Skip to main content
Top
Published in: BMC Medicine 1/2018

Open Access 01-12-2018 | Research article

Projecting the end of the Zika virus epidemic in Latin America: a modelling analysis

Authors: Kathleen M. O’Reilly, Rachel Lowe, W. John Edmunds, Philippe Mayaud, Adam Kucharski, Rosalind M. Eggo, Sebastian Funk, Deepit Bhatia, Kamran Khan, Moritz U. G. Kraemer, Annelies Wilder-Smith, Laura C. Rodrigues, Patricia Brasil, Eduardo Massad, Thomas Jaenisch, Simon Cauchemez, Oliver J. Brady, Laith Yakob

Published in: BMC Medicine | Issue 1/2018

Login to get access

Abstract

Background

Zika virus (ZIKV) emerged in Latin America and the Caribbean (LAC) region in 2013, with serious implications for population health in the region. In 2016, the World Health Organization declared the ZIKV outbreak a Public Health Emergency of International Concern following a cluster of associated neurological disorders and neonatal malformations. In 2017, Zika cases declined, but future incidence in LAC remains uncertain due to gaps in our understanding, considerable variation in surveillance and the lack of a comprehensive collation of data from affected countries.

Methods

Our analysis combines information on confirmed and suspected Zika cases across LAC countries and a spatio-temporal dynamic transmission model for ZIKV infection to determine key transmission parameters and projected incidence in 90 major cities within 35 countries. Seasonality was determined by spatio-temporal estimates of Aedes aegypti vectorial capacity. We used country and state-level data from 2015 to mid-2017 to infer key model parameters, country-specific disease reporting rates, and the 2018 projected incidence. A 10-fold cross-validation approach was used to validate parameter estimates to out-of-sample epidemic trajectories.

Results

There was limited transmission in 2015, but in 2016 and 2017 there was sufficient opportunity for wide-spread ZIKV transmission in most cities, resulting in the depletion of susceptible individuals. We predict that the highest number of cases in 2018 would present within some Brazilian States (Sao Paulo and Rio de Janeiro), Colombia and French Guiana, but the estimated number of cases were no more than a few hundred. Model estimates of the timing of the peak in incidence were correlated (p < 0.05) with the reported peak in incidence. The reporting rate varied across countries, with lower reporting rates for those with only confirmed cases compared to those who reported both confirmed and suspected cases.

Conclusions

The findings suggest that the ZIKV epidemic is by and large over within LAC, with incidence projected to be low in most cities in 2018. Local low levels of transmission are probable, but the estimated rate of infection suggests that most cities have a population with high levels of herd immunity.
Appendix
Available only for authorised users
Literature
2.
go back to reference Faria NR, Azevedo RDSDS, Kraemer MUG, et al. Zika virus in the Americas: Early epidemiological and genetic findings. Science. 2016;352:345–9.CrossRef Faria NR, Azevedo RDSDS, Kraemer MUG, et al. Zika virus in the Americas: Early epidemiological and genetic findings. Science. 2016;352:345–9.CrossRef
5.
go back to reference Ferguson NM, Cucunuba ZM, Dorigatti I, et al. Countering the Zika epidemic in Latin America. Science. 2016;353:353–4.CrossRef Ferguson NM, Cucunuba ZM, Dorigatti I, et al. Countering the Zika epidemic in Latin America. Science. 2016;353:353–4.CrossRef
6.
go back to reference Lanciotti RS, Kosoy OL, Laven JJ, et al. Genetic and serologic properties of Zika virus associated with an epidemic, yap state, Micronesia, 2007. Emerg Infect Dis. 2008;14:1232–9.CrossRef Lanciotti RS, Kosoy OL, Laven JJ, et al. Genetic and serologic properties of Zika virus associated with an epidemic, yap state, Micronesia, 2007. Emerg Infect Dis. 2008;14:1232–9.CrossRef
7.
go back to reference Aliota MT, Bassit L, Bradrick SS, et al. Zika in the Americas, year 2: what have we learned? What gaps remain? A report from the global virus network. Antivir Res. 2017;144:223–46.CrossRef Aliota MT, Bassit L, Bradrick SS, et al. Zika in the Americas, year 2: what have we learned? What gaps remain? A report from the global virus network. Antivir Res. 2017;144:223–46.CrossRef
8.
go back to reference Butler D. Drop in cases of Zika threatens large-scale trials. Nature. 2017;545:396–7.CrossRef Butler D. Drop in cases of Zika threatens large-scale trials. Nature. 2017;545:396–7.CrossRef
12.
13.
go back to reference Zhang Q, Sun K, Chinazzi M, et al. Spread of Zika virus in the Americas. Proc Natl Acad Sci. 2017;114:E4334–43.CrossRef Zhang Q, Sun K, Chinazzi M, et al. Spread of Zika virus in the Americas. Proc Natl Acad Sci. 2017;114:E4334–43.CrossRef
15.
go back to reference Bogoch II, Brady OJ, Kraemer MUG, et al. Anticipating the international spread of Zika virus from Brazil. Lancet. 2016;387:335–6.CrossRef Bogoch II, Brady OJ, Kraemer MUG, et al. Anticipating the international spread of Zika virus from Brazil. Lancet. 2016;387:335–6.CrossRef
16.
go back to reference Brady OJ, Godfray HCJ, Tatem AJ, et al. Vectorial capacity and vector control: reconsidering sensitivity to parameters for malaria elimination. Trans R Soc Trop Med Hyg. 2016;110:107–17.CrossRef Brady OJ, Godfray HCJ, Tatem AJ, et al. Vectorial capacity and vector control: reconsidering sensitivity to parameters for malaria elimination. Trans R Soc Trop Med Hyg. 2016;110:107–17.CrossRef
17.
go back to reference Perkins AT, Siraj AS, Ruktanonchai CW, Kraemer MUG, Tatem AJ. Model-based projections of Zika virus infections in childbearing women in the Americas. Nat Microbiol. 2016;1:16126.CrossRef Perkins AT, Siraj AS, Ruktanonchai CW, Kraemer MUG, Tatem AJ. Model-based projections of Zika virus infections in childbearing women in the Americas. Nat Microbiol. 2016;1:16126.CrossRef
18.
go back to reference Caminade C, Turner J, Metelmann S, et al. Global risk model for vector-borne transmission of Zika virus reveals the role of El Niño 2015. Proc Natl Acad Sci. 2017;114:119–24.CrossRef Caminade C, Turner J, Metelmann S, et al. Global risk model for vector-borne transmission of Zika virus reveals the role of El Niño 2015. Proc Natl Acad Sci. 2017;114:119–24.CrossRef
21.
go back to reference Andronico A, Dorléans F, Fergé J-L, et al. Real-time assessment of health-care requirements during the Zika virus epidemic in Martinique. Am J Epidemiol. 2017;16:1–10. Andronico A, Dorléans F, Fergé J-L, et al. Real-time assessment of health-care requirements during the Zika virus epidemic in Martinique. Am J Epidemiol. 2017;16:1–10.
28.
go back to reference Wilder-Smith A, Gubler DJ, Weaver SC, Monath TP, Heymann DL, Scott TW. Epidemic arboviral diseases: priorities for research and public health. Lancet Infect Dis. 2017;17:e101–6.CrossRef Wilder-Smith A, Gubler DJ, Weaver SC, Monath TP, Heymann DL, Scott TW. Epidemic arboviral diseases: priorities for research and public health. Lancet Infect Dis. 2017;17:e101–6.CrossRef
29.
go back to reference Bogoch II, Brady OJ, Kraemer MUG, et al. Potential for Zika virus introduction and transmission in resource-limited countries in Africa and the Asia-Pacific region: a modelling study. Lancet Infect Dis. 2016;16:1237–45.CrossRef Bogoch II, Brady OJ, Kraemer MUG, et al. Potential for Zika virus introduction and transmission in resource-limited countries in Africa and the Asia-Pacific region: a modelling study. Lancet Infect Dis. 2016;16:1237–45.CrossRef
30.
go back to reference Brady OJ, Golding N, Pigott DM, et al. Global temperature constraints on Aedes aegypti and Ae. albopictus persistence and competence for dengue virus transmission. Parasit Vectors. 2014;7:338.CrossRef Brady OJ, Golding N, Pigott DM, et al. Global temperature constraints on Aedes aegypti and Ae. albopictus persistence and competence for dengue virus transmission. Parasit Vectors. 2014;7:338.CrossRef
31.
go back to reference Brady OJ, Johansson MA, Guerra CA, Bhatt S, Golding N, Pigott DM, Smith DL, Scott TW, Gething PW, Hay SI. Modelling adult Aedes aegypti and Aedes albopictus survival at different temperatures in laboratory and field settings. Parasit Vectors. 2013;6:351.CrossRef Brady OJ, Johansson MA, Guerra CA, Bhatt S, Golding N, Pigott DM, Smith DL, Scott TW, Gething PW, Hay SI. Modelling adult Aedes aegypti and Aedes albopictus survival at different temperatures in laboratory and field settings. Parasit Vectors. 2013;6:351.CrossRef
33.
go back to reference Roberts MG. Epidemic models with uncertainty in the reproduction number. J Math Biol. 2013;66:1463–74.CrossRef Roberts MG. Epidemic models with uncertainty in the reproduction number. J Math Biol. 2013;66:1463–74.CrossRef
34.
go back to reference Toni T, Welch D, Strelkowa N, Ipsen A, Stumpf MPH. Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems. J R Soc Interface. 2009;6:187–202.CrossRef Toni T, Welch D, Strelkowa N, Ipsen A, Stumpf MPH. Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems. J R Soc Interface. 2009;6:187–202.CrossRef
35.
go back to reference Paz-Bailey G, Rosenberg ES, Doyle K, Munoz-Jordan J, Santiago GA, Klein L, Perez-Padilla J, Medina FA, Waterman SH, Gubern CG, Alvarado LI, Sharp TM. Persistence of Zika virus in body fluids - preliminary report. N Engl J Med. 2017; https://doi.org/10.1056/NEJMoa1613108. Paz-Bailey G, Rosenberg ES, Doyle K, Munoz-Jordan J, Santiago GA, Klein L, Perez-Padilla J, Medina FA, Waterman SH, Gubern CG, Alvarado LI, Sharp TM. Persistence of Zika virus in body fluids - preliminary report. N Engl J Med. 2017; https://​doi.​org/​10.​1056/​NEJMoa1613108.
39.
go back to reference Yakob L, Kucharski A, Hue S, Edmunds WJ. Low risk of a sexually-transmitted Zika virus outbreak. Lancet Infect Dis. 2016;16:1100–2.CrossRef Yakob L, Kucharski A, Hue S, Edmunds WJ. Low risk of a sexually-transmitted Zika virus outbreak. Lancet Infect Dis. 2016;16:1100–2.CrossRef
42.
go back to reference Jaenisch T, Rosenberger KD, Brito C, Brady O, Brasil P, Marques ET. Risk of microcephaly after Zika virus infection in Brazil, 2015 to 2016. Bull World Health Organ. 2017;95:191–8.CrossRef Jaenisch T, Rosenberger KD, Brito C, Brady O, Brasil P, Marques ET. Risk of microcephaly after Zika virus infection in Brazil, 2015 to 2016. Bull World Health Organ. 2017;95:191–8.CrossRef
43.
go back to reference Baud D, Gubler DJ, Schaub B, Lanteri MC, Musso D. An update on Zika virus infection. Lancet. 2017;390:2099–109.CrossRef Baud D, Gubler DJ, Schaub B, Lanteri MC, Musso D. An update on Zika virus infection. Lancet. 2017;390:2099–109.CrossRef
44.
go back to reference Stoddard ST, Forshey BM, Morrison AC, et al. House-to-house human movement drives dengue virus transmission. Proc Natl Acad Sci U S A. 2013;110:994–9.CrossRef Stoddard ST, Forshey BM, Morrison AC, et al. House-to-house human movement drives dengue virus transmission. Proc Natl Acad Sci U S A. 2013;110:994–9.CrossRef
45.
go back to reference Salje H, Lessler J, Maljkovic Berry I, et al. Dengue diversity across spatial and temporal scales: local structure and the effect of host population size. Science. 2017;355:1302–6.CrossRef Salje H, Lessler J, Maljkovic Berry I, et al. Dengue diversity across spatial and temporal scales: local structure and the effect of host population size. Science. 2017;355:1302–6.CrossRef
46.
go back to reference Shutt DP, Manore CA, Pankavich S, Porter AT, Del Valle SY. Estimating the reproductive number, total outbreak size, and reporting rates for Zika epidemics in south and Central America. Epidemics. 2017;21:63–79.CrossRef Shutt DP, Manore CA, Pankavich S, Porter AT, Del Valle SY. Estimating the reproductive number, total outbreak size, and reporting rates for Zika epidemics in south and Central America. Epidemics. 2017;21:63–79.CrossRef
51.
go back to reference Cauchemez S, Ledrans M, Poletto C, et al. Local and regional spread of chikungunya fever in the Americas. Euro Surveill. 2014;19:20854.CrossRef Cauchemez S, Ledrans M, Poletto C, et al. Local and regional spread of chikungunya fever in the Americas. Euro Surveill. 2014;19:20854.CrossRef
52.
go back to reference Baca-Carrasco D, Velasco-Hernández JX. Sex, mosquitoes and epidemics: an evaluation of Zika disease dynamics. Bull Math Biol. 2016;78:2228–42.CrossRef Baca-Carrasco D, Velasco-Hernández JX. Sex, mosquitoes and epidemics: an evaluation of Zika disease dynamics. Bull Math Biol. 2016;78:2228–42.CrossRef
Metadata
Title
Projecting the end of the Zika virus epidemic in Latin America: a modelling analysis
Authors
Kathleen M. O’Reilly
Rachel Lowe
W. John Edmunds
Philippe Mayaud
Adam Kucharski
Rosalind M. Eggo
Sebastian Funk
Deepit Bhatia
Kamran Khan
Moritz U. G. Kraemer
Annelies Wilder-Smith
Laura C. Rodrigues
Patricia Brasil
Eduardo Massad
Thomas Jaenisch
Simon Cauchemez
Oliver J. Brady
Laith Yakob
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Medicine / Issue 1/2018
Electronic ISSN: 1741-7015
DOI
https://doi.org/10.1186/s12916-018-1158-8

Other articles of this Issue 1/2018

BMC Medicine 1/2018 Go to the issue