Skip to main content
Top
Published in: BMC Health Services Research 1/2018

Open Access 01-12-2018 | Research article

Japan nosocomial infections surveillance (JANIS): a model of sustainable national antimicrobial resistance surveillance based on hospital diagnostic microbiology laboratories

Authors: Atsuko Tsutsui, Satowa Suzuki

Published in: BMC Health Services Research | Issue 1/2018

Login to get access

Abstract

Background

Antimicrobial resistance (AMR) is now recognized as a major threat to public health, and surveillance of AMR is essential for successful containment. In 2000, Japan Nosocomial Infections Surveillance (JANIS) Clinical Laboratory (CL) division has been launched as a voluntary AMR surveillance funded by the Ministry of Health, Labour and Welfare and managed by the National Institute of Infectious Diseases. In this study, we aimed to propose a model of sustainable national AMR surveillance which provides not only national AMR surveillance reports but also benchmarking reports to each hospital to facilitate infection control practices.

Methods

JANIS CL division collects comprehensive specimen-based data complies with JANIS data format from participating hospitals each month. It had targeted only blood and cerebrospinal fluid samples but was expanded to all types of specimens in 2007 at revision of JANIS. The JANIS system interprets the antimicrobial susceptibility according to the same criteria and conducts removal of duplicates to allow accurate comparison between hospitals. Monthly feedback reports are created automatically within 48 h, while quarterly and annual reports are generated after data validation.

Results

At the beginning, 468 hospitals were enrolled in the JANIS CL division, but the number of hospitals that submitted data decreased to 210 (45%) in 2006. After surveillance revision in 2007, annual recruitment of hospitals was initiated and as of 2015, 1475 hospitals participated, and 1461 (99%) of them submitted data throughout the year. Nationwide surveillance data collected over the past decade revealed that the prevalence of methicillin-resistant Staphylococcus aureus has decreased since 2008, and that its prevalence is higher in the western part of Japan, where the number of hospitals per capita is higher than in the eastern part.

Conclusions

JANIS CL division serves a model of sustainable national AMR surveillance system. Comprehensive data for all specimens promotes understanding of the sampling frequency and prevalence of AMR. As a well-established system for providing rich information to guide action both locally and nationally, JANIS may also be utilized for sharing AMR data globally.
Appendix
Available only for authorised users
Literature
3.
go back to reference Morikane K. Infection control in healthcare settings in Japan. J Epidemiol. 2012;22(2):86–90.CrossRef Morikane K. Infection control in healthcare settings in Japan. J Epidemiol. 2012;22(2):86–90.CrossRef
4.
go back to reference Van Beneden CA, Olsen SJ, Skoff TH, Lynfield R. Active, population-based surveillance for infectious diseases. In: Infectious diseases Surveillance edn. Massachusetts: Blackwell; 2007. p. 32–43.CrossRef Van Beneden CA, Olsen SJ, Skoff TH, Lynfield R. Active, population-based surveillance for infectious diseases. In: Infectious diseases Surveillance edn. Massachusetts: Blackwell; 2007. p. 32–43.CrossRef
5.
go back to reference Stelling JM, O'Brien TF. Surveillance of antimicrobial resistance: the WHONET program. Clin Infect Dis. 1997;24(Suppl 1):S157–68.CrossRef Stelling JM, O'Brien TF. Surveillance of antimicrobial resistance: the WHONET program. Clin Infect Dis. 1997;24(Suppl 1):S157–68.CrossRef
6.
go back to reference Vlek AL, Frentz D, Haenen A, Bootsma HJ, Notermans DW, Frakking FN, de Greeff SC, Leenstra T, group I-As. Detection and epidemiology of carbapenemase producing Enterobacteriaceae in the Netherlands in 2013-2014. Eur J Clin Microbiol Infect Dis. 2016;35(7):1089–96.CrossRef Vlek AL, Frentz D, Haenen A, Bootsma HJ, Notermans DW, Frakking FN, de Greeff SC, Leenstra T, group I-As. Detection and epidemiology of carbapenemase producing Enterobacteriaceae in the Netherlands in 2013-2014. Eur J Clin Microbiol Infect Dis. 2016;35(7):1089–96.CrossRef
7.
go back to reference Johnson AP. Surveillance of antibiotic resistance. Philos Trans R Soc Lond Ser B Biol Sci. 2015;370(1670):20140080.CrossRef Johnson AP. Surveillance of antibiotic resistance. Philos Trans R Soc Lond Ser B Biol Sci. 2015;370(1670):20140080.CrossRef
9.
go back to reference Coombs GW, Daley DA, Thin Lee Y, Pearson JC, Robinson JO, Nimmo GR, Collignon P, Howden BP, Bell JM, Turnidge JD, et al. Australian group on antimicrobial resistance Australian Staphylococcus aureus sepsis outcome Programme annual report, 2014. Commun Dis Intell Q Rep. 2016;40(2):E244–54.PubMed Coombs GW, Daley DA, Thin Lee Y, Pearson JC, Robinson JO, Nimmo GR, Collignon P, Howden BP, Bell JM, Turnidge JD, et al. Australian group on antimicrobial resistance Australian Staphylococcus aureus sepsis outcome Programme annual report, 2014. Commun Dis Intell Q Rep. 2016;40(2):E244–54.PubMed
12.
go back to reference Izumida M, Nagai M, Ohta A, Hashimoto S, Kawado M, Murakami Y, Tada Y, Shigematsu M, Yasui Y, Taniguchi K. Epidemics of drug-resistant bacterial infections observed in infectious disease surveillance in Japan, 2001-2005. J Epidemiol. 2007;17(Suppl):S42–S47.CrossRef Izumida M, Nagai M, Ohta A, Hashimoto S, Kawado M, Murakami Y, Tada Y, Shigematsu M, Yasui Y, Taniguchi K. Epidemics of drug-resistant bacterial infections observed in infectious disease surveillance in Japan, 2001-2005. J Epidemiol. 2007;17(Suppl):S42–S47.CrossRef
13.
go back to reference Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Seventh Informational Supplement M100-S27. Wayne: CLSI; 2017. Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Seventh Informational Supplement M100-S27. Wayne: CLSI; 2017.
14.
go back to reference Ministry of Health, Labour and Welfare. Japan Nosocomial Infections Surveillance (JANIS): Annual Open Report 2015. Ministry of Health, Labour and Welfare. Japan Nosocomial Infections Surveillance (JANIS): Annual Open Report 2015.
15.
go back to reference Grundmann H. Towards a global antibiotic resistance surveillance system: a primer for a roadmap. Ups J Med Sci. 2014;119(2):87–95.CrossRef Grundmann H. Towards a global antibiotic resistance surveillance system: a primer for a roadmap. Ups J Med Sci. 2014;119(2):87–95.CrossRef
17.
go back to reference Johnson AP, Davies J, Guy R, Abernethy J, Sheridan E, Pearson A, Duckworth G. Mandatory surveillance of methicillin-resistant Staphylococcus aureus (MRSA) bacteraemia in England: the first 10 years. J Antimicrob Chemother. 2012;67(4):802–9.CrossRef Johnson AP, Davies J, Guy R, Abernethy J, Sheridan E, Pearson A, Duckworth G. Mandatory surveillance of methicillin-resistant Staphylococcus aureus (MRSA) bacteraemia in England: the first 10 years. J Antimicrob Chemother. 2012;67(4):802–9.CrossRef
18.
go back to reference Bou-Antoun S, Davies J, Guy R, Johnson AP, Sheridan EA, Hope RJ. Descriptive epidemiology of Escherichia coli bacteraemia in England, April 2012 to march 2014. Euro Surveill. 2016;21(35). Bou-Antoun S, Davies J, Guy R, Johnson AP, Sheridan EA, Hope RJ. Descriptive epidemiology of Escherichia coli bacteraemia in England, April 2012 to march 2014. Euro Surveill. 2016;21(35).
19.
go back to reference de Kraker ME, Stewardson AJ, Harbarth S. Will 10 million people die a year due to antimicrobial resistance by 2050? PLoS Med. 2016;13(11):e1002184.CrossRef de Kraker ME, Stewardson AJ, Harbarth S. Will 10 million people die a year due to antimicrobial resistance by 2050? PLoS Med. 2016;13(11):e1002184.CrossRef
20.
go back to reference Cohen AL, Calfee D, Fridkin SK, Huang SS, Jernigan JA, Lautenbach E, Oriola S, Ramsey KM, Salgado CD, Weinstein RA, et al. Recommendations for metrics for multidrug-resistant organisms in healthcare settings: SHEA/HICPAC position paper. Infect Control Hosp Epidemiol. 2008;29(10):901–13.CrossRef Cohen AL, Calfee D, Fridkin SK, Huang SS, Jernigan JA, Lautenbach E, Oriola S, Ramsey KM, Salgado CD, Weinstein RA, et al. Recommendations for metrics for multidrug-resistant organisms in healthcare settings: SHEA/HICPAC position paper. Infect Control Hosp Epidemiol. 2008;29(10):901–13.CrossRef
22.
go back to reference Kamolvit W, Sidjabat HE, Paterson DL. Molecular epidemiology and mechanisms of Carbapenem resistance of Acinetobacter spp. in Asia and Oceania. Microb Drug Resist. 2015;21(4):424–34.CrossRef Kamolvit W, Sidjabat HE, Paterson DL. Molecular epidemiology and mechanisms of Carbapenem resistance of Acinetobacter spp. in Asia and Oceania. Microb Drug Resist. 2015;21(4):424–34.CrossRef
Metadata
Title
Japan nosocomial infections surveillance (JANIS): a model of sustainable national antimicrobial resistance surveillance based on hospital diagnostic microbiology laboratories
Authors
Atsuko Tsutsui
Satowa Suzuki
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Health Services Research / Issue 1/2018
Electronic ISSN: 1472-6963
DOI
https://doi.org/10.1186/s12913-018-3604-x

Other articles of this Issue 1/2018

BMC Health Services Research 1/2018 Go to the issue