Skip to main content
Top
Published in: BMC Medicine 1/2018

Open Access 01-12-2018 | Research article

Small contribution of gold mines to the ongoing tuberculosis epidemic in South Africa: a modeling-based study

Authors: Stewart T. Chang, Violet N. Chihota, Katherine L. Fielding, Alison D. Grant, Rein M. Houben, Richard G. White, Gavin J. Churchyard, Philip A. Eckhoff, Bradley G. Wagner

Published in: BMC Medicine | Issue 1/2018

Login to get access

Abstract

Background

Gold mines represent a potential hotspot for Mycobacterium tuberculosis (Mtb) transmission and may be exacerbating the tuberculosis (TB) epidemic in South Africa. However, the presence of multiple factors complicates estimation of the mining contribution to the TB burden in South Africa.

Methods

We developed two models of TB in South Africa, a static risk model and an individual-based model that accounts for longer-term trends. Both models account for four populations — mine workers, peri-mining residents, labor-sending residents, and other residents of South Africa — including the size and prevalence of latent TB infection, active TB, and HIV of each population and mixing between populations. We calibrated to mine- and country-level data and used the static model to estimate force of infection (FOI) and new infections attributable to local residents in each community compared to other residents. Using the individual-based model, we simulated a counterfactual scenario to estimate the fraction of overall TB incidence in South Africa attributable to recent transmission in mines.

Results

We estimated that the majority of FOI in each community is attributable to local residents: 93.9% (95% confidence interval 92.4–95.1%), 91.5% (91.4–91.5%), and 94.7% (94.7–94.7%) in gold mining, peri-mining, and labor-sending communities, respectively. Assuming a higher rate of Mtb transmission in mines, 4.1% (2.6–5.8%), 5.0% (4.5–5.5%), and 9.0% (8.8–9.1%) of new infections in South Africa are attributable to gold mine workers, peri-mining residents, and labor-sending residents, respectively. Therefore, mine workers with TB disease, who constitute ~ 2.5% of the prevalent TB cases in South Africa, contribute 1.62 (1.04–2.30) times as many new infections as TB cases in South Africa on average. By modeling TB on a longer time scale, we estimate 63.0% (58.5–67.7%) of incident TB disease in gold mining communities to be attributable to recent transmission, of which 92.5% (92.1–92.9%) is attributable to local transmission.

Conclusions

Gold mine workers are estimated to contribute a disproportionately large number of Mtb infections in South Africa on a per-capita basis. However, mine workers contribute only a small fraction of overall Mtb infections in South Africa. Our results suggest that curtailing transmission in mines may have limited impact at the country level, despite potentially significant impact at the mining level.
Appendix
Available only for authorised users
Literature
1.
go back to reference Packard RM. White plague, black labor: tuberculosis and the political economy of health and disease in South Africa. Berkeley: University of California Press; 1989. Packard RM. White plague, black labor: tuberculosis and the political economy of health and disease in South Africa. Berkeley: University of California Press; 1989.
2.
go back to reference Rees D, Murray J, Nelson G, Sonnenberg P. Oscillating migration and the epidemics of silicosis, tuberculosis, and HIV infection in South African gold miners. Am J Ind Med. 2010;53:398–404.CrossRef Rees D, Murray J, Nelson G, Sonnenberg P. Oscillating migration and the epidemics of silicosis, tuberculosis, and HIV infection in South African gold miners. Am J Ind Med. 2010;53:398–404.CrossRef
3.
go back to reference Evian C, Fox M, MacLeod W, Slotow SJ, Rosen S. Prevalence of HIV in workforces in southern Africa, 2000-2001. S Afr Med J. 2004;94:125–30.PubMed Evian C, Fox M, MacLeod W, Slotow SJ, Rosen S. Prevalence of HIV in workforces in southern Africa, 2000-2001. S Afr Med J. 2004;94:125–30.PubMed
4.
go back to reference Corno L, de Walque D. Mines, Migration and HIV/AIDS in Southern Africa. J Afr Econ. 2012;21:465–98. Corno L, de Walque D. Mines, Migration and HIV/AIDS in Southern Africa. J Afr Econ. 2012;21:465–98.
5.
go back to reference Stuckler D, Steele S, Lurie M, Basu S. Introduction: “dying for gold”: the effects of mineral mining on HIV, tuberculosis, silicosis, and occupational diseases in southern Africa. Int J Health Serv. 2013;43:639–49.CrossRef Stuckler D, Steele S, Lurie M, Basu S. Introduction: “dying for gold”: the effects of mineral mining on HIV, tuberculosis, silicosis, and occupational diseases in southern Africa. Int J Health Serv. 2013;43:639–49.CrossRef
6.
go back to reference Basu S, Stuckler D, Gonsalves G, Lurie M. The production of consumption: addressing the impact of mineral mining on tuberculosis in southern Africa. Glob Health. 2009;5:11.CrossRef Basu S, Stuckler D, Gonsalves G, Lurie M. The production of consumption: addressing the impact of mineral mining on tuberculosis in southern Africa. Glob Health. 2009;5:11.CrossRef
7.
go back to reference Knight GM, Dodd PJ, Grant AD, Fielding KL, Churchyard GJ, White RG. Tuberculosis prevention in South Africa. PLoS One. 2015;10:e0122514.CrossRef Knight GM, Dodd PJ, Grant AD, Fielding KL, Churchyard GJ, White RG. Tuberculosis prevention in South Africa. PLoS One. 2015;10:e0122514.CrossRef
8.
go back to reference Houben RMGJ, Dowdy DW, Vassall A, Cohen T, Nicol MP, Granich RM, et al. How can mathematical models advance tuberculosis control in high HIV prevalence settings? Int J Tuberc Lung Dis. 2014;18:509–14.CrossRef Houben RMGJ, Dowdy DW, Vassall A, Cohen T, Nicol MP, Granich RM, et al. How can mathematical models advance tuberculosis control in high HIV prevalence settings? Int J Tuberc Lung Dis. 2014;18:509–14.CrossRef
9.
go back to reference Dowdy DW, Houben R, Cohen T, Pai M, Cobelens F, Vassall A, et al. Impact and cost-effectiveness of current and future tuberculosis diagnostics: the contribution of modelling. Int J Tuberc Lung Dis. 2014;18:1012–8.CrossRef Dowdy DW, Houben R, Cohen T, Pai M, Cobelens F, Vassall A, et al. Impact and cost-effectiveness of current and future tuberculosis diagnostics: the contribution of modelling. Int J Tuberc Lung Dis. 2014;18:1012–8.CrossRef
10.
go back to reference Houben RMGJ, Menzies NA, Sumner T, Huynh GH, Arinaminpathy N, Goldhaber-Fiebert JD, et al. Feasibility of achieving the 2025 WHO global tuberculosis targets in South Africa, China, and India: a combined analysis of 11 mathematical models. Lancet Glob Health. 2016;4:e806–15.CrossRef Houben RMGJ, Menzies NA, Sumner T, Huynh GH, Arinaminpathy N, Goldhaber-Fiebert JD, et al. Feasibility of achieving the 2025 WHO global tuberculosis targets in South Africa, China, and India: a combined analysis of 11 mathematical models. Lancet Glob Health. 2016;4:e806–15.CrossRef
11.
go back to reference Blaser N, Zahnd C, Hermans S, Salazar-Vizcaya L, Estill J, Morrow C, et al. Tuberculosis in Cape Town: an age-structured transmission model. Epidemics. 2016;14:54–61.CrossRef Blaser N, Zahnd C, Hermans S, Salazar-Vizcaya L, Estill J, Morrow C, et al. Tuberculosis in Cape Town: an age-structured transmission model. Epidemics. 2016;14:54–61.CrossRef
12.
go back to reference Johnstone-Robertson S, Lawn SD, Welte A, Bekker L-G, Wood R. Tuberculosis in a South African prison: a transmission modelling analysis. S Afr Med J. 2011;101:809–13.PubMedPubMedCentral Johnstone-Robertson S, Lawn SD, Welte A, Bekker L-G, Wood R. Tuberculosis in a South African prison: a transmission modelling analysis. S Afr Med J. 2011;101:809–13.PubMedPubMedCentral
13.
go back to reference Wood R, Johnstone-Robertson S, Uys P, Hargrove J, Middelkoop K, Lawn SD, et al. Tuberculosis transmission to young children in a South African community: modeling household and community infection risks. Clin Infect Dis. 2010;51:401–8.CrossRef Wood R, Johnstone-Robertson S, Uys P, Hargrove J, Middelkoop K, Lawn SD, et al. Tuberculosis transmission to young children in a South African community: modeling household and community infection risks. Clin Infect Dis. 2010;51:401–8.CrossRef
14.
go back to reference Sumner T, Houben RMGJ, Rangaka MX, Maartens G, Boulle A, Wilkinson RJ, et al. Post-treatment effect of isoniazid preventive therapy on tuberculosis incidence in HIV-infected individuals on antiretroviral therapy. AIDS. 2016;30:1279–86.CrossRef Sumner T, Houben RMGJ, Rangaka MX, Maartens G, Boulle A, Wilkinson RJ, et al. Post-treatment effect of isoniazid preventive therapy on tuberculosis incidence in HIV-infected individuals on antiretroviral therapy. AIDS. 2016;30:1279–86.CrossRef
15.
go back to reference Vynnycky E, Sumner T, Fielding KL, Lewis JJ, Cox AP, Hayes RJ, et al. Tuberculosis control in South African gold mines: mathematical modeling of a trial of community-wide isoniazid preventive therapy. Am J Epidemiol. 2015;181:619–32.CrossRef Vynnycky E, Sumner T, Fielding KL, Lewis JJ, Cox AP, Hayes RJ, et al. Tuberculosis control in South African gold mines: mathematical modeling of a trial of community-wide isoniazid preventive therapy. Am J Epidemiol. 2015;181:619–32.CrossRef
16.
go back to reference Fielding KL, Grant AD, Hayes RJ, Chaisson RE, Corbett EL, Churchyard GJ. Thibela TB: design and methods of a cluster randomised trial of the effect of community-wide isoniazid preventive therapy on tuberculosis amongst gold miners in South Africa. Contemp Clin Trials. 2011;32:382–92.CrossRef Fielding KL, Grant AD, Hayes RJ, Chaisson RE, Corbett EL, Churchyard GJ. Thibela TB: design and methods of a cluster randomised trial of the effect of community-wide isoniazid preventive therapy on tuberculosis amongst gold miners in South Africa. Contemp Clin Trials. 2011;32:382–92.CrossRef
17.
go back to reference Stats SA. Census 2011. Statistics South Africa, Pretoria. 2011. Stats SA. Census 2011. Statistics South Africa, Pretoria. 2011.
21.
go back to reference Churchyard GJ, Fielding KL, Lewis JJ, Coetzee L, Corbett EL, Godfrey-Faussett P, et al. A trial of mass isoniazid preventive therapy for tuberculosis control. N Engl J Med. 2014;370:301–10.CrossRef Churchyard GJ, Fielding KL, Lewis JJ, Coetzee L, Corbett EL, Godfrey-Faussett P, et al. A trial of mass isoniazid preventive therapy for tuberculosis control. N Engl J Med. 2014;370:301–10.CrossRef
22.
go back to reference Johnson LF, Dorrington RE, Moolla H. Progress towards the 2020 targets for HIV diagnosis and antiretroviral treatment in South Africa. South Afr J HIV Med. 2017;18:8. Johnson LF, Dorrington RE, Moolla H. Progress towards the 2020 targets for HIV diagnosis and antiretroviral treatment in South Africa. South Afr J HIV Med. 2017;18:8.
24.
go back to reference Anderson RM, May RM, Anderson B. Infectious diseases of humans: dynamics and control. Oxford: Oxford University Press; 1992. Anderson RM, May RM, Anderson B. Infectious diseases of humans: dynamics and control. Oxford: Oxford University Press; 1992.
25.
go back to reference Begon M, Bennett M, Bowers RG, French NP, Hazel SM, Turner J. A clarification of transmission terms in host-microparasite models: numbers, densities and areas. Epidemiol Infect. 2002;129:147–53.CrossRef Begon M, Bennett M, Bowers RG, French NP, Hazel SM, Turner J. A clarification of transmission terms in host-microparasite models: numbers, densities and areas. Epidemiol Infect. 2002;129:147–53.CrossRef
26.
go back to reference Gammaitoni L, Nucci MC. Using a mathematical model to evaluate the efficacy of TB control measures. Emerg Infect Dis. 1997;3:335–42.CrossRef Gammaitoni L, Nucci MC. Using a mathematical model to evaluate the efficacy of TB control measures. Emerg Infect Dis. 1997;3:335–42.CrossRef
27.
go back to reference Huynh GH, Klein DJ, Chin DP, Wagner BG, Eckhoff PA, Liu R, et al. Tuberculosis control strategies to reach the 2035 global targets in China: the role of changing demographics and reactivation disease. BMC Med. 2015;13:88.CrossRef Huynh GH, Klein DJ, Chin DP, Wagner BG, Eckhoff PA, Liu R, et al. Tuberculosis control strategies to reach the 2035 global targets in China: the role of changing demographics and reactivation disease. BMC Med. 2015;13:88.CrossRef
30.
go back to reference Klein DJ, Eckhoff PA, Bershteyn A. Targeting HIV services to male migrant workers in southern Africa would not reverse generalized HIV epidemics in their home communities: a mathematical modeling analysis. Int Health. 2015;7:107–13.CrossRef Klein DJ, Eckhoff PA, Bershteyn A. Targeting HIV services to male migrant workers in southern Africa would not reverse generalized HIV epidemics in their home communities: a mathematical modeling analysis. Int Health. 2015;7:107–13.CrossRef
31.
go back to reference Eaton JW, Bacaër N, Bershteyn A, Cambiano V, Cori A, Dorrington RE, et al. Assessment of epidemic projections using recent HIV survey data in South Africa: a validation analysis of ten mathematical models of HIV epidemiology in the antiretroviral therapy era. Lancet Glob Health. 2015;3:e598–608.CrossRef Eaton JW, Bacaër N, Bershteyn A, Cambiano V, Cori A, Dorrington RE, et al. Assessment of epidemic projections using recent HIV survey data in South Africa: a validation analysis of ten mathematical models of HIV epidemiology in the antiretroviral therapy era. Lancet Glob Health. 2015;3:e598–608.CrossRef
32.
go back to reference Nelson G, Girdler-Brown B, Ndlovu N, Murray J. Three decades of silicosis: disease trends at autopsy in South African gold miners. Environ Health Perspect. 2010;118:421–6.CrossRef Nelson G, Girdler-Brown B, Ndlovu N, Murray J. Three decades of silicosis: disease trends at autopsy in South African gold miners. Environ Health Perspect. 2010;118:421–6.CrossRef
33.
go back to reference Churchyard GJ, Ehrlich R, TWN JM, Pemba L, Dekker K, Vermeijs M, et al. Silicosis prevalence and exposure-response relations in South African goldminers. Occup Environ Med. 2004;61:811–6.CrossRef Churchyard GJ, Ehrlich R, TWN JM, Pemba L, Dekker K, Vermeijs M, et al. Silicosis prevalence and exposure-response relations in South African goldminers. Occup Environ Med. 2004;61:811–6.CrossRef
34.
go back to reference Murray J, Kielkowski D, Reid P. Occupational disease trends in black South African gold miners. An autopsy-based study. Am J Respir Crit Care Med. 1996;153:706–10.CrossRef Murray J, Kielkowski D, Reid P. Occupational disease trends in black South African gold miners. An autopsy-based study. Am J Respir Crit Care Med. 1996;153:706–10.CrossRef
35.
go back to reference Hens N, Shkedy Z, Aerts M, Faes C, Van Damme P, Beutels P. Who acquires infection from whom? The traditional approach. Modeling infectious disease parameters based on serological and social contact data. New York: Springer; 2012. p. 219–32. Hens N, Shkedy Z, Aerts M, Faes C, Van Damme P, Beutels P. Who acquires infection from whom? The traditional approach. Modeling infectious disease parameters based on serological and social contact data. New York: Springer; 2012. p. 219–32.
36.
go back to reference Corbett EL, Watt CJ, Walker N, Maher D, Williams BG, Raviglione MC, et al. The growing burden of tuberculosis: global trends and interactions with the HIV epidemic. Arch Intern Med. 2003;163:1009–21.CrossRef Corbett EL, Watt CJ, Walker N, Maher D, Williams BG, Raviglione MC, et al. The growing burden of tuberculosis: global trends and interactions with the HIV epidemic. Arch Intern Med. 2003;163:1009–21.CrossRef
37.
go back to reference Zumla A, George A, Sharma V, Herbert RHN, Oxley A, Oliver M. The WHO 2014 global tuberculosis report—further to go. Lancet Glob Health. 2015;3:e10–2.CrossRef Zumla A, George A, Sharma V, Herbert RHN, Oxley A, Oliver M. The WHO 2014 global tuberculosis report—further to go. Lancet Glob Health. 2015;3:e10–2.CrossRef
38.
go back to reference Raftery AE, Bao L. Estimating and projecting trends in HIV/AIDS generalized epidemics using incremental mixture importance sampling. Biometrics. 2010;66:1162–73.CrossRef Raftery AE, Bao L. Estimating and projecting trends in HIV/AIDS generalized epidemics using incremental mixture importance sampling. Biometrics. 2010;66:1162–73.CrossRef
39.
go back to reference Mangtani P, Abubakar I, Ariti C, Beynon R, Pimpin L, Fine PEM, et al. Protection by BCG vaccine against tuberculosis: a systematic review of randomized controlled trials. Clin Infect Dis. 2014;58:470–80.CrossRef Mangtani P, Abubakar I, Ariti C, Beynon R, Pimpin L, Fine PEM, et al. Protection by BCG vaccine against tuberculosis: a systematic review of randomized controlled trials. Clin Infect Dis. 2014;58:470–80.CrossRef
40.
go back to reference Shanaube K, Sismanidis C, Ayles H, Beyers N, Schaap A, Lawrence K-A, et al. Annual risk of tuberculous infection using different methods in communities with a high prevalence of TB and HIV in Zambia and South Africa. PLoS One. 2009;4:e7749.CrossRef Shanaube K, Sismanidis C, Ayles H, Beyers N, Schaap A, Lawrence K-A, et al. Annual risk of tuberculous infection using different methods in communities with a high prevalence of TB and HIV in Zambia and South Africa. PLoS One. 2009;4:e7749.CrossRef
41.
go back to reference Kritzinger FE, den Boon S, Verver S, Enarson DA, Lombard CJ, Borgdorff MW, et al. No decrease in annual risk of tuberculosis infection in endemic area in Cape Town, South Africa. Tropical Med Int Health. 2009;14:136–42.CrossRef Kritzinger FE, den Boon S, Verver S, Enarson DA, Lombard CJ, Borgdorff MW, et al. No decrease in annual risk of tuberculosis infection in endemic area in Cape Town, South Africa. Tropical Med Int Health. 2009;14:136–42.CrossRef
42.
go back to reference Wood R, Liang H, Wu H, Middelkoop K, Oni T, Rangaka MX, et al. Changing prevalence of tuberculosis infection with increasing age in high-burden townships in South Africa. Int J Tuberc Lung Dis. 2010;14:406–12.PubMedPubMedCentral Wood R, Liang H, Wu H, Middelkoop K, Oni T, Rangaka MX, et al. Changing prevalence of tuberculosis infection with increasing age in high-burden townships in South Africa. Int J Tuberc Lung Dis. 2010;14:406–12.PubMedPubMedCentral
43.
go back to reference Ncayiyana JR, Bassett J, West N, Westreich D, Musenge E, Emch M, et al. Prevalence of latent tuberculosis infection and predictive factors in an urban informal settlement in Johannesburg, South Africa: a cross-sectional study. BMC Infect Dis. 2016;16:661.CrossRef Ncayiyana JR, Bassett J, West N, Westreich D, Musenge E, Emch M, et al. Prevalence of latent tuberculosis infection and predictive factors in an urban informal settlement in Johannesburg, South Africa: a cross-sectional study. BMC Infect Dis. 2016;16:661.CrossRef
45.
go back to reference Corbett EL, Charalambous S, Fielding K, Clayton T, Hayes RJ, De Cock KM, et al. Stable incidence rates of tuberculosis (TB) among human immunodeficiency virus (HIV)-negative South African gold miners during a decade of epidemic HIV-associated TB. J Infect Dis. 2003;188:1156–63.CrossRef Corbett EL, Charalambous S, Fielding K, Clayton T, Hayes RJ, De Cock KM, et al. Stable incidence rates of tuberculosis (TB) among human immunodeficiency virus (HIV)-negative South African gold miners during a decade of epidemic HIV-associated TB. J Infect Dis. 2003;188:1156–63.CrossRef
46.
go back to reference Middelkoop K, Bekker L-G, Myer L, Dawson R, Wood R. Rates of tuberculosis transmission to children and adolescents in a community with a high prevalence of HIV infection among adults. Clin Infect Dis. 2008;47:349–55.CrossRef Middelkoop K, Bekker L-G, Myer L, Dawson R, Wood R. Rates of tuberculosis transmission to children and adolescents in a community with a high prevalence of HIV infection among adults. Clin Infect Dis. 2008;47:349–55.CrossRef
47.
go back to reference Godfrey-Faussett P, Sonnenberg P, Shearer SC, Bruce MC, Mee C, Morris L, et al. Tuberculosis control and molecular epidemiology in a South African gold-mining community. Lancet. 2000;356:1066–71.CrossRef Godfrey-Faussett P, Sonnenberg P, Shearer SC, Bruce MC, Mee C, Morris L, et al. Tuberculosis control and molecular epidemiology in a South African gold-mining community. Lancet. 2000;356:1066–71.CrossRef
48.
go back to reference Richardson M, van Lill SWP, van der Spuy GD, Munch Z, Booysen CN, Beyers N, et al. Historic and recent events contribute to the disease dynamics of Beijing-like Mycobacterium tuberculosis isolates in a high incidence region. Int J Tuberc Lung Dis. 2002;6:1001–11.PubMed Richardson M, van Lill SWP, van der Spuy GD, Munch Z, Booysen CN, Beyers N, et al. Historic and recent events contribute to the disease dynamics of Beijing-like Mycobacterium tuberculosis isolates in a high incidence region. Int J Tuberc Lung Dis. 2002;6:1001–11.PubMed
49.
go back to reference Verver S, Warren RM, Munch Z, Vynnycky E, van Helden PD, Richardson M, et al. Transmission of tuberculosis in a high incidence urban community in South Africa. Int J Epidemiol. 2004;33:351–7.CrossRef Verver S, Warren RM, Munch Z, Vynnycky E, van Helden PD, Richardson M, et al. Transmission of tuberculosis in a high incidence urban community in South Africa. Int J Epidemiol. 2004;33:351–7.CrossRef
50.
go back to reference Mathema B, Lewis JJ, Connors J, Chihota VN, Shashkina E, van der Meulen M, et al. Molecular epidemiology of Mycobacterium tuberculosis among South African gold miners. Ann Am Thorac Soc. 2015;12:12–20.CrossRef Mathema B, Lewis JJ, Connors J, Chihota VN, Shashkina E, van der Meulen M, et al. Molecular epidemiology of Mycobacterium tuberculosis among South African gold miners. Ann Am Thorac Soc. 2015;12:12–20.CrossRef
51.
go back to reference Stuckler D, Basu S, McKee M, Lurie M. Mining and risk of tuberculosis in sub-Saharan Africa. Am J Public Health. 2011;101:524–30.CrossRef Stuckler D, Basu S, McKee M, Lurie M. Mining and risk of tuberculosis in sub-Saharan Africa. Am J Public Health. 2011;101:524–30.CrossRef
52.
go back to reference Statistics SA. Mineral accounts for South Africa, 1980–2001. Pretoria: South Africa; 2002. Statistics SA. Mineral accounts for South Africa, 1980–2001. Pretoria: South Africa; 2002.
53.
go back to reference World Health Organization. Global Tuberculosis Report 2013. Geneva: World Health Organization; 2013. World Health Organization. Global Tuberculosis Report 2013. Geneva: World Health Organization; 2013.
54.
go back to reference Dowdy DW, Golub JE, Chaisson RE, Saraceni V. Heterogeneity in tuberculosis transmission and the role of geographic hotspots in propagating epidemics. Proc Natl Acad Sci U S A. 2012;109:9557–62.CrossRef Dowdy DW, Golub JE, Chaisson RE, Saraceni V. Heterogeneity in tuberculosis transmission and the role of geographic hotspots in propagating epidemics. Proc Natl Acad Sci U S A. 2012;109:9557–62.CrossRef
55.
go back to reference Day C, Barron P, Massyn N, Padarath A, English R. District Health Barometer 2010/11. Durban: Health Systems Trust Google Scholar; 2011. Day C, Barron P, Massyn N, Padarath A, English R. District Health Barometer 2010/11. Durban: Health Systems Trust Google Scholar; 2011.
56.
go back to reference McGlashan ND, Harington JS, Chelkowska E. Changes in the geographical and temporal patterns of cancer incidence among black gold miners working in South Africa, 1964–1996. Br J Cancer. 2003;88:1361–9.CrossRef McGlashan ND, Harington JS, Chelkowska E. Changes in the geographical and temporal patterns of cancer incidence among black gold miners working in South Africa, 1964–1996. Br J Cancer. 2003;88:1361–9.CrossRef
57.
go back to reference Andrews JR, Morrow C, Wood R. Modeling the role of public transportation in sustaining tuberculosis transmission in South Africa. Am J Epidemiol. 2013;177:556–61.CrossRef Andrews JR, Morrow C, Wood R. Modeling the role of public transportation in sustaining tuberculosis transmission in South Africa. Am J Epidemiol. 2013;177:556–61.CrossRef
58.
go back to reference Middelkoop K, Mathema B, Myer L, Shashkina E, Whitelaw A, Kaplan G, et al. Transmission of tuberculosis in a South African community with a high prevalence of HIV infection. J Infect Dis. 2015;211:53–61.CrossRef Middelkoop K, Mathema B, Myer L, Shashkina E, Whitelaw A, Kaplan G, et al. Transmission of tuberculosis in a South African community with a high prevalence of HIV infection. J Infect Dis. 2015;211:53–61.CrossRef
Metadata
Title
Small contribution of gold mines to the ongoing tuberculosis epidemic in South Africa: a modeling-based study
Authors
Stewart T. Chang
Violet N. Chihota
Katherine L. Fielding
Alison D. Grant
Rein M. Houben
Richard G. White
Gavin J. Churchyard
Philip A. Eckhoff
Bradley G. Wagner
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Medicine / Issue 1/2018
Electronic ISSN: 1741-7015
DOI
https://doi.org/10.1186/s12916-018-1037-3

Other articles of this Issue 1/2018

BMC Medicine 1/2018 Go to the issue