, Bienias JL, Wilson RS, et al. The apolipoprotein E epsilon4 allele increases the odds of chronic cerebral infarction [corrected] detected at autopsy in older persons. Stroke. 2005;36(5):954–9.PubMedCrossRef Schneider JA, Bienias JL, Wilson RS, et al. The apolipoprotein E epsilon4 allele increases the odds of chronic cerebral infarction [corrected] detected at autopsy in older persons. Stroke. 2005;36(5):954–9.PubMedCrossRef
43.
go back to reference Chapman J, Wang N, Treves TA, Korczyn AD, Bornstein NM. ACE, MTHFR, factor V Leiden, and APOE polymorphisms in patients with vascular and Alzheimer’s dementia. Stroke. 1998;29(7):1401–4.PubMedCrossRef Chapman J, Wang N, Treves TA, Korczyn AD, Bornstein NM. ACE, MTHFR, factor V Leiden, and APOE polymorphisms in patients with vascular and Alzheimer’s dementia. Stroke. 1998;29(7):1401–4.PubMedCrossRef
44.
go back to reference Sudlow C, Martínez González NA, Kim J, Clark C. Does apolipoprotein E genotype influence the risk of ischemic stroke, intracerebral hemorrhage, or subarachnoid hemorrhage? Systematic review and meta-analyses of 31 studies among 5961 cases and 17,965 controls. Stroke. 2006;37(2):364–70.PubMedCrossRef Sudlow C, Martínez González NA, Kim J, Clark C. Does apolipoprotein E genotype influence the risk of ischemic stroke, intracerebral hemorrhage, or subarachnoid hemorrhage? Systematic review and meta-analyses of 31 studies among 5961 cases and 17,965 controls. Stroke. 2006;37(2):364–70.PubMedCrossRef
45.
go back to reference Poels MMF, Vernooij MW, Ikram MA, et al. Prevalence and risk factors of cerebral microbleeds: an update of the Rotterdam scan study. Stroke. 2010;41(10 Suppl):S103–6.PubMedCrossRef Poels MMF, Vernooij MW, Ikram MA, et al. Prevalence and risk factors of cerebral microbleeds: an update of the Rotterdam scan study. Stroke. 2010;41(10 Suppl):S103–6.PubMedCrossRef
46.
go back to reference Hanson AJ, Craft S, Banks WA. The APOE genotype: modification of therapeutic responses in Alzheimer’s disease. Curr Pharm Des. 2015;21(1):114–20.PubMedCrossRef Hanson AJ, Craft S, Banks WA. The APOE genotype: modification of therapeutic responses in Alzheimer’s disease. Curr Pharm Des. 2015;21(1):114–20.PubMedCrossRef
47.
go back to reference Dorey E, Chang N, Liu QY, Yang Z, Zhang W. Apolipoprotein E, amyloid-beta, and neuroinflammation in Alzheimer’s disease. Neurosci Bull. 2014;30(2):317–30.PubMedPubMedCentralCrossRef Dorey E, Chang N, Liu QY, Yang Z, Zhang W. Apolipoprotein E, amyloid-beta, and neuroinflammation in Alzheimer’s disease. Neurosci Bull. 2014;30(2):317–30.PubMedPubMedCentralCrossRef
49.
go back to reference Kok E, Haikonen S, Luoto T, et al. Apolipoprotein E-dependent accumulation of Alzheimer disease-related lesions begins in middle age. Ann Neurol. 2009;65(6):650–7.PubMedCrossRef Kok E, Haikonen S, Luoto T, et al. Apolipoprotein E-dependent accumulation of Alzheimer disease-related lesions begins in middle age. Ann Neurol. 2009;65(6):650–7.PubMedCrossRef
50.
go back to reference Polvikoski T, Sulkava R, Haltia M, et al. Apolipoprotein E, dementia, and cortical deposition of beta-amyloid protein. N Engl J Med. 1995;333(19):1242–7.PubMedCrossRef Polvikoski T, Sulkava R, Haltia M, et al. Apolipoprotein E, dementia, and cortical deposition of beta-amyloid protein. N Engl J Med. 1995;333(19):1242–7.PubMedCrossRef
51.
go back to reference Shinohara M, Petersen RC, Dickson DW, Bu G. Brain regional correlation of amyloid-β with synapses and apolipoprotein E in non-demented individuals: potential mechanisms underlying regional vulnerability to amyloid-β accumulation. Acta Neuropathol. 2013;125(4):535–47.PubMedPubMedCentralCrossRef Shinohara M, Petersen RC, Dickson DW, Bu G. Brain regional correlation of amyloid-β with synapses and apolipoprotein E in non-demented individuals: potential mechanisms underlying regional vulnerability to amyloid-β accumulation. Acta Neuropathol. 2013;125(4):535–47.PubMedPubMedCentralCrossRef
52.
go back to reference Huynh T-PV, Davis AA, Ulrich JD, Holtzman DM. Apolipoprotein E and Alzheimer’s disease: the influence of apolipoprotein E on amyloid-β and other amyloidogenic proteins. J Lipid Res. 2017;58(5):824–36.PubMedPubMedCentralCrossRef Huynh T-PV, Davis AA, Ulrich JD, Holtzman DM. Apolipoprotein E and Alzheimer’s disease: the influence of apolipoprotein E on amyloid-β and other amyloidogenic proteins. J Lipid Res. 2017;58(5):824–36.PubMedPubMedCentralCrossRef
53.
go back to reference Tai LM, Bilousova T, Jungbauer L, et al. Levels of soluble apolipoprotein E/amyloid-β (Aβ) complex are reduced and oligomeric Aβ increased with APOE4 and Alzheimer disease in a transgenic mouse model and human samples. J Biol Chem. 2013;288(8):5914–26.PubMedPubMedCentralCrossRef Tai LM, Bilousova T, Jungbauer L, et al. Levels of soluble apolipoprotein E/amyloid-β (Aβ) complex are reduced and oligomeric Aβ increased with APOE4 and Alzheimer disease in a transgenic mouse model and human samples. J Biol Chem. 2013;288(8):5914–26.PubMedPubMedCentralCrossRef
54.
go back to reference Liu S, Park S, Allington G, et al. Targeting apolipoprotein E/amyloid β binding by peptoid CPO_Aβ17-21 P ameliorates Alzheimer’s disease related pathology and cognitive decline. Sci Rep. 2017;7(1):8009.PubMedPubMedCentralCrossRef Liu S, Park S, Allington G, et al. Targeting apolipoprotein E/amyloid β binding by peptoid CPO_Aβ17-21 P ameliorates Alzheimer’s disease related pathology and cognitive decline. Sci Rep. 2017;7(1):8009.PubMedPubMedCentralCrossRef
55.
56.
go back to reference Du J, Chang J, Guo S, Zhang Q, Wang Z. ApoE 4 reduces the expression of Abeta degrading enzyme IDE by activating the NMDA receptor in hippocampal neurons. Neurosci Lett. 2009;464(2):140–5.PubMedCrossRef Du J, Chang J, Guo S, Zhang Q, Wang Z. ApoE 4 reduces the expression of Abeta degrading enzyme IDE by activating the NMDA receptor in hippocampal neurons. Neurosci Lett. 2009;464(2):140–5.PubMedCrossRef
57.
go back to reference Nielsen HM, Mulder SD, Beliën JAM, et al. Astrocytic Aβ1-42 uptake is determined by Aβ-aggregation state and the presence of amyloid-associated proteins. Glia. 2010;58(10):1235–46.PubMedCrossRef Nielsen HM, Mulder SD, Beliën JAM, et al. Astrocytic Aβ1-42 uptake is determined by Aβ-aggregation state and the presence of amyloid-associated proteins. Glia. 2010;58(10):1235–46.PubMedCrossRef
59.
go back to reference Zekonyte J, Sakai K, Nicoll JAR, Weller RO, Carare RO. Quantification of molecular interactions between ApoE, amyloid-beta (Aβ) and laminin: relevance to accumulation of Aβ in Alzheimer’s disease. Biochim Biophys Acta. 2016;1862(5):1047–53.PubMedCrossRef Zekonyte J, Sakai K, Nicoll JAR, Weller RO, Carare RO. Quantification of molecular interactions between ApoE, amyloid-beta (Aβ) and laminin: relevance to accumulation of Aβ in Alzheimer’s disease. Biochim Biophys Acta. 2016;1862(5):1047–53.PubMedCrossRef
60.
go back to reference Rodriguez GA, Tai LM, LaDu MJ, Rebeck GW. Human APOE4 increases microglia reactivity at Aβ plaques in a mouse model of Aβ deposition. J Neuroinflammation. 2014;11(1):111.PubMedPubMedCentralCrossRef Rodriguez GA, Tai LM, LaDu MJ, Rebeck GW. Human APOE4 increases microglia reactivity at Aβ plaques in a mouse model of Aβ deposition. J Neuroinflammation. 2014;11(1):111.PubMedPubMedCentralCrossRef
61.
go back to reference Kim J, Yoon H, Basak J, Kim J. Apolipoprotein E in synaptic plasticity and Alzheimer’s disease: potential cellular and molecular mechanisms. Mol Cell. 2014;37(11):767–76.CrossRef Kim J, Yoon H, Basak J, Kim J. Apolipoprotein E in synaptic plasticity and Alzheimer’s disease: potential cellular and molecular mechanisms. Mol Cell. 2014;37(11):767–76.CrossRef
62.
go back to reference Liao F, Yoon H, Kim J. Apolipoprotein E metabolism and functions in brain and its role in Alzheimer’s disease. Curr Opin Lipidol. 2017;28(1):60–7.PubMedPubMedCentral Liao F, Yoon H, Kim J. Apolipoprotein E metabolism and functions in brain and its role in Alzheimer’s disease. Curr Opin Lipidol. 2017;28(1):60–7.PubMedPubMedCentral
63.
go back to reference Poirier J, Miron J, Picard C, et al. Apolipoprotein E and lipid homeostasis in the etiology and treatment of sporadic Alzheimer’s disease. Neurobiol Aging. 2014;35(Suppl 2):S3–10.PubMedPubMedCentralCrossRef Poirier J, Miron J, Picard C, et al. Apolipoprotein E and lipid homeostasis in the etiology and treatment of sporadic Alzheimer’s disease. Neurobiol Aging. 2014;35(Suppl 2):S3–10.PubMedPubMedCentralCrossRef
64.
go back to reference Tai LM, Ghura S, Koster KP, et al. APOE-modulated Aβ-induced neuroinflammation in Alzheimer’s disease: current landscape, novel data, and future perspective. J Neurochem. 2015;133(4):465–88.PubMedPubMedCentralCrossRef Tai LM, Ghura S, Koster KP, et al. APOE-modulated Aβ-induced neuroinflammation in Alzheimer’s disease: current landscape, novel data, and future perspective. J Neurochem. 2015;133(4):465–88.PubMedPubMedCentralCrossRef
65.
go back to reference Cramer PE, Cirrito JR, Wesson DW, et al. ApoE-directed therapeutics rapidly clear β-amyloid and reverse deficits in AD mouse models. Science. 2012;335(6075):1503–6.PubMedPubMedCentralCrossRef Cramer PE, Cirrito JR, Wesson DW, et al. ApoE-directed therapeutics rapidly clear β-amyloid and reverse deficits in AD mouse models. Science. 2012;335(6075):1503–6.PubMedPubMedCentralCrossRef
66.
go back to reference Hampel H, Blennow K, Shaw LM, et al. Total and phosphorylated tau protein as biological markers of Alzheimer’s disease. Exp Gerontol. 2010;45(1):30–40.PubMedCrossRef Hampel H, Blennow K, Shaw LM, et al. Total and phosphorylated tau protein as biological markers of Alzheimer’s disease. Exp Gerontol. 2010;45(1):30–40.PubMedCrossRef
67.
go back to reference Damoiseaux JS, Seeley WW, Zhou J, et al. Gender modulates the APOE ε4 effect in healthy older adults: convergent evidence from functional brain connectivity and spinal fluid tau levels. J Neurosci. 2012;32(24):8254–62.PubMedPubMedCentralCrossRef Damoiseaux JS, Seeley WW, Zhou J, et al. Gender modulates the APOE ε4 effect in healthy older adults: convergent evidence from functional brain connectivity and spinal fluid tau levels. J Neurosci. 2012;32(24):8254–62.PubMedPubMedCentralCrossRef
68.
go back to reference Leoni V. The effect of apolipoprotein E (ApoE) genotype on biomarkers of amyloidogenesis, tau pathology and neurodegeneration in Alzheimer’s disease. Clin Chem Lab Med. 2011;49(3):375–83.PubMedCrossRef Leoni V. The effect of apolipoprotein E (ApoE) genotype on biomarkers of amyloidogenesis, tau pathology and neurodegeneration in Alzheimer’s disease. Clin Chem Lab Med. 2011;49(3):375–83.PubMedCrossRef
69.
go back to reference Salomon-Zimri S, Glat MJ, Barhum Y, et al. Reversal of ApoE4-driven brain pathology by vascular endothelial growth factor treatment. J Alzheimers Dis. 2016;53(4):1443–58.PubMedCrossRef Salomon-Zimri S, Glat MJ, Barhum Y, et al. Reversal of ApoE4-driven brain pathology by vascular endothelial growth factor treatment. J Alzheimers Dis. 2016;53(4):1443–58.PubMedCrossRef
70.
go back to reference Liraz O, Boehm-Cagan A, Michaelson DM. ApoE4 induces Aβ42, tau, and neuronal pathology in the hippocampus of young targeted replacement apoE4 mice. Mol Neurodegener. 2013;8(1):16.PubMedPubMedCentralCrossRef Liraz O, Boehm-Cagan A, Michaelson DM. ApoE4 induces Aβ42, tau, and neuronal pathology in the hippocampus of young targeted replacement apoE4 mice. Mol Neurodegener. 2013;8(1):16.PubMedPubMedCentralCrossRef
71.
go back to reference Genis I, Gordon I, Sehayek E, Michaelson DM. Phosphorylation of tau in apolipoprotein E-deficient mice. Neurosci Lett. 1995;199(1):5–8.PubMedCrossRef Genis I, Gordon I, Sehayek E, Michaelson DM. Phosphorylation of tau in apolipoprotein E-deficient mice. Neurosci Lett. 1995;199(1):5–8.PubMedCrossRef
72.
go back to reference Tesseur I, Van Dorpe J, Spittaels K, et al. Expression of human apolipoprotein E4 in neurons causes hyperphosphorylation of protein tau in the brains of transgenic mice. Am J Pathol. 2000;156(3):951–64.PubMedPubMedCentralCrossRef Tesseur I, Van Dorpe J, Spittaels K, et al. Expression of human apolipoprotein E4 in neurons causes hyperphosphorylation of protein tau in the brains of transgenic mice. Am J Pathol. 2000;156(3):951–64.PubMedPubMedCentralCrossRef
73.
go back to reference Mannix R, Meehan WP, Mandeville J, et al. Clinical correlates in an experimental model of repetitive mild brain injury. Ann Neurol. 2013;74(1):65–75.PubMedPubMedCentralCrossRef Mannix R, Meehan WP, Mandeville J, et al. Clinical correlates in an experimental model of repetitive mild brain injury. Ann Neurol. 2013;74(1):65–75.PubMedPubMedCentralCrossRef
74.
75.
go back to reference Dubnikov T, Cohen E. The emerging roles of early protein folding events in the secretory pathway in the development of neurodegenerative maladies. Front Neurosci. 2017;11:48.PubMedPubMedCentralCrossRef Dubnikov T, Cohen E. The emerging roles of early protein folding events in the secretory pathway in the development of neurodegenerative maladies. Front Neurosci. 2017;11:48.PubMedPubMedCentralCrossRef
76.
go back to reference Harris FM, Brecht WJ, Xu Q, Mahley RW, Huang Y. Increased tau phosphorylation in apolipoprotein E4 transgenic mice is associated with activation of extracellular signal-regulated kinase. J Biol Chem. 2004;279(43):44795–801.PubMedCrossRef Harris FM, Brecht WJ, Xu Q, Mahley RW, Huang Y. Increased tau phosphorylation in apolipoprotein E4 transgenic mice is associated with activation of extracellular signal-regulated kinase. J Biol Chem. 2004;279(43):44795–801.PubMedCrossRef
77.
go back to reference Brecht WJ, Harris FM, Chang S, et al. Neuron-specific apolipoprotein E4 proteolysis is associated with increased tau phosphorylation in brains of transgenic mice. J Neurosci. 2004;24(10):2527–34.PubMedCrossRefPubMedCentral Brecht WJ, Harris FM, Chang S, et al. Neuron-specific apolipoprotein E4 proteolysis is associated with increased tau phosphorylation in brains of transgenic mice. J Neurosci. 2004;24(10):2527–34.PubMedCrossRefPubMedCentral
78.
go back to reference Harris FM, Brecht WJ, Xu Q, Mahley RW, Huang Y. Increased tau phosphorylation in apolipoprotein E4 transgenic mice is associated with activation of extracellular signal-regulated kinase: modulation by zinc. J Biol Chem. 2004;279(43):44795–801.PubMedCrossRef Harris FM, Brecht WJ, Xu Q, Mahley RW, Huang Y. Increased tau phosphorylation in apolipoprotein E4 transgenic mice is associated with activation of extracellular signal-regulated kinase: modulation by zinc. J Biol Chem. 2004;279(43):44795–801.PubMedCrossRef
79.
go back to reference Wennberg AM, Tosakulwong N, Lesnick TG, et al. Association of apolipoprotein E ε4 with transactive response DNA-binding protein 43. JAMA Neurol. 2018;75(11):1347–54.PubMedCrossRefPubMedCentral Wennberg AM, Tosakulwong N, Lesnick TG, et al. Association of apolipoprotein E ε4 with transactive response DNA-binding protein 43. JAMA Neurol. 2018;75(11):1347–54.PubMedCrossRefPubMedCentral
80.
go back to reference Yang H-S, Yu L, White CC, et al. Evaluation of TDP-43 proteinopathy and hippocampal sclerosis in relation to APOE ε4 haplotype status: a community-based cohort study. Lancet Neurol. 2018;17(9):773–81.PubMedCrossRefPubMedCentral Yang H-S, Yu L, White CC, et al. Evaluation of TDP-43 proteinopathy and hippocampal sclerosis in relation to APOE ε4 haplotype status: a community-based cohort study. Lancet Neurol. 2018;17(9):773–81.PubMedCrossRefPubMedCentral
81.
go back to reference Robinson JL, Lee EB, Xie SX, et al. Neurodegenerative disease concomitant proteinopathies are prevalent, age-related and APOE4-associated. Brain. 2018;141(7):2181–93.PubMedCrossRefPubMedCentral Robinson JL, Lee EB, Xie SX, et al. Neurodegenerative disease concomitant proteinopathies are prevalent, age-related and APOE4-associated. Brain. 2018;141(7):2181–93.PubMedCrossRefPubMedCentral
82.
go back to reference Lemke S, Vicini J, Su H. Dietary intake of stearidonic acid – enriched soybean oil increases the omega-3 index : randomized, double-blind clinical study of efficacy and safety. Am J Clin Nutr. 2010;92(4):766–75.PubMedCrossRef Lemke S, Vicini J, Su H. Dietary intake of stearidonic acid – enriched soybean oil increases the omega-3 index : randomized, double-blind clinical study of efficacy and safety. Am J Clin Nutr. 2010;92(4):766–75.PubMedCrossRef
83.
go back to reference Belkouch M, Hachem M, Elgot A, et al. The pleiotropic effects of omega-3 docosahexaenoic acid on the hallmarks of Alzheimer’s disease. J Nutr Biochem. 2016;38:1–11.PubMedCrossRef Belkouch M, Hachem M, Elgot A, et al. The pleiotropic effects of omega-3 docosahexaenoic acid on the hallmarks of Alzheimer’s disease. J Nutr Biochem. 2016;38:1–11.PubMedCrossRef
84.
go back to reference Nock TG, Chouinard-Watkins R, Plourde M. Carriers of an apolipoprotein E epsilon 4 allele are more vulnerable to a dietary deficiency in omega-3 fatty acids and cognitive decline. Biochim Biophys Acta Mol Cell Biol Lipids. 2017;1862(10 Pt A):1068–78.PubMedCrossRef Nock TG, Chouinard-Watkins R, Plourde M. Carriers of an apolipoprotein E epsilon 4 allele are more vulnerable to a dietary deficiency in omega-3 fatty acids and cognitive decline. Biochim Biophys Acta Mol Cell Biol Lipids. 2017;1862(10 Pt A):1068–78.PubMedCrossRef
86.
go back to reference Salem N, Vandal M, Calon F. The benefit of docosahexaenoic acid for the adult brain in aging and dementia. Prostaglandins Leukot Essent Fat Acids. 2015;92:15–22.CrossRef Salem N, Vandal M, Calon F. The benefit of docosahexaenoic acid for the adult brain in aging and dementia. Prostaglandins Leukot Essent Fat Acids. 2015;92:15–22.CrossRef
87.
go back to reference Kariv-Inbal Z, Yacobson S, Berkecz R, et al. The isoform-specific pathological effects of apoE4 in vivo are prevented by a fish oil (DHA) diet and are modified by cholesterol. J Alzheimers Dis. 2012;28(3):667–83.PubMedCrossRef Kariv-Inbal Z, Yacobson S, Berkecz R, et al. The isoform-specific pathological effects of apoE4 in vivo are prevented by a fish oil (DHA) diet and are modified by cholesterol. J Alzheimers Dis. 2012;28(3):667–83.PubMedCrossRef
88.
go back to reference Yassine HN, Braskie MN, Mack WJ, et al. Association of docosahexaenoic acid supplementation with Alzheimer disease stage in apolipoprotein E ε4 carriers. JAMA Neurol. 2017;74(3):339.PubMedPubMedCentralCrossRef Yassine HN, Braskie MN, Mack WJ, et al. Association of docosahexaenoic acid supplementation with Alzheimer disease stage in apolipoprotein E ε4 carriers. JAMA Neurol. 2017;74(3):339.PubMedPubMedCentralCrossRef
89.
go back to reference Harris JR, Milton NGN. Cholesterol in Alzheimer’s disease and other amyloidogenic disorders. Subcell Biochem. 2010;51:47–75.PubMedCrossRef Harris JR, Milton NGN. Cholesterol in Alzheimer’s disease and other amyloidogenic disorders. Subcell Biochem. 2010;51:47–75.PubMedCrossRef
90.
go back to reference Zhu L, Zhong M, Elder GA, et al. Phospholipid dysregulation contributes to ApoE4-associated cognitive deficits in Alzheimer’s disease pathogenesis. Proc Natl Acad Sci U S A. 2015;112(38):11965–70.PubMedPubMedCentralCrossRef Zhu L, Zhong M, Elder GA, et al. Phospholipid dysregulation contributes to ApoE4-associated cognitive deficits in Alzheimer’s disease pathogenesis. Proc Natl Acad Sci U S A. 2015;112(38):11965–70.PubMedPubMedCentralCrossRef
91.
go back to reference Grimm MOW, Zimmer VC, Lehmann J, Grimm HS, Hartmann T. The impact of cholesterol, DHA, and sphingolipids on Alzheimer’s disease. Biomed Res Int. 2013;2013:814390.PubMedCrossRef Grimm MOW, Zimmer VC, Lehmann J, Grimm HS, Hartmann T. The impact of cholesterol, DHA, and sphingolipids on Alzheimer’s disease. Biomed Res Int. 2013;2013:814390.PubMedCrossRef
92.
go back to reference Zinser EG, Hartmann T, Grimm MOW. Amyloid beta-protein and lipid metabolism. Biochim Biophys Acta Biomembr. 2007;1768(8):1991–2001.CrossRef Zinser EG, Hartmann T, Grimm MOW. Amyloid beta-protein and lipid metabolism. Biochim Biophys Acta Biomembr. 2007;1768(8):1991–2001.CrossRef
93.
go back to reference Vestergaard M, Hamada T, Morita M, Takagi M. Cholesterol, lipids, amyloid beta, and Alzheimers. Curr Alzheimer Res. 2010;7(3):262–70.PubMedCrossRef Vestergaard M, Hamada T, Morita M, Takagi M. Cholesterol, lipids, amyloid beta, and Alzheimers. Curr Alzheimer Res. 2010;7(3):262–70.PubMedCrossRef
94.
go back to reference Bangen KJ, Beiser A, Delano-Wood L, et al. APOE genotype modifies the relationship between midlife vascular risk factors and later cognitive decline. J Stroke Cerebrovasc Dis. 2013;22(8):1361–9.PubMedCrossRef Bangen KJ, Beiser A, Delano-Wood L, et al. APOE genotype modifies the relationship between midlife vascular risk factors and later cognitive decline. J Stroke Cerebrovasc Dis. 2013;22(8):1361–9.PubMedCrossRef
95.
go back to reference Anstey KJ, Lipnicki DM, Low L-F. Cholesterol as a risk factor for dementia and cognitive decline: a systematic review of prospective studies with meta-analysis. Am J Geriatr Psychiatry. 2008;16(5):343–54.PubMedCrossRef Anstey KJ, Lipnicki DM, Low L-F. Cholesterol as a risk factor for dementia and cognitive decline: a systematic review of prospective studies with meta-analysis. Am J Geriatr Psychiatry. 2008;16(5):343–54.PubMedCrossRef
96.
97.
go back to reference Hu J, Liu C-C, Chen X-F, et al. Opposing effects of viral mediated brain expression of apolipoprotein E2 (apoE2) and apoE4 on apoE lipidation and Aβ metabolism in apoE4-targeted replacement mice. Mol Neurodegener. 2015;10(1):6.PubMedPubMedCentralCrossRef Hu J, Liu C-C, Chen X-F, et al. Opposing effects of viral mediated brain expression of apolipoprotein E2 (apoE2) and apoE4 on apoE lipidation and Aβ metabolism in apoE4-targeted replacement mice. Mol Neurodegener. 2015;10(1):6.PubMedPubMedCentralCrossRef
98.
go back to reference Yassine HN, Rawat V, Mack WJ, et al. The effect of APOE genotype on the delivery of DHA to cerebrospinal fluid in Alzheimer’s disease. Alzheimers Res Ther. 2016;8(1):25.PubMedPubMedCentralCrossRef Yassine HN, Rawat V, Mack WJ, et al. The effect of APOE genotype on the delivery of DHA to cerebrospinal fluid in Alzheimer’s disease. Alzheimers Res Ther. 2016;8(1):25.PubMedPubMedCentralCrossRef
99.
go back to reference Heinsinger NM, Gachechiladze MA, Rebeck GW. Apolipoprotein E genotype affects size of ApoE complexes in cerebrospinal fluid. J Neuropathol Exp Neurol. 2016;75(10):918–24.PubMedCrossRefPubMedCentral Heinsinger NM, Gachechiladze MA, Rebeck GW. Apolipoprotein E genotype affects size of ApoE complexes in cerebrospinal fluid. J Neuropathol Exp Neurol. 2016;75(10):918–24.PubMedCrossRefPubMedCentral
100.
go back to reference Kim WS, Weickert CS, Garner B. Role of ATP-binding cassette transporters in brain lipid transport and neurological disease. J Neurochem. 2008;104(5):1145–66.PubMedCrossRef Kim WS, Weickert CS, Garner B. Role of ATP-binding cassette transporters in brain lipid transport and neurological disease. J Neurochem. 2008;104(5):1145–66.PubMedCrossRef
101.
go back to reference Wahrle SE, Jiang H, Parsadanian M, et al. ABCA1 is required for normal central nervous system ApoE levels and for lipidation of astrocyte-secreted apoE. J Biol Chem. 2004;279(39):40987–93.PubMedCrossRef Wahrle SE, Jiang H, Parsadanian M, et al. ABCA1 is required for normal central nervous system ApoE levels and for lipidation of astrocyte-secreted apoE. J Biol Chem. 2004;279(39):40987–93.PubMedCrossRef
102.
go back to reference Fitz NF, Cronican AA, Saleem M, et al. Abca1 deficiency affects Alzheimer’s disease-like phenotype in human ApoE4 but not in ApoE3-targeted replacement mice. J Neurosci. 2012;32(38):13125–36.PubMedPubMedCentralCrossRef Fitz NF, Cronican AA, Saleem M, et al. Abca1 deficiency affects Alzheimer’s disease-like phenotype in human ApoE4 but not in ApoE3-targeted replacement mice. J Neurosci. 2012;32(38):13125–36.PubMedPubMedCentralCrossRef
103.
go back to reference Boehm-Cagan A, Bar R, Liraz O, et al. ABCA1 agonist reverses the ApoE4-driven cognitive and brain pathologies. J Alzheimers Dis. 2016;54(3):1219–33.PubMedCrossRef Boehm-Cagan A, Bar R, Liraz O, et al. ABCA1 agonist reverses the ApoE4-driven cognitive and brain pathologies. J Alzheimers Dis. 2016;54(3):1219–33.PubMedCrossRef
104.
go back to reference Boehm-Cagan A, Bar R, Harats D, et al. Differential effects of apoE4 and activation of ABCA1 on brain and plasma lipoproteins. PLoS One. 2016;11(11):e0166195.PubMedPubMedCentralCrossRef Boehm-Cagan A, Bar R, Harats D, et al. Differential effects of apoE4 and activation of ABCA1 on brain and plasma lipoproteins. PLoS One. 2016;11(11):e0166195.PubMedPubMedCentralCrossRef
105.
go back to reference Chen Z, Zhong C. Decoding Alzheimer’s disease from perturbed cerebral glucose metabolism: implications for diagnostic and therapeutic strategies. Prog Neurobiol. 2013;108:21–43.PubMedCrossRef Chen Z, Zhong C. Decoding Alzheimer’s disease from perturbed cerebral glucose metabolism: implications for diagnostic and therapeutic strategies. Prog Neurobiol. 2013;108:21–43.PubMedCrossRef
106.
go back to reference Chen HK, Ji ZS, Dodson SE, et al. Apolipoprotein E4 domain interaction mediates detrimental effects on mitochondria and is a potential therapeutic target for alzheimer disease. J Biol Chem. 2011;286(7):5215–21.PubMedCrossRef Chen HK, Ji ZS, Dodson SE, et al. Apolipoprotein E4 domain interaction mediates detrimental effects on mitochondria and is a potential therapeutic target for alzheimer disease. J Biol Chem. 2011;286(7):5215–21.PubMedCrossRef
107.
go back to reference Chang S, ran Ma T, Miranda RD, et al. Lipid- and receptor-binding regions of apolipoprotein E4 fragments act in concert to cause mitochondrial dysfunction and neurotoxicity. Proc Natl Acad Sci U S A. 2005;102(51):18694–9.PubMedPubMedCentralCrossRef Chang S, ran Ma T, Miranda RD, et al. Lipid- and receptor-binding regions of apolipoprotein E4 fragments act in concert to cause mitochondrial dysfunction and neurotoxicity. Proc Natl Acad Sci U S A. 2005;102(51):18694–9.PubMedPubMedCentralCrossRef
108.
go back to reference Wolf AB, Caselli RJ, Reiman EM, Valla J. APOE and neuroenergetics: an emerging paradigm in Alzheimer’s disease. Neurobiol Aging. 2013;34(4):1007–17.PubMedCrossRef Wolf AB, Caselli RJ, Reiman EM, Valla J. APOE and neuroenergetics: an emerging paradigm in Alzheimer’s disease. Neurobiol Aging. 2013;34(4):1007–17.PubMedCrossRef
109.
go back to reference Zhou M, Huang T, Collins N, et al. APOE4 induces site-specific tau phosphorylation through calpain-CDK5 signaling pathway in EFAD-Tg mice. Curr Alzheimer Res. 2016;13(9):1048–55.PubMedCrossRef Zhou M, Huang T, Collins N, et al. APOE4 induces site-specific tau phosphorylation through calpain-CDK5 signaling pathway in EFAD-Tg mice. Curr Alzheimer Res. 2016;13(9):1048–55.PubMedCrossRef
110.
go back to reference Friedland-Leuner K, Stockburger C, Denzer I, Eckert GP, Müller WE. Mitochondrial dysfunction: cause and consequence of Alzheimer’s disease. Prog Mol Biol Transl Sci. 2014;127:183–210.PubMedCrossRef Friedland-Leuner K, Stockburger C, Denzer I, Eckert GP, Müller WE. Mitochondrial dysfunction: cause and consequence of Alzheimer’s disease. Prog Mol Biol Transl Sci. 2014;127:183–210.PubMedCrossRef
111.
go back to reference Tesseur I, Van Dorpe J, Bruynseels K, et al. Prominent axonopathy and disruption of axonal transport in transgenic mice expressing human apolipoprotein E4 in neurons of brain and spinal cord. Am J Pathol. 2000;157(5):1495–510.PubMedPubMedCentralCrossRef Tesseur I, Van Dorpe J, Bruynseels K, et al. Prominent axonopathy and disruption of axonal transport in transgenic mice expressing human apolipoprotein E4 in neurons of brain and spinal cord. Am J Pathol. 2000;157(5):1495–510.PubMedPubMedCentralCrossRef
112.
113.
go back to reference Kolev MV, Ruseva MM, Harris CL, Morgan BP, Donev RM. Implication of complement system and its regulators in Alzheimer’s disease. Curr Neuropharmacol. 2009;7(1):1–8.PubMedPubMedCentralCrossRef Kolev MV, Ruseva MM, Harris CL, Morgan BP, Donev RM. Implication of complement system and its regulators in Alzheimer’s disease. Curr Neuropharmacol. 2009;7(1):1–8.PubMedPubMedCentralCrossRef
114.
go back to reference McGeer PL, Rogers J, McGeer EG. Inflammation, antiinflammatory agents, and Alzheimer’s disease: the last 22 years. J Alzheimers Dis. 2016;54(3):853–7.PubMedCrossRef McGeer PL, Rogers J, McGeer EG. Inflammation, antiinflammatory agents, and Alzheimer’s disease: the last 22 years. J Alzheimers Dis. 2016;54(3):853–7.PubMedCrossRef
115.
go back to reference Zhang S, Li X, Ma G, et al. CLU rs9331888 polymorphism contributes to Alzheimer’s disease susceptibility in Caucasian but not east Asian populations. Mol Neurobiol. 2016;53(3):1446–51.PubMedCrossRef Zhang S, Li X, Ma G, et al. CLU rs9331888 polymorphism contributes to Alzheimer’s disease susceptibility in Caucasian but not east Asian populations. Mol Neurobiol. 2016;53(3):1446–51.PubMedCrossRef
116.
go back to reference Colonna M, Wang Y. TREM2 variants: new keys to decipher Alzheimer disease pathogenesis. Nat Rev Neurosci. 2016;17(4):201–7.PubMedCrossRef Colonna M, Wang Y. TREM2 variants: new keys to decipher Alzheimer disease pathogenesis. Nat Rev Neurosci. 2016;17(4):201–7.PubMedCrossRef
117.
118.
go back to reference Reale M, Kamal MA, Velluto L, et al. Relationship between inflammatory mediators, Abeta levels and ApoE genotype in Alzheimer disease. Curr Alzheimer Res. 2012;9(4):447–57.PubMedPubMedCentralCrossRef Reale M, Kamal MA, Velluto L, et al. Relationship between inflammatory mediators, Abeta levels and ApoE genotype in Alzheimer disease. Curr Alzheimer Res. 2012;9(4):447–57.PubMedPubMedCentralCrossRef
119.
go back to reference Gorelick PB. Role of inflammation in cognitive impairment: results of observational epidemiological studies and clinical trials. Ann N Y Acad Sci. 2010;1207(1):155–62.PubMedCrossRef Gorelick PB. Role of inflammation in cognitive impairment: results of observational epidemiological studies and clinical trials. Ann N Y Acad Sci. 2010;1207(1):155–62.PubMedCrossRef
120.
go back to reference Härtig W, Brückner G, Schmidt C, et al. Co-localization of beta-amyloid peptides, apolipoprotein E and glial markers in senile plaques in the prefrontal cortex of old rhesus monkeys. Brain Res. 1997;751(2):315–22.PubMedCrossRef Härtig W, Brückner G, Schmidt C, et al. Co-localization of beta-amyloid peptides, apolipoprotein E and glial markers in senile plaques in the prefrontal cortex of old rhesus monkeys. Brain Res. 1997;751(2):315–22.PubMedCrossRef
121.
go back to reference Thanopoulou K, Fragkouli A, Stylianopoulou F, Georgopoulos S. Scavenger receptor class B type I (SR-BI) regulates perivascular macrophages and modifies amyloid pathology in an Alzheimer mouse model. Proc Natl Acad Sci U S A. 2010;107(48):20816–21.PubMedPubMedCentralCrossRef Thanopoulou K, Fragkouli A, Stylianopoulou F, Georgopoulos S. Scavenger receptor class B type I (SR-BI) regulates perivascular macrophages and modifies amyloid pathology in an Alzheimer mouse model. Proc Natl Acad Sci U S A. 2010;107(48):20816–21.PubMedPubMedCentralCrossRef
122.
go back to reference Du Z, Jia H, Liu J, Zhao X, Xu W. Effects of three hydrogen-rich liquids on hemorrhagic shock in rats. J Surg Res. 2015;193(1):377–82.PubMedCrossRef Du Z, Jia H, Liu J, Zhao X, Xu W. Effects of three hydrogen-rich liquids on hemorrhagic shock in rats. J Surg Res. 2015;193(1):377–82.PubMedCrossRef
123.
go back to reference Ophir G, Amariglio N, Jacob-Hirsch J, et al. Apolipoprotein E4 enhances brain inflammation by modulation of the NF-kappaB signaling cascade. Neurobiol Dis. 2005;20(3):709–18.PubMedCrossRef Ophir G, Amariglio N, Jacob-Hirsch J, et al. Apolipoprotein E4 enhances brain inflammation by modulation of the NF-kappaB signaling cascade. Neurobiol Dis. 2005;20(3):709–18.PubMedCrossRef
124.
go back to reference Cash JG, Kuhel DG, Basford JE, et al. Apolipoprotein E4 impairs macrophage efferocytosis and potentiates apoptosis by accelerating endoplasmic reticulum stress. J Biol Chem. 2012;287(33):27876–84.PubMedPubMedCentralCrossRef Cash JG, Kuhel DG, Basford JE, et al. Apolipoprotein E4 impairs macrophage efferocytosis and potentiates apoptosis by accelerating endoplasmic reticulum stress. J Biol Chem. 2012;287(33):27876–84.PubMedPubMedCentralCrossRef
125.
go back to reference Li X, Montine KS, Keene CD, Montine TJ. Different mechanisms of apolipoprotein E isoform-dependent modulation of prostaglandin E2 production and triggering receptor expressed on myeloid cells 2 (TREM2) expression after innate immune activation of microglia. FASEB J. 2015;29(5):1754–62.PubMedPubMedCentralCrossRef Li X, Montine KS, Keene CD, Montine TJ. Different mechanisms of apolipoprotein E isoform-dependent modulation of prostaglandin E2 production and triggering receptor expressed on myeloid cells 2 (TREM2) expression after innate immune activation of microglia. FASEB J. 2015;29(5):1754–62.PubMedPubMedCentralCrossRef
126.
go back to reference Fan Y-Y, Cai Q-L, Gao Z-Y, et al. APOE ε4 allele elevates the expressions of inflammatory factors and promotes Alzheimer’s disease progression: a comparative study based on Han and she populations in the Wenzhou area. Brain Res Bull. 2017;132:39–43.PubMedCrossRef Fan Y-Y, Cai Q-L, Gao Z-Y, et al. APOE ε4 allele elevates the expressions of inflammatory factors and promotes Alzheimer’s disease progression: a comparative study based on Han and she populations in the Wenzhou area. Brain Res Bull. 2017;132:39–43.PubMedCrossRef
127.
go back to reference Teter B, LaDu MJ, Sullivan PM, Frautschy SA, Cole GM. Apolipoprotein E isotype-dependent modulation of microRNA-146a in plasma and brain. Neuroreport. 2016;23(7):829–38. Teter B, LaDu MJ, Sullivan PM, Frautschy SA, Cole GM. Apolipoprotein E isotype-dependent modulation of microRNA-146a in plasma and brain. Neuroreport. 2016;23(7):829–38.
128.
go back to reference Lukiw WJ, Zhao Y, Cui JG. An NF-kappaB-sensitive micro RNA-146a-mediated inflammatory circuit in Alzheimer disease and in stressed human brain cells. J Biol Chem. 2008;283(46):31315–22.PubMedPubMedCentralCrossRef Lukiw WJ, Zhao Y, Cui JG. An NF-kappaB-sensitive micro RNA-146a-mediated inflammatory circuit in Alzheimer disease and in stressed human brain cells. J Biol Chem. 2008;283(46):31315–22.PubMedPubMedCentralCrossRef
129.
go back to reference Miguel-Álvarez M, Santos-Lozano A, Sanchis-Gomar F, et al. Non-steroidal anti-inflammatory drugs as a treatment for Alzheimer’s disease: a systematic review and meta-analysis of treatment effect. Drugs Aging. 2015;32(2):139–47.PubMedCrossRef Miguel-Álvarez M, Santos-Lozano A, Sanchis-Gomar F, et al. Non-steroidal anti-inflammatory drugs as a treatment for Alzheimer’s disease: a systematic review and meta-analysis of treatment effect. Drugs Aging. 2015;32(2):139–47.PubMedCrossRef
131.
go back to reference Raffai RL, Weisgraber KH. Cholesterol: from heart attacks to Alzheimer’s disease. J Lipid Res. 2003;44(8):1423–30.PubMedCrossRef Raffai RL, Weisgraber KH. Cholesterol: from heart attacks to Alzheimer’s disease. J Lipid Res. 2003;44(8):1423–30.PubMedCrossRef
133.
go back to reference Mielke MM, Leoutsakos J-M, Tschanz JT, et al. Interaction between vascular factors and the APOE ε4 allele in predicting rate of progression in Alzheimer’s disease. J Alzheimers Dis. 2011;26(1):127–34.PubMedPubMedCentralCrossRef Mielke MM, Leoutsakos J-M, Tschanz JT, et al. Interaction between vascular factors and the APOE ε4 allele in predicting rate of progression in Alzheimer’s disease. J Alzheimers Dis. 2011;26(1):127–34.PubMedPubMedCentralCrossRef
134.
go back to reference Bell RD. The imbalance of vascular molecules in Alzheimer’s disease. J Alzheimers Dis. 2012;32(3):699–709.PubMedCrossRef Bell RD. The imbalance of vascular molecules in Alzheimer’s disease. J Alzheimers Dis. 2012;32(3):699–709.PubMedCrossRef
136.
go back to reference Saito S, Yamamoto Y, Ihara M. Mild cognitive impairment: at the crossroad of neurodegeneration and vascular dysfunction. Curr Alzheimer Res. 2015;12(6):507–12.PubMedCrossRef Saito S, Yamamoto Y, Ihara M. Mild cognitive impairment: at the crossroad of neurodegeneration and vascular dysfunction. Curr Alzheimer Res. 2015;12(6):507–12.PubMedCrossRef
137.
go back to reference Schöberl F, Eren OE, Wollenweber FA, Kraus T, Kellert L. Sporadic cerebral amyloid angiopathy: an overview with clinical cases. Fortschr Neurol Psychiatr. 2016;84(9):534–41.PubMedCrossRef Schöberl F, Eren OE, Wollenweber FA, Kraus T, Kellert L. Sporadic cerebral amyloid angiopathy: an overview with clinical cases. Fortschr Neurol Psychiatr. 2016;84(9):534–41.PubMedCrossRef
138.
go back to reference Cortes-Canteli M, Zamolodchikov D, Ahn HJ, Strickland S, Norris EH. Fibrinogen and altered hemostasis in Alzheimer’s disease. J Alzheimers Dis. 2012;32(3):599–608.PubMedPubMedCentralCrossRef Cortes-Canteli M, Zamolodchikov D, Ahn HJ, Strickland S, Norris EH. Fibrinogen and altered hemostasis in Alzheimer’s disease. J Alzheimers Dis. 2012;32(3):599–608.PubMedPubMedCentralCrossRef
139.
go back to reference Ahn HJ, Chen Z-L, Zamolodchikov D, Norris EH, Strickland S. Interactions of β-amyloid peptide with fibrinogen and coagulation factor XII may contribute to Alzheimer’s disease. Curr Opin Hematol. 2017;24(5):427–31.PubMedPubMedCentralCrossRef Ahn HJ, Chen Z-L, Zamolodchikov D, Norris EH, Strickland S. Interactions of β-amyloid peptide with fibrinogen and coagulation factor XII may contribute to Alzheimer’s disease. Curr Opin Hematol. 2017;24(5):427–31.PubMedPubMedCentralCrossRef
140.
go back to reference Hultman K, Strickland S, Norris EH. The APOE ɛ4/ɛ4 genotype potentiates vascular fibrin(ogen) deposition in amyloid-laden vessels in the brains of Alzheimer’s disease patients. J Cereb Blood Flow Metab. 2013;33(8):1251–8.PubMedPubMedCentralCrossRef Hultman K, Strickland S, Norris EH. The APOE ɛ4/ɛ4 genotype potentiates vascular fibrin(ogen) deposition in amyloid-laden vessels in the brains of Alzheimer’s disease patients. J Cereb Blood Flow Metab. 2013;33(8):1251–8.PubMedPubMedCentralCrossRef
141.
go back to reference Deane R, Sagare A, Hamm K, et al. apoE isoform-specific disruption of amyloid beta peptide clearance from mouse brain. J Clin Invest. 2008;118(12):4002–13.PubMedPubMedCentralCrossRef Deane R, Sagare A, Hamm K, et al. apoE isoform-specific disruption of amyloid beta peptide clearance from mouse brain. J Clin Invest. 2008;118(12):4002–13.PubMedPubMedCentralCrossRef
142.
go back to reference Stanley M, Macauley SL, Holtzman DM. Changes in insulin and insulin signaling in Alzheimer’s disease: cause or consequence? J Exp Med. 2016;213(8):1375–85.PubMedPubMedCentralCrossRef Stanley M, Macauley SL, Holtzman DM. Changes in insulin and insulin signaling in Alzheimer’s disease: cause or consequence? J Exp Med. 2016;213(8):1375–85.PubMedPubMedCentralCrossRef
143.
go back to reference Steen E, Terry BM, Rivera EJ, et al. Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer’s disease--is this type 3 diabetes? J Alzheimers Dis. 2005;7(1):63–80.PubMedCrossRef Steen E, Terry BM, Rivera EJ, et al. Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer’s disease--is this type 3 diabetes? J Alzheimers Dis. 2005;7(1):63–80.PubMedCrossRef
144.
go back to reference Yarchoan M, Toledo JB, Lee EB, et al. Abnormal serine phosphorylation of insulin receptor substrate 1 is associated with tau pathology in Alzheimer’s disease and tauopathies. Acta Neuropathol. 2014;128(5):679–89.PubMedPubMedCentralCrossRef Yarchoan M, Toledo JB, Lee EB, et al. Abnormal serine phosphorylation of insulin receptor substrate 1 is associated with tau pathology in Alzheimer’s disease and tauopathies. Acta Neuropathol. 2014;128(5):679–89.PubMedPubMedCentralCrossRef
145.
go back to reference Moloney AM, Griffin RJ, Timmons S, et al. Defects in IGF-1 receptor, insulin receptor and IRS-1/2 in Alzheimer’s disease indicate possible resistance to IGF-1 and insulin signalling. Neurobiol Aging. 2010;31(2):224–43.PubMedCrossRef Moloney AM, Griffin RJ, Timmons S, et al. Defects in IGF-1 receptor, insulin receptor and IRS-1/2 in Alzheimer’s disease indicate possible resistance to IGF-1 and insulin signalling. Neurobiol Aging. 2010;31(2):224–43.PubMedCrossRef
146.
go back to reference Keeney JT-R, Ibrahimi S, Zhao L. Human ApoE isoforms differentially modulate glucose and amyloid metabolic pathways in female brain: evidence of the mechanism of neuroprotection by ApoE2 and implications for Alzheimer’s disease prevention and early intervention. J Alzheimers Dis. 2015;48(2):411–24.PubMedPubMedCentralCrossRef Keeney JT-R, Ibrahimi S, Zhao L. Human ApoE isoforms differentially modulate glucose and amyloid metabolic pathways in female brain: evidence of the mechanism of neuroprotection by ApoE2 and implications for Alzheimer’s disease prevention and early intervention. J Alzheimers Dis. 2015;48(2):411–24.PubMedPubMedCentralCrossRef
147.
go back to reference Zhao N, Liu C-C, Van Ingelgom AJ, et al. Apolipoprotein E4 impairs neuronal insulin signaling by trapping insulin receptor in the endosomes. Neuron. 2017;96(1):115–29.e5.PubMedPubMedCentralCrossRef Zhao N, Liu C-C, Van Ingelgom AJ, et al. Apolipoprotein E4 impairs neuronal insulin signaling by trapping insulin receptor in the endosomes. Neuron. 2017;96(1):115–29.e5.PubMedPubMedCentralCrossRef
148.
go back to reference Traversy M-T, Vandal M, Tremblay C, et al. Altered cerebral insulin response in transgenic mice expressing the epsilon-4 allele of the human apolipoprotein E gene. Psychoneuroendocrinol. 2017;77:203–10.CrossRef Traversy M-T, Vandal M, Tremblay C, et al. Altered cerebral insulin response in transgenic mice expressing the epsilon-4 allele of the human apolipoprotein E gene. Psychoneuroendocrinol. 2017;77:203–10.CrossRef
149.
go back to reference Chan ES, Chen C, Cole GM, Wong B-S. Differential interaction of apolipoprotein-E isoforms with insulin receptors modulates brain insulin signaling in mutant human amyloid precursor protein transgenic mice. Sci Rep. 2015;5(1):13842.PubMedPubMedCentralCrossRef Chan ES, Chen C, Cole GM, Wong B-S. Differential interaction of apolipoprotein-E isoforms with insulin receptors modulates brain insulin signaling in mutant human amyloid precursor protein transgenic mice. Sci Rep. 2015;5(1):13842.PubMedPubMedCentralCrossRef
150.
go back to reference Ong Q-R, Chan ES, Lim M-L, Cole GM, Wong B-S. Reduced phosphorylation of brain insulin receptor substrate and Akt proteins in apolipoprotein-E4 targeted replacement mice. Sci Rep. 2014;4(1):3754.PubMedPubMedCentralCrossRef Ong Q-R, Chan ES, Lim M-L, Cole GM, Wong B-S. Reduced phosphorylation of brain insulin receptor substrate and Akt proteins in apolipoprotein-E4 targeted replacement mice. Sci Rep. 2014;4(1):3754.PubMedPubMedCentralCrossRef
151.
go back to reference Freiherr J, Hallschmid M, Frey WH, et al. Intranasal insulin as a treatment for Alzheimer’s disease: a review of basic research and clinical evidence. CNS Drugs. 2013;27(7):505–14.PubMedPubMedCentralCrossRef Freiherr J, Hallschmid M, Frey WH, et al. Intranasal insulin as a treatment for Alzheimer’s disease: a review of basic research and clinical evidence. CNS Drugs. 2013;27(7):505–14.PubMedPubMedCentralCrossRef
152.
go back to reference Avgerinos KI, Kalaitzidis G, Malli A, et al. Intranasal insulin in Alzheimer’s dementia or mild cognitive impairment: a systematic review. J Neurol. 2018;265(7):1497–510.PubMedCrossRefPubMedCentral Avgerinos KI, Kalaitzidis G, Malli A, et al. Intranasal insulin in Alzheimer’s dementia or mild cognitive impairment: a systematic review. J Neurol. 2018;265(7):1497–510.PubMedCrossRefPubMedCentral
153.
go back to reference Claxton A, Baker LD, Hanson A, et al. Long-acting intranasal insulin detemir improves cognition for adults with mild cognitive impairment or early-stage Alzheimer’s disease dementia. J Alzheimers Dis. 2015;44(3):897–906.PubMedCrossRef Claxton A, Baker LD, Hanson A, et al. Long-acting intranasal insulin detemir improves cognition for adults with mild cognitive impairment or early-stage Alzheimer’s disease dementia. J Alzheimers Dis. 2015;44(3):897–906.PubMedCrossRef
154.
go back to reference Reger MA, Watson GS, Green PS, et al. Intranasal insulin administration dose-dependently modulates verbal memory and plasma amyloid-beta in memory-impaired older adults. J Alzheimers Dis. 2008;13(3):323–31.PubMedPubMedCentralCrossRef Reger MA, Watson GS, Green PS, et al. Intranasal insulin administration dose-dependently modulates verbal memory and plasma amyloid-beta in memory-impaired older adults. J Alzheimers Dis. 2008;13(3):323–31.PubMedPubMedCentralCrossRef
155.
go back to reference Licht T, Keshet E. Delineating multiple functions of VEGF-A in the adult brain. Cell Mol Life Sci. 2013;70(10):1727–37.PubMedCrossRef Licht T, Keshet E. Delineating multiple functions of VEGF-A in the adult brain. Cell Mol Life Sci. 2013;70(10):1727–37.PubMedCrossRef
156.
go back to reference Mateo I, Llorca J, Infante J, et al. Low serum VEGF levels are associated with Alzheimer’s disease. Acta Neurol Scand. 2007;116(1):56–8.PubMedCrossRef Mateo I, Llorca J, Infante J, et al. Low serum VEGF levels are associated with Alzheimer’s disease. Acta Neurol Scand. 2007;116(1):56–8.PubMedCrossRef
157.
go back to reference Tang H, Mao X, Xie L, Greenberg DA, Jin K. Expression level of vascular endothelial growth factor in hippocampus is associated with cognitive impairment in patients with Alzheimer’s disease. Neurobiol Aging. 2013;34(5):1412–5.PubMedCrossRef Tang H, Mao X, Xie L, Greenberg DA, Jin K. Expression level of vascular endothelial growth factor in hippocampus is associated with cognitive impairment in patients with Alzheimer’s disease. Neurobiol Aging. 2013;34(5):1412–5.PubMedCrossRef
158.
go back to reference Chiappelli M, Borroni B, Archetti S, et al. VEGF gene and phenotype relation with Alzheimer’s disease and mild cognitive impairment. Rejuvenation Res. 2006;9(4):485–93.PubMedCrossRef Chiappelli M, Borroni B, Archetti S, et al. VEGF gene and phenotype relation with Alzheimer’s disease and mild cognitive impairment. Rejuvenation Res. 2006;9(4):485–93.PubMedCrossRef
159.
go back to reference Boros BD, Greathouse KM, Gentry EG, et al. Dendritic spines provide cognitive resilience against Alzheimer’s disease. Ann Neurol. 2017;82(4):602–14.PubMedPubMedCentralCrossRef Boros BD, Greathouse KM, Gentry EG, et al. Dendritic spines provide cognitive resilience against Alzheimer’s disease. Ann Neurol. 2017;82(4):602–14.PubMedPubMedCentralCrossRef
160.
go back to reference Androuin A, Potier B, Nägerl UV, et al. Evidence for altered dendritic spine compartmentalization in Alzheimer’s disease and functional effects in a mouse model. Acta Neuropathol. 2018;135(6):839–54.PubMedCrossRef Androuin A, Potier B, Nägerl UV, et al. Evidence for altered dendritic spine compartmentalization in Alzheimer’s disease and functional effects in a mouse model. Acta Neuropathol. 2018;135(6):839–54.PubMedCrossRef
161.
go back to reference Rodriguez GA, Burns MP, Weeber EJ, Rebeck GW. Young APOE4 targeted replacement mice exhibit poor spatial learning and memory, with reduced dendritic spine density in the medial entorhinal cortex. Learn Mem. 2013;20(5):256–66.PubMedPubMedCentralCrossRef Rodriguez GA, Burns MP, Weeber EJ, Rebeck GW. Young APOE4 targeted replacement mice exhibit poor spatial learning and memory, with reduced dendritic spine density in the medial entorhinal cortex. Learn Mem. 2013;20(5):256–66.PubMedPubMedCentralCrossRef
162.
go back to reference Dumanis SB, Tesoriero JA, Babus LW, et al. ApoE4 decreases spine density and dendritic complexity in cortical neurons in vivo. J Neurosci. 2009;29(48):15317–22.PubMedPubMedCentralCrossRef Dumanis SB, Tesoriero JA, Babus LW, et al. ApoE4 decreases spine density and dendritic complexity in cortical neurons in vivo. J Neurosci. 2009;29(48):15317–22.PubMedPubMedCentralCrossRef
163.
go back to reference Wang Y, Manis PB. Synaptic transmission at the cochlear nucleus endbulb synapse during age-related hearing loss in mice. J Neurophysiol. 2005;94(3):1814–24.PubMedCrossRef Wang Y, Manis PB. Synaptic transmission at the cochlear nucleus endbulb synapse during age-related hearing loss in mice. J Neurophysiol. 2005;94(3):1814–24.PubMedCrossRef
164.
go back to reference Ashford JW. APOE genotype effects on Alzheimer’s disease onset and epidemiology. J Mol Neurosci. 2004;23(3):157–66.PubMedCrossRef Ashford JW. APOE genotype effects on Alzheimer’s disease onset and epidemiology. J Mol Neurosci. 2004;23(3):157–66.PubMedCrossRef
165.
go back to reference Shinohara M, Tachibana M, Kanekiyo T, Bu G. Role of LRP1 in the pathogenesis of Alzheimer’s disease: evidence from clinical and preclinical studies. J Lipid Res. 2017;58(7):1267–81.PubMedPubMedCentralCrossRef Shinohara M, Tachibana M, Kanekiyo T, Bu G. Role of LRP1 in the pathogenesis of Alzheimer’s disease: evidence from clinical and preclinical studies. J Lipid Res. 2017;58(7):1267–81.PubMedPubMedCentralCrossRef
166.
go back to reference Hayashi H, Campenot RB, Vance DE, Vance JE. Apolipoprotein E-containing lipoproteins protect neurons from apoptosis via a signaling pathway involving low-density lipoprotein receptor-related protein-1. J Neurosci. 2007;27(8):1933–41.PubMedCrossRefPubMedCentral Hayashi H, Campenot RB, Vance DE, Vance JE. Apolipoprotein E-containing lipoproteins protect neurons from apoptosis via a signaling pathway involving low-density lipoprotein receptor-related protein-1. J Neurosci. 2007;27(8):1933–41.PubMedCrossRefPubMedCentral
167.
go back to reference Sen A, Alkon DL, Nelson TJ. Apolipoprotein E3 (ApoE3) but not ApoE4 protects against synaptic loss through increased expression of protein kinase C epsilon. J Biol Chem. 2012;287(19):15947–58.PubMedPubMedCentralCrossRef Sen A, Alkon DL, Nelson TJ. Apolipoprotein E3 (ApoE3) but not ApoE4 protects against synaptic loss through increased expression of protein kinase C epsilon. J Biol Chem. 2012;287(19):15947–58.PubMedPubMedCentralCrossRef
168.
go back to reference Ulrich V, Konaniah ES, Herz J, et al. Genetic variants of ApoE and ApoER2 differentially modulate endothelial function. Proc Natl Acad Sci U S A. 2014;111(37):13493–8.PubMedPubMedCentralCrossRef Ulrich V, Konaniah ES, Herz J, et al. Genetic variants of ApoE and ApoER2 differentially modulate endothelial function. Proc Natl Acad Sci U S A. 2014;111(37):13493–8.PubMedPubMedCentralCrossRef
169.
go back to reference Martinelli N, Olivieri O, Shen G-Q, et al. Additive effect of LRP8/APOER2 R952Q variant to APOE epsilon2/epsilon3/epsilon4 genotype in modulating apolipoprotein E concentration and the risk of myocardial infarction: a case-control study. BMC Med Genet. 2009;10(1):41.PubMedPubMedCentralCrossRef Martinelli N, Olivieri O, Shen G-Q, et al. Additive effect of LRP8/APOER2 R952Q variant to APOE epsilon2/epsilon3/epsilon4 genotype in modulating apolipoprotein E concentration and the risk of myocardial infarction: a case-control study. BMC Med Genet. 2009;10(1):41.PubMedPubMedCentralCrossRef
170.
171.
go back to reference Li J, Kanekiyo T, Shinohara M, et al. Differential regulation of amyloid-β endocytic trafficking and lysosomal degradation by apolipoprotein E isoforms. J Biol Chem. 2012;287(53):44593–601.PubMedPubMedCentralCrossRef Li J, Kanekiyo T, Shinohara M, et al. Differential regulation of amyloid-β endocytic trafficking and lysosomal degradation by apolipoprotein E isoforms. J Biol Chem. 2012;287(53):44593–601.PubMedPubMedCentralCrossRef
172.
go back to reference Belinson H, Lev D, Masliah E, Michaelson DM. Activation of the amyloid cascade in apolipoprotein E4 transgenic mice induces lysosomal activation and neurodegeneration resulting in marked cognitive deficits. J Neurosci. 2008;28(18):4690–701.PubMedPubMedCentralCrossRef Belinson H, Lev D, Masliah E, Michaelson DM. Activation of the amyloid cascade in apolipoprotein E4 transgenic mice induces lysosomal activation and neurodegeneration resulting in marked cognitive deficits. J Neurosci. 2008;28(18):4690–701.PubMedPubMedCentralCrossRef
173.
go back to reference Gilat-Frenkel M, Boehm-Cagan A, Liraz O, et al. Involvement of the Apoer2 and Lrp1 receptors in mediating the pathological effects of ApoE4 in vivo. Curr Alzheimer Res. 2014;11(6):549–57.PubMedPubMedCentralCrossRef Gilat-Frenkel M, Boehm-Cagan A, Liraz O, et al. Involvement of the Apoer2 and Lrp1 receptors in mediating the pathological effects of ApoE4 in vivo. Curr Alzheimer Res. 2014;11(6):549–57.PubMedPubMedCentralCrossRef
174.
go back to reference Maezawa I, Nivison M, Montine KS, Maeda N, Montine TJ. Neurotoxicity from innate immune response is greatest with targeted replacement of E4 allele of apolipoprotein E gene and is mediated by microglial p38MAPK. FASEB J. 2006;20(6):797–9.PubMedCrossRef Maezawa I, Nivison M, Montine KS, Maeda N, Montine TJ. Neurotoxicity from innate immune response is greatest with targeted replacement of E4 allele of apolipoprotein E gene and is mediated by microglial p38MAPK. FASEB J. 2006;20(6):797–9.PubMedCrossRef
175.
176.
go back to reference Bonham LW, Desikan RS, Yokoyama JS, Initiative A’s DN. The relationship between complement factor C3, APOE ε4, amyloid and tau in Alzheimer’s disease. Acta Neuropathol Commun. 2016;4(1):65.PubMedPubMedCentralCrossRef Bonham LW, Desikan RS, Yokoyama JS, Initiative A’s DN. The relationship between complement factor C3, APOE ε4, amyloid and tau in Alzheimer’s disease. Acta Neuropathol Commun. 2016;4(1):65.PubMedPubMedCentralCrossRef
177.
go back to reference Ungar L, Altmann A, Greicius MD. Apolipoprotein E, gender, and Alzheimer’s disease: an overlooked, but potent and promising interaction. Brain Imaging Behav. 2014;8(2):262–73.PubMedPubMedCentralCrossRef Ungar L, Altmann A, Greicius MD. Apolipoprotein E, gender, and Alzheimer’s disease: an overlooked, but potent and promising interaction. Brain Imaging Behav. 2014;8(2):262–73.PubMedPubMedCentralCrossRef
178.
go back to reference Kolovou G, Damaskos D, Anagnostopoulou K, Cokkinos DV. Apolipoprotein E gene polymorphism and gender. Ann Clin Lab Sci. 2009;39(2):120–33.PubMed Kolovou G, Damaskos D, Anagnostopoulou K, Cokkinos DV. Apolipoprotein E gene polymorphism and gender. Ann Clin Lab Sci. 2009;39(2):120–33.PubMed
179.
go back to reference Zepa L, Frenkel M, Belinson H, et al. ApoE4-driven accumulation of intraneuronal oligomerized Aβ42 following activation of the amyloid cascade in vivo is mediated by a gain of function. Int J Alzheimers Dis. 2011;2011:792070.PubMedPubMedCentral Zepa L, Frenkel M, Belinson H, et al. ApoE4-driven accumulation of intraneuronal oligomerized Aβ42 following activation of the amyloid cascade in vivo is mediated by a gain of function. Int J Alzheimers Dis. 2011;2011:792070.PubMedPubMedCentral
180.
go back to reference Koster KP, Smith C, Valencia-Olvera AC, et al. Rexinoids as therapeutics for Alzheimer’s disease: role of APOE. Curr Top Med Chem. 2017;17(6):708–20.PubMedCrossRef Koster KP, Smith C, Valencia-Olvera AC, et al. Rexinoids as therapeutics for Alzheimer’s disease: role of APOE. Curr Top Med Chem. 2017;17(6):708–20.PubMedCrossRef
181.
go back to reference Ophir G, Meilin S, Efrati M, et al. Human apoE3 but not apoE4 rescues impaired astrocyte activation in apoE null mice. Neurobiol Dis. 2003;12(1):56–64.PubMedCrossRef Ophir G, Meilin S, Efrati M, et al. Human apoE3 but not apoE4 rescues impaired astrocyte activation in apoE null mice. Neurobiol Dis. 2003;12(1):56–64.PubMedCrossRef
182.
go back to reference Ulrich JD, Burchett JM, Restivo JL, et al. In vivo measurement of apolipoprotein E from the brain interstitial fluid using microdialysis. Mol Neurodegener. 2013;8(1):13.PubMedPubMedCentralCrossRef Ulrich JD, Burchett JM, Restivo JL, et al. In vivo measurement of apolipoprotein E from the brain interstitial fluid using microdialysis. Mol Neurodegener. 2013;8(1):13.PubMedPubMedCentralCrossRef
183.
go back to reference Sullivan PM, Han B, Liu F, et al. Reduced levels of human apoE4 protein in an animal model of cognitive impairment. Neurobiol Aging. 2011;32(5):791–801.PubMedCrossRef Sullivan PM, Han B, Liu F, et al. Reduced levels of human apoE4 protein in an animal model of cognitive impairment. Neurobiol Aging. 2011;32(5):791–801.PubMedCrossRef
184.
go back to reference Zhao N, Liu C-C, Qiao W, Bu G. Apolipoprotein E, receptors, and modulation of Alzheimer’s disease. Biol Psychiatry. 2018;83(4):347–57.PubMedCrossRef Zhao N, Liu C-C, Qiao W, Bu G. Apolipoprotein E, receptors, and modulation of Alzheimer’s disease. Biol Psychiatry. 2018;83(4):347–57.PubMedCrossRef
185.
go back to reference Doudna JA, Charpentier E. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014;346(6213):1258096.CrossRefPubMed Doudna JA, Charpentier E. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014;346(6213):1258096.CrossRefPubMed
186.
go back to reference Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature. 2016;533(7603):420–4.PubMedPubMedCentralCrossRef Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature. 2016;533(7603):420–4.PubMedPubMedCentralCrossRef
187.
go back to reference Offen D, Rabinowitz R, Michaelson D, Ben-Zur T. Towards gene-editing treatment for alzheimer’s disease: ApoE4 allele-specific knockout using CRISPR cas9 variant. Sci Direct. 2018;20(5):S18. Offen D, Rabinowitz R, Michaelson D, Ben-Zur T. Towards gene-editing treatment for alzheimer’s disease: ApoE4 allele-specific knockout using CRISPR cas9 variant. Sci Direct. 2018;20(5):S18.
188.
go back to reference Tachibana M, Shinohara M, Yamazaki Y, et al. Rescuing effects of RXR agonist bexarotene on aging-related synapse loss depend on neuronal LRP1. Exp Neurol. 2016;277:1–9.PubMedCrossRef Tachibana M, Shinohara M, Yamazaki Y, et al. Rescuing effects of RXR agonist bexarotene on aging-related synapse loss depend on neuronal LRP1. Exp Neurol. 2016;277:1–9.PubMedCrossRef
189.
go back to reference Talwar P, Silla Y, Grover S, et al. Genomic convergence and network analysis approach to identify candidate genes in Alzheimer’s disease. BMC Genomics. 2014;15(1):199.PubMedPubMedCentralCrossRef Talwar P, Silla Y, Grover S, et al. Genomic convergence and network analysis approach to identify candidate genes in Alzheimer’s disease. BMC Genomics. 2014;15(1):199.PubMedPubMedCentralCrossRef
190.
go back to reference Chen Q, Liang B, Wang Z, et al. Influence of four polymorphisms in ABCA1 and PTGS2 genes on risk of Alzheimer’s disease: a meta-analysis. Neurol Sci. 2016;37(8):1209–20.PubMedCrossRef Chen Q, Liang B, Wang Z, et al. Influence of four polymorphisms in ABCA1 and PTGS2 genes on risk of Alzheimer’s disease: a meta-analysis. Neurol Sci. 2016;37(8):1209–20.PubMedCrossRef
191.
go back to reference Van den Bossche T, Sleegers K, Cuyvers E, et al. Phenotypic characteristics of Alzheimer patients carrying an ABCA7 mutation. Neurol. 2016;86(23):2126–33.CrossRef Van den Bossche T, Sleegers K, Cuyvers E, et al. Phenotypic characteristics of Alzheimer patients carrying an ABCA7 mutation. Neurol. 2016;86(23):2126–33.CrossRef
192.
go back to reference Kim J, Eltorai AEM, Jiang H, et al. Anti-apoE immunotherapy inhibits amyloid accumulation in a transgenic mouse model of Aβ amyloidosis. J Exp Med. 2012;209(12):2149–56.PubMedPubMedCentralCrossRef Kim J, Eltorai AEM, Jiang H, et al. Anti-apoE immunotherapy inhibits amyloid accumulation in a transgenic mouse model of Aβ amyloidosis. J Exp Med. 2012;209(12):2149–56.PubMedPubMedCentralCrossRef
193.
go back to reference Liao F, Hori Y, Hudry E, et al. Anti-ApoE antibody given after plaque onset decreases Aβ accumulation and improves brain function in a mouse model of Aβ amyloidosis. J Neurosci. 2014;34(21):7281–92.PubMedPubMedCentralCrossRef Liao F, Hori Y, Hudry E, et al. Anti-ApoE antibody given after plaque onset decreases Aβ accumulation and improves brain function in a mouse model of Aβ amyloidosis. J Neurosci. 2014;34(21):7281–92.PubMedPubMedCentralCrossRef
194.
go back to reference Luz I, Liraz O, Michaelson DM. An anti-apoE4 specific monoclonal antibody counteracts the pathological effects of apoE4 in vivo. Curr Alzheimer Res. 2016;13(8):918–29.PubMedCrossRef Luz I, Liraz O, Michaelson DM. An anti-apoE4 specific monoclonal antibody counteracts the pathological effects of apoE4 in vivo. Curr Alzheimer Res. 2016;13(8):918–29.PubMedCrossRef
195.
go back to reference Chen H-K, Liu Z, Meyer-Franke A, et al. Small molecule structure correctors abolish detrimental effects of apolipoprotein E4 in cultured neurons. J Biol Chem. 2012;287(8):5253–66.PubMedCrossRef Chen H-K, Liu Z, Meyer-Franke A, et al. Small molecule structure correctors abolish detrimental effects of apolipoprotein E4 in cultured neurons. J Biol Chem. 2012;287(8):5253–66.PubMedCrossRef
196.
go back to reference Huang Y, Liu XQ, Wyss-Coray T, et al. Apolipoprotein E fragments present in Alzheimer’s disease brains induce neurofibrillary tangle-like intracellular inclusions in neurons. Proc Natl Acad Sci U S A. 2001;98(15):8838–43.PubMedPubMedCentralCrossRef Huang Y, Liu XQ, Wyss-Coray T, et al. Apolipoprotein E fragments present in Alzheimer’s disease brains induce neurofibrillary tangle-like intracellular inclusions in neurons. Proc Natl Acad Sci U S A. 2001;98(15):8838–43.PubMedPubMedCentralCrossRef
197.
go back to reference Harris FM, Brecht WJ, Xu Q, et al. Carboxyl-terminal-truncated apolipoprotein E4 causes Alzheimer’s disease-like neurodegeneration and behavioral deficits in transgenic mice. Proc Natl Acad Sci U S A. 2003;100(19):10966–71.PubMedPubMedCentralCrossRef Harris FM, Brecht WJ, Xu Q, et al. Carboxyl-terminal-truncated apolipoprotein E4 causes Alzheimer’s disease-like neurodegeneration and behavioral deficits in transgenic mice. Proc Natl Acad Sci U S A. 2003;100(19):10966–71.PubMedPubMedCentralCrossRef
198.
go back to reference Gonneaud J, Arenaza-Urquijo EM, Fouquet M, et al. Relative effect of APOE ε4 on neuroimaging biomarker changes across the lifespan. Neurol. 2016;87(16):1696–703.CrossRef Gonneaud J, Arenaza-Urquijo EM, Fouquet M, et al. Relative effect of APOE ε4 on neuroimaging biomarker changes across the lifespan. Neurol. 2016;87(16):1696–703.CrossRef
199.
go back to reference Kantarci K, Lowe V, Przybelski SA, et al. APOE modifies the association between Aβ load and cognition in cognitively normal older adults. Neurol. 2012;78(4):232–40.CrossRef Kantarci K, Lowe V, Przybelski SA, et al. APOE modifies the association between Aβ load and cognition in cognitively normal older adults. Neurol. 2012;78(4):232–40.CrossRef
200.
go back to reference Murphy KR, Landau SM, Choudhury KR, et al. Mapping the effects of ApoE4, age and cognitive status on 18F-florbetapir PET measured regional cortical patterns of beta-amyloid density and growth. Neuroimage. 2013;78:474–80.PubMedCrossRef Murphy KR, Landau SM, Choudhury KR, et al. Mapping the effects of ApoE4, age and cognitive status on 18F-florbetapir PET measured regional cortical patterns of beta-amyloid density and growth. Neuroimage. 2013;78:474–80.PubMedCrossRef
201.
go back to reference Serrano-Pozo A, Qian J, Monsell SE, Betensky RA, Hyman BT. APOEε2 is associated with milder clinical and pathological Alzheimer disease. Ann Neurol. 2015;77(6):917–29.PubMedPubMedCentralCrossRef Serrano-Pozo A, Qian J, Monsell SE, Betensky RA, Hyman BT. APOEε2 is associated with milder clinical and pathological Alzheimer disease. Ann Neurol. 2015;77(6):917–29.PubMedPubMedCentralCrossRef
203.
go back to reference Fleisher AS, Chen K, Liu X, et al. Apolipoprotein E ε4 and age effects on florbetapir positron emission tomography in healthy aging and Alzheimer disease. Neurobiol Aging. 2013;34(1):1–12.PubMedCrossRef Fleisher AS, Chen K, Liu X, et al. Apolipoprotein E ε4 and age effects on florbetapir positron emission tomography in healthy aging and Alzheimer disease. Neurobiol Aging. 2013;34(1):1–12.PubMedCrossRef
204.
go back to reference Huang Y, Mahley RW. Apolipoprotein E: structure and function in lipid metabolism, neurobiology, and Alzheimer’s diseases. Neurobiol Dis. 2014;72:3–12.PubMedCrossRef Huang Y, Mahley RW. Apolipoprotein E: structure and function in lipid metabolism, neurobiology, and Alzheimer’s diseases. Neurobiol Dis. 2014;72:3–12.PubMedCrossRef
205.
go back to reference Sadowski M, Pankiewicz J, Scholtzova H, et al. Links between the pathology of Alzheimer’s disease and vascular dementia. Neurochem Res. 2004;29(6):1257–66.PubMedCrossRef Sadowski M, Pankiewicz J, Scholtzova H, et al. Links between the pathology of Alzheimer’s disease and vascular dementia. Neurochem Res. 2004;29(6):1257–66.PubMedCrossRef
206.
go back to reference Liao F, Li A, Xiong M, et al. Targeting of nonlipidated, aggregated apoE with antibodies inhibits amyloid accumulation. J Clin Invest. 2018;128(5):2144–55.PubMedPubMedCentralCrossRef Liao F, Li A, Xiong M, et al. Targeting of nonlipidated, aggregated apoE with antibodies inhibits amyloid accumulation. J Clin Invest. 2018;128(5):2144–55.PubMedPubMedCentralCrossRef
207.
go back to reference Verghese PB, Castellano JM, Garai K, et al. ApoE influences amyloid-β (Aβ) clearance despite minimal apoE/Aβ association in physiological conditions. Proc Natl Acad Sci U S A. 2013;110(19):E1807–16.PubMedPubMedCentralCrossRef Verghese PB, Castellano JM, Garai K, et al. ApoE influences amyloid-β (Aβ) clearance despite minimal apoE/Aβ association in physiological conditions. Proc Natl Acad Sci U S A. 2013;110(19):E1807–16.PubMedPubMedCentralCrossRef
208.
go back to reference Ruiz J, Kouiavskaia D, Migliorini M, et al. The apoE isoform binding properties of the VLDL receptor reveal marked differences from LRP and the LDL receptor. J Lipid Res. 2005;46(8):1721–31.PubMedCrossRef Ruiz J, Kouiavskaia D, Migliorini M, et al. The apoE isoform binding properties of the VLDL receptor reveal marked differences from LRP and the LDL receptor. J Lipid Res. 2005;46(8):1721–31.PubMedCrossRef
209.
go back to reference Bachmeier C, Shackleton B, Ojo J, et al. Apolipoprotein E isoform-specific effects on lipoprotein receptor processing. NeuroMolecular Med. 2014;16(4):686–96.PubMedPubMedCentralCrossRef Bachmeier C, Shackleton B, Ojo J, et al. Apolipoprotein E isoform-specific effects on lipoprotein receptor processing. NeuroMolecular Med. 2014;16(4):686–96.PubMedPubMedCentralCrossRef
210.
go back to reference He X, Cooley K, Chung CHY, Dashti N, Tang J. Apolipoprotein receptor 2 and X11 alpha/beta mediate apolipoprotein E-induced endocytosis of amyloid-beta precursor protein and beta-secretase, leading to amyloid-beta production. J Neurosci. 2007;27(15):4052–60.PubMedCrossRefPubMedCentral He X, Cooley K, Chung CHY, Dashti N, Tang J. Apolipoprotein receptor 2 and X11 alpha/beta mediate apolipoprotein E-induced endocytosis of amyloid-beta precursor protein and beta-secretase, leading to amyloid-beta production. J Neurosci. 2007;27(15):4052–60.PubMedCrossRefPubMedCentral
211.
go back to reference Ghosal K, Stathopoulos A, Thomas D, et al. The apolipoprotein-E-mimetic COG112 protects amyloid precursor protein intracellular domain-overexpressing animals from Alzheimer’s disease-like pathological features. Neurodegener Dis. 2013;12(1):51–8.PubMedCrossRef Ghosal K, Stathopoulos A, Thomas D, et al. The apolipoprotein-E-mimetic COG112 protects amyloid precursor protein intracellular domain-overexpressing animals from Alzheimer’s disease-like pathological features. Neurodegener Dis. 2013;12(1):51–8.PubMedCrossRef
212.
go back to reference Vitek MP, Christensen DJ, Wilcock D, et al. APOE-mimetic peptides reduce behavioral deficits, plaques and tangles in Alzheimer’s disease transgenics. Neurodegener Dis. 2012;10(1–4):122–6.PubMedPubMedCentralCrossRef Vitek MP, Christensen DJ, Wilcock D, et al. APOE-mimetic peptides reduce behavioral deficits, plaques and tangles in Alzheimer’s disease transgenics. Neurodegener Dis. 2012;10(1–4):122–6.PubMedPubMedCentralCrossRef
213.
go back to reference Wang W, Zhu X. HDL mimetic peptides affect apolipoprotein E metabolism: equal supplement or functional enhancer?: an editorial for ‘High-density lipoprotein mimetic peptide 4F mitigates amyloid-β-induced inhibition of apolipoprotein E secretion and lipidation in primary astrocytes and microglia’ on page 647. J Neurochem. 2018;147(5):580–3.PubMedCrossRefPubMedCentral Wang W, Zhu X. HDL mimetic peptides affect apolipoprotein E metabolism: equal supplement or functional enhancer?: an editorial for ‘High-density lipoprotein mimetic peptide 4F mitigates amyloid-β-induced inhibition of apolipoprotein E secretion and lipidation in primary astrocytes and microglia’ on page 647. J Neurochem. 2018;147(5):580–3.PubMedCrossRefPubMedCentral
214.
go back to reference Laskowitz DT, Song P, Wang H, et al. Traumatic brain injury exacerbates neurodegenerative pathology: improvement with an apolipoprotein E-based therapeutic. J Neurotrauma. 2010;27(11):1983–95.PubMedCrossRef Laskowitz DT, Song P, Wang H, et al. Traumatic brain injury exacerbates neurodegenerative pathology: improvement with an apolipoprotein E-based therapeutic. J Neurotrauma. 2010;27(11):1983–95.PubMedCrossRef
215.
216.
go back to reference Wang H, Anderson LG, Lascola CD, et al. Apolipoprotein E mimetic peptides improve outcome after focal ischemia. Exp Neurol. 2013;241:67–74.PubMedCrossRef Wang H, Anderson LG, Lascola CD, et al. Apolipoprotein E mimetic peptides improve outcome after focal ischemia. Exp Neurol. 2013;241:67–74.PubMedCrossRef
217.
go back to reference White CR, Garber DW, Anantharamaiah GM. Anti-inflammatory and cholesterol-reducing properties of apolipoprotein mimetics: a review. J Lipid Res. 2014;55(10):2007–21.PubMedPubMedCentralCrossRef White CR, Garber DW, Anantharamaiah GM. Anti-inflammatory and cholesterol-reducing properties of apolipoprotein mimetics: a review. J Lipid Res. 2014;55(10):2007–21.PubMedPubMedCentralCrossRef
218.
go back to reference Rebeck GW, Kindy M, LaDu MJ. Apolipoprotein E and Alzheimer’s disease: the protective effects of ApoE2 and E3. J Alzheimers Dis. 2002;4(3):145–54.PubMedCrossRef Rebeck GW, Kindy M, LaDu MJ. Apolipoprotein E and Alzheimer’s disease: the protective effects of ApoE2 and E3. J Alzheimers Dis. 2002;4(3):145–54.PubMedCrossRef
219.
go back to reference Drenos F, Kirkwood TBL. Selection on alleles affecting human longevity and late-life disease: the example of apolipoprotein E. PLoS One. 2010;5(4):e10022.PubMedPubMedCentralCrossRef Drenos F, Kirkwood TBL. Selection on alleles affecting human longevity and late-life disease: the example of apolipoprotein E. PLoS One. 2010;5(4):e10022.PubMedPubMedCentralCrossRef
220.
go back to reference Suri S, Heise V, Trachtenberg AJ, Mackay CE. The forgotten APOE allele: a review of the evidence and suggested mechanisms for the protective effect of APOE ɛ2. Neurosci Biobehav Rev. 2013;37(10 Pt 2):2878–86.PubMedCrossRef Suri S, Heise V, Trachtenberg AJ, Mackay CE. The forgotten APOE allele: a review of the evidence and suggested mechanisms for the protective effect of APOE ɛ2. Neurosci Biobehav Rev. 2013;37(10 Pt 2):2878–86.PubMedCrossRef
221.
go back to reference Dodart J-C, Marr RA, Koistinaho M, et al. Gene delivery of human apolipoprotein E alters brain Abeta burden in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci U S A. 2005;102(4):1211–6.PubMedPubMedCentralCrossRef Dodart J-C, Marr RA, Koistinaho M, et al. Gene delivery of human apolipoprotein E alters brain Abeta burden in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci U S A. 2005;102(4):1211–6.PubMedPubMedCentralCrossRef
222.
go back to reference Rosenberg JB, Kaplitt MG, De BP, et al. AAVrh.10-mediated APOE2 central nervous system gene therapy for APOE4-associated Alzheimer’s disease. Hum Gene Ther Clin Dev. 2018;29(1):24–47.PubMedPubMedCentralCrossRef Rosenberg JB, Kaplitt MG, De BP, et al. AAVrh.10-mediated APOE2 central nervous system gene therapy for APOE4-associated Alzheimer’s disease. Hum Gene Ther Clin Dev. 2018;29(1):24–47.PubMedPubMedCentralCrossRef
223.
go back to reference Keren-Shaul H, Spinrad A, Weiner A, et al. A unique microglia type associated with restricting development of Alzheimer’s disease. Cell. 2017;169(7):1276–90.e17.PubMedCrossRef Keren-Shaul H, Spinrad A, Weiner A, et al. A unique microglia type associated with restricting development of Alzheimer’s disease. Cell. 2017;169(7):1276–90.e17.PubMedCrossRef
224.
go back to reference Brown GC, St George-Hyslop PH. Deciphering microglial diversity in Alzheimer’s disease. Science. 2017;356(6343):1123–4.PubMedCrossRef Brown GC, St George-Hyslop PH. Deciphering microglial diversity in Alzheimer’s disease. Science. 2017;356(6343):1123–4.PubMedCrossRef
225.
go back to reference Wattananit S, Tornero D, Graubardt N, et al. Monocyte-derived macrophages contribute to spontaneous long-term functional recovery after stroke in mice. J Neurosci. 2016;36(15):4182–95.PubMedCrossRefPubMedCentral Wattananit S, Tornero D, Graubardt N, et al. Monocyte-derived macrophages contribute to spontaneous long-term functional recovery after stroke in mice. J Neurosci. 2016;36(15):4182–95.PubMedCrossRefPubMedCentral
226.
go back to reference Altman R, Rutledge JC. The vascular contribution to Alzheimer’s disease. Clin Sci. 2010;119(10):407–21.CrossRef Altman R, Rutledge JC. The vascular contribution to Alzheimer’s disease. Clin Sci. 2010;119(10):407–21.CrossRef
227.
go back to reference Rohn TT. Is apolipoprotein E4 an important risk factor for vascular dementia? Int J Clin Exp Pathol. 2014;7(7):3504–11.PubMedPubMedCentral Rohn TT. Is apolipoprotein E4 an important risk factor for vascular dementia? Int J Clin Exp Pathol. 2014;7(7):3504–11.PubMedPubMedCentral
228.
go back to reference Mahley RW, Weisgraber KH, Huang Y. Apolipoprotein E: structure determines function, from atherosclerosis to Alzheimer’s disease to AIDS. J Lipid Res. 2009;50(Supplement):S183–8.PubMedPubMedCentralCrossRef Mahley RW, Weisgraber KH, Huang Y. Apolipoprotein E: structure determines function, from atherosclerosis to Alzheimer’s disease to AIDS. J Lipid Res. 2009;50(Supplement):S183–8.PubMedPubMedCentralCrossRef
229.
go back to reference Sengillo JD, Winkler EA, Walker CT, et al. Deficiency in mural vascular cells coincides with blood-brain barrier disruption in Alzheimer’s disease. Brain Pathol. 2013;23(3):303–10.PubMedCrossRef Sengillo JD, Winkler EA, Walker CT, et al. Deficiency in mural vascular cells coincides with blood-brain barrier disruption in Alzheimer’s disease. Brain Pathol. 2013;23(3):303–10.PubMedCrossRef
230.
go back to reference Davey DA. Alzheimer’s disease and vascular dementia: one potentially preventable and modifiable disease? Part II: management, prevention and future perspective. Neurodegener Dis Manag. 2014;4(3):261–70.PubMedCrossRef Davey DA. Alzheimer’s disease and vascular dementia: one potentially preventable and modifiable disease? Part II: management, prevention and future perspective. Neurodegener Dis Manag. 2014;4(3):261–70.PubMedCrossRef
232.
go back to reference Parcon PA, Balasubramaniam M, Ayyadevara S, et al. Apolipoprotein E4 inhibits autophagy gene products through direct, specific binding to CLEAR motifs. Alzheimers Dement. 2018;14(2):230–42.PubMedCrossRef Parcon PA, Balasubramaniam M, Ayyadevara S, et al. Apolipoprotein E4 inhibits autophagy gene products through direct, specific binding to CLEAR motifs. Alzheimers Dement. 2018;14(2):230–42.PubMedCrossRef
233.
go back to reference Urfer-Buchwalder A, Urfer R. Identification of a nuclear respiratory factor 1 recognition motif in the apolipoprotein E variant APOE4 linked to Alzheimer’s disease. Sci Rep. 2017;7(1):40668.PubMedPubMedCentralCrossRef Urfer-Buchwalder A, Urfer R. Identification of a nuclear respiratory factor 1 recognition motif in the apolipoprotein E variant APOE4 linked to Alzheimer’s disease. Sci Rep. 2017;7(1):40668.PubMedPubMedCentralCrossRef
235.
go back to reference Theendakara V, Peters-Libeu CA, Bredesen DE, Rao RV. Transcriptional effects of ApoE4: relevance to Alzheimer’s disease. Mol Neurobiol. 2018;55(6):5243–54.PubMedCrossRef Theendakara V, Peters-Libeu CA, Bredesen DE, Rao RV. Transcriptional effects of ApoE4: relevance to Alzheimer’s disease. Mol Neurobiol. 2018;55(6):5243–54.PubMedCrossRef
236.
go back to reference Singhrao SK, Harding A, Chukkapalli S, et al. Apolipoprotein E related co-morbidities and Alzheimer’s disease. J Alzheimers Dis. 2016;51(4):935–48.PubMedCrossRef Singhrao SK, Harding A, Chukkapalli S, et al. Apolipoprotein E related co-morbidities and Alzheimer’s disease. J Alzheimers Dis. 2016;51(4):935–48.PubMedCrossRef
Metadata
Title
ApoE4: an emerging therapeutic target for Alzheimer’s disease
Authors
Mirna Safieh
Amos D. Korczyn
Daniel M. Michaelson
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Medicine / Issue 1/2019
Electronic ISSN: 1741-7015
DOI
https://doi.org/10.1186/s12916-019-1299-4

Other articles of this Issue 1/2019

BMC Medicine 1/2019 Go to the issue