Skip to main content
Top
Published in: BMC Medical Informatics and Decision Making 1/2020

01-12-2020 | Heart Failure | Research Article

Machine learning can predict survival of patients with heart failure from serum creatinine and ejection fraction alone

Authors: Davide Chicco, Giuseppe Jurman

Published in: BMC Medical Informatics and Decision Making | Issue 1/2020

Login to get access

Abstract

Background

Cardiovascular diseases kill approximately 17 million people globally every year, and they mainly exhibit as myocardial infarctions and heart failures. Heart failure (HF) occurs when the heart cannot pump enough blood to meet the needs of the body.Available electronic medical records of patients quantify symptoms, body features, and clinical laboratory test values, which can be used to perform biostatistics analysis aimed at highlighting patterns and correlations otherwise undetectable by medical doctors. Machine learning, in particular, can predict patients’ survival from their data and can individuate the most important features among those included in their medical records.

Methods

In this paper, we analyze a dataset of 299 patients with heart failure collected in 2015. We apply several machine learning classifiers to both predict the patients survival, and rank the features corresponding to the most important risk factors. We also perform an alternative feature ranking analysis by employing traditional biostatistics tests, and compare these results with those provided by the machine learning algorithms. Since both feature ranking approaches clearly identify serum creatinine and ejection fraction as the two most relevant features, we then build the machine learning survival prediction models on these two factors alone.

Results

Our results of these two-feature models show not only that serum creatinine and ejection fraction are sufficient to predict survival of heart failure patients from medical records, but also that using these two features alone can lead to more accurate predictions than using the original dataset features in its entirety. We also carry out an analysis including the follow-up month of each patient: even in this case, serum creatinine and ejection fraction are the most predictive clinical features of the dataset, and are sufficient to predict patients’ survival.

Conclusions

This discovery has the potential to impact on clinical practice, becoming a new supporting tool for physicians when predicting if a heart failure patient will survive or not. Indeed, medical doctors aiming at understanding if a patient will survive after heart failure may focus mainly on serum creatinine and ejection fraction.
Appendix
Available only for authorised users
Literature
4.
go back to reference Meng F, Zhang Z, Hou X, Qian Z, Wang Y, Chen Y, Wang Y, Zhou Y, Chen Z, Zhang X, Yang J, Zhang J, Guo J, Li K, Chen L, Zhuang R, Jiang H, Zhou W, Tang S, Wei Y, Zou J. Machine learning for prediction of sudden cardiac death in heart failure patients with low left ventricular ejection fraction: study protocol for a retroprospective multicentre registry in China. Br Med J (BMJ) Open. 2019; 9(5):023724. Meng F, Zhang Z, Hou X, Qian Z, Wang Y, Chen Y, Wang Y, Zhou Y, Chen Z, Zhang X, Yang J, Zhang J, Guo J, Li K, Chen L, Zhuang R, Jiang H, Zhou W, Tang S, Wei Y, Zou J. Machine learning for prediction of sudden cardiac death in heart failure patients with low left ventricular ejection fraction: study protocol for a retroprospective multicentre registry in China. Br Med J (BMJ) Open. 2019; 9(5):023724.
5.
go back to reference Nauta JF, Jin X, Hummel YM, Voors AA. Markers of left ventricular systolic dysfunction when left ventricular ejection fraction is normal. Eur J Heart Fail. 2018; 20:1636–8.PubMedCrossRef Nauta JF, Jin X, Hummel YM, Voors AA. Markers of left ventricular systolic dysfunction when left ventricular ejection fraction is normal. Eur J Heart Fail. 2018; 20:1636–8.PubMedCrossRef
6.
go back to reference Pfeffer MA, Braunwald E. Treatment of heart failure with preserved ejection fraction. reflections on its treatment with an aldosterone antagonist. J Am Med Assoc (JAMA) Cardiol. 2016; 1(1):7–8. Pfeffer MA, Braunwald E. Treatment of heart failure with preserved ejection fraction. reflections on its treatment with an aldosterone antagonist. J Am Med Assoc (JAMA) Cardiol. 2016; 1(1):7–8.
7.
go back to reference Mesquita ET, Grion DC, Kubrusly MC, Silva BBFF, Santos ÉAR. Phenotype mapping of heart failure with preserved ejection fraction. Int J Cardiovasc Sci. 2018; 31(6):652–61. Mesquita ET, Grion DC, Kubrusly MC, Silva BBFF, Santos ÉAR. Phenotype mapping of heart failure with preserved ejection fraction. Int J Cardiovasc Sci. 2018; 31(6):652–61.
8.
go back to reference Nanayakkara S, Kaye DM. Targets for heart failure with preserved ejection fraction. Clin Pharmacol Ther. 2017; 102:228–37.PubMedCrossRef Nanayakkara S, Kaye DM. Targets for heart failure with preserved ejection fraction. Clin Pharmacol Ther. 2017; 102:228–37.PubMedCrossRef
9.
go back to reference Katz DH, Deo RC, Aguilar FG, Selvaraj S, Martinez EE, Beussink-Nelson L, Kim K-YA, Peng J, Irvin MR, Tiwari H, Rao DC, Arnett DK, Shah SJ. Phenomapping for the identification of hypertensive patients with the myocardial substrate for heart failure with preserved ejection fraction. J Cardiovasc Transl Res. 2017; 10(3):275–84.PubMedCrossRef Katz DH, Deo RC, Aguilar FG, Selvaraj S, Martinez EE, Beussink-Nelson L, Kim K-YA, Peng J, Irvin MR, Tiwari H, Rao DC, Arnett DK, Shah SJ. Phenomapping for the identification of hypertensive patients with the myocardial substrate for heart failure with preserved ejection fraction. J Cardiovasc Transl Res. 2017; 10(3):275–84.PubMedCrossRef
10.
go back to reference Lewis GA, Schelbert EB, Williams SG, Cunnington C, Ahmed F, McDonagh TA, Miller CA. Biological phenotypes of heart failure with preserved ejection fraction. J Am Coll Cardiol. 2017; 70(17):2186–200.PubMedCrossRef Lewis GA, Schelbert EB, Williams SG, Cunnington C, Ahmed F, McDonagh TA, Miller CA. Biological phenotypes of heart failure with preserved ejection fraction. J Am Coll Cardiol. 2017; 70(17):2186–200.PubMedCrossRef
11.
go back to reference Raphael C, Briscoe C, Justin Davies ZIW, Manisty C, Sutton R, Mayet J, Francis DP. Limitations of the New York Heart Association functional classification system and self-reported walking distances in chronic heart failure. Heart. 2007; 93(4):476–82.PubMedCrossRef Raphael C, Briscoe C, Justin Davies ZIW, Manisty C, Sutton R, Mayet J, Francis DP. Limitations of the New York Heart Association functional classification system and self-reported walking distances in chronic heart failure. Heart. 2007; 93(4):476–82.PubMedCrossRef
12.
go back to reference Buchan TA, Ross HJ, McDonald M, Billia F, Delgado D, Duero Posada JG, Luk A, Guyatt GH, Alba AC. Physician prediction versus model predicted prognosis in ambulatory patients with heart failure. J Heart Lung Transplant. 2019; 38(4):381.CrossRef Buchan TA, Ross HJ, McDonald M, Billia F, Delgado D, Duero Posada JG, Luk A, Guyatt GH, Alba AC. Physician prediction versus model predicted prognosis in ambulatory patients with heart failure. J Heart Lung Transplant. 2019; 38(4):381.CrossRef
13.
go back to reference Chapman B, DeVore AD, Mentz RJ, Metra M. Clinical profiles in acute heart failure: an urgent need for a new approach. Eur Soc Cardiol (ESC) Heart Fail. 2019; 6(3):464–74. Chapman B, DeVore AD, Mentz RJ, Metra M. Clinical profiles in acute heart failure: an urgent need for a new approach. Eur Soc Cardiol (ESC) Heart Fail. 2019; 6(3):464–74.
14.
go back to reference Poffo MR, Assis AVd, Fracasso M, Londero Filho OM, Alves SMdM, Bald AP, Schmitt CB, Alves Filho NR. Profile of patients hospitalized for heart failure in tertiary care hospital. Int J Cardiovasc Sci. 2017; 30:189–98. Poffo MR, Assis AVd, Fracasso M, Londero Filho OM, Alves SMdM, Bald AP, Schmitt CB, Alves Filho NR. Profile of patients hospitalized for heart failure in tertiary care hospital. Int J Cardiovasc Sci. 2017; 30:189–98.
16.
go back to reference Khan SU, Khan MU, Riaz H, Valavoor S, Zhao D, Vaughan L, Okunrintemi V, Riaz IB, Khan MS, Kaluski E, Murad MH, Blaha MJ, Guallar E, Michos ED. Effects of nutritional supplements and dietary interventions on cardiovascular outcomes: an umbrella review and evidence map. Ann Intern Med. 2019; 171:190–8.PubMedCrossRefPubMedCentral Khan SU, Khan MU, Riaz H, Valavoor S, Zhao D, Vaughan L, Okunrintemi V, Riaz IB, Khan MS, Kaluski E, Murad MH, Blaha MJ, Guallar E, Michos ED. Effects of nutritional supplements and dietary interventions on cardiovascular outcomes: an umbrella review and evidence map. Ann Intern Med. 2019; 171:190–8.PubMedCrossRefPubMedCentral
17.
go back to reference Chiodo L, Casula M, Tragni E, Baragetti A, Norata D, Catapano AL, on behalf of PLIC group. Profilo cardiometabolico in una coorte lombarda: lo studio PLIC. Cardio-metabolic profile in a cohort from Lombardy region: the PLIC study. Giornale Italiano di Farmacoeconomia e Farmacoutilizzazione. 2017; 9(2):35–53. Chiodo L, Casula M, Tragni E, Baragetti A, Norata D, Catapano AL, on behalf of PLIC group. Profilo cardiometabolico in una coorte lombarda: lo studio PLIC. Cardio-metabolic profile in a cohort from Lombardy region: the PLIC study. Giornale Italiano di Farmacoeconomia e Farmacoutilizzazione. 2017; 9(2):35–53.
18.
go back to reference Al’Aref SJ, Anchouche K, Singh G, Slomka PJ, Kolli KK, Kumar A, Pandey M, Maliakal G, van Rosendael AR, Beecy AN, Berman DS, Leipsic J, Nieman K, Andreini D, Pontone G, Schoepf UJ, Shaw LJ, Chang H-J, Narula J, Bax JJ, Guan Y, Min JK. Clinical applications of machine learning in cardiovascular disease and its relevance to cardiac imaging. Eur Heart J. 2018; 40(24):1975–86.CrossRef Al’Aref SJ, Anchouche K, Singh G, Slomka PJ, Kolli KK, Kumar A, Pandey M, Maliakal G, van Rosendael AR, Beecy AN, Berman DS, Leipsic J, Nieman K, Andreini D, Pontone G, Schoepf UJ, Shaw LJ, Chang H-J, Narula J, Bax JJ, Guan Y, Min JK. Clinical applications of machine learning in cardiovascular disease and its relevance to cardiac imaging. Eur Heart J. 2018; 40(24):1975–86.CrossRef
19.
go back to reference Al’Aref SJ, Singh G, van Rosendael AR, Kolli KK, Ma X, Maliakal G, Pandey M, Lee BC, Wang J, Xu Z, Zhang Y, Min JK, Wong SC, Minutello RM. Determinants of in-hospital mortality after percutaneous coronary intervention: a machine learning approach. J Am Heart Assoc. 2019; 8(5):011160. Al’Aref SJ, Singh G, van Rosendael AR, Kolli KK, Ma X, Maliakal G, Pandey M, Lee BC, Wang J, Xu Z, Zhang Y, Min JK, Wong SC, Minutello RM. Determinants of in-hospital mortality after percutaneous coronary intervention: a machine learning approach. J Am Heart Assoc. 2019; 8(5):011160.
20.
go back to reference Dunn WB, Broadhurst DI, Deepak SM, Buch MH, McDowell G, Spasic I, Ellis DI, Brooks N, Kell DB, Neysesc L. Serum metabolomics reveals many novel metabolic markers of heart failure, including pseudouridine and 2-oxoglutarate. Metabolomics. 2007; 3(4):413–26.CrossRef Dunn WB, Broadhurst DI, Deepak SM, Buch MH, McDowell G, Spasic I, Ellis DI, Brooks N, Kell DB, Neysesc L. Serum metabolomics reveals many novel metabolic markers of heart failure, including pseudouridine and 2-oxoglutarate. Metabolomics. 2007; 3(4):413–26.CrossRef
21.
go back to reference Gallagher J, McCormack D, Zhou S, Ryan F, Watson C, McDonald K, Ledwidge MT. A systematic review of clinical prediction rules for the diagnosis of chronic heart failure. Eur Soc Cardiol (ESC) Heart Fail. 2019; 6(3):499–508. Gallagher J, McCormack D, Zhou S, Ryan F, Watson C, McDonald K, Ledwidge MT. A systematic review of clinical prediction rules for the diagnosis of chronic heart failure. Eur Soc Cardiol (ESC) Heart Fail. 2019; 6(3):499–508.
22.
go back to reference Ambale-Venkatesh B, Yang X, Wu CO, Liu K, Hundley GW, McClelland R, Gomes AS, Folsom AR, Shea S, Guallar E, Bluemke DA, Lima JAC. Cardiovascular event prediction by machine learning: the multi-ethnic study of atherosclerosis. Circ Res. 2017; 121(9):1092–101.PubMedPubMedCentralCrossRef Ambale-Venkatesh B, Yang X, Wu CO, Liu K, Hundley GW, McClelland R, Gomes AS, Folsom AR, Shea S, Guallar E, Bluemke DA, Lima JAC. Cardiovascular event prediction by machine learning: the multi-ethnic study of atherosclerosis. Circ Res. 2017; 121(9):1092–101.PubMedPubMedCentralCrossRef
23.
go back to reference Weng SF, Reps J, Kai J, Garibaldi JM, Qureshi N. Can machine-learning improve cardiovascular risk prediction using routine clinical data?PLoS ONE. 2017; 12(4):0174944.CrossRef Weng SF, Reps J, Kai J, Garibaldi JM, Qureshi N. Can machine-learning improve cardiovascular risk prediction using routine clinical data?PLoS ONE. 2017; 12(4):0174944.CrossRef
24.
go back to reference Shilaskar S, Ghatol A. Feature selection for medical diagnosis: evaluation for cardiovascular diseases. Expert Syst Appl. 2013; 40(10):4146–53.CrossRef Shilaskar S, Ghatol A. Feature selection for medical diagnosis: evaluation for cardiovascular diseases. Expert Syst Appl. 2013; 40(10):4146–53.CrossRef
25.
go back to reference Panahiazar M, Taslimitehrani V, Pereira N, Pathak J. Using EHRs and machine learning for heart failure survival analysis. Stud Health Technol Informat. 2015; 216:40. Panahiazar M, Taslimitehrani V, Pereira N, Pathak J. Using EHRs and machine learning for heart failure survival analysis. Stud Health Technol Informat. 2015; 216:40.
26.
go back to reference Tripoliti EE, Papadopoulos TG, Karanasiou GS, Naka KK, Fotiadis DI. Heart failure: diagnosis, severity estimation and prediction of adverse events through machine learning techniques. Comput Struct Biotechnol J. 2017; 15:26–47.PubMedCrossRef Tripoliti EE, Papadopoulos TG, Karanasiou GS, Naka KK, Fotiadis DI. Heart failure: diagnosis, severity estimation and prediction of adverse events through machine learning techniques. Comput Struct Biotechnol J. 2017; 15:26–47.PubMedCrossRef
27.
go back to reference Ahmad T, Lund LH, Rao P, Ghosh R, Warier P, Vaccaro B, Dahlström U, O’Connor CM, Felker GM, Desai NR. Machine learning methods improve prognostication, identify clinically distinct phenotypes, and detect heterogeneity in response to therapy in a large cohort of heart failure patients. J Am Heart Assoc. 2018; 7(8):008081.CrossRef Ahmad T, Lund LH, Rao P, Ghosh R, Warier P, Vaccaro B, Dahlström U, O’Connor CM, Felker GM, Desai NR. Machine learning methods improve prognostication, identify clinically distinct phenotypes, and detect heterogeneity in response to therapy in a large cohort of heart failure patients. J Am Heart Assoc. 2018; 7(8):008081.CrossRef
28.
go back to reference Samad MD, Ulloa A, Wehner GJ, Jing L, Hartzel D, Good CW, Williams BA, Haggerty CM, Fornwalt BK. J Am Coll Cardiol (JACC) Cardiovasc Interv. 2019; 12:2641. Samad MD, Ulloa A, Wehner GJ, Jing L, Hartzel D, Good CW, Williams BA, Haggerty CM, Fornwalt BK. J Am Coll Cardiol (JACC) Cardiovasc Interv. 2019; 12:2641.
29.
go back to reference Sengupta PP, Kulkarni H, Narula J. Prediction of abnormal myocardial relaxation from signal processed surface ECG. J Am Coll Cardiol. 2018; 71(15):1650–60.PubMedCrossRef Sengupta PP, Kulkarni H, Narula J. Prediction of abnormal myocardial relaxation from signal processed surface ECG. J Am Coll Cardiol. 2018; 71(15):1650–60.PubMedCrossRef
30.
go back to reference Krittanawong C, Johnson KW, Rosenson RS, Wang Z, Aydar M, Baber U, Min JK, Tang WHW, Halperin JL, Narayan SM. Deep learning for cardiovascular medicine: a practical primer. Eur Heart J. 2019; 40:2058–73.PubMedCrossRefPubMedCentral Krittanawong C, Johnson KW, Rosenson RS, Wang Z, Aydar M, Baber U, Min JK, Tang WHW, Halperin JL, Narayan SM. Deep learning for cardiovascular medicine: a practical primer. Eur Heart J. 2019; 40:2058–73.PubMedCrossRefPubMedCentral
31.
go back to reference Poolsawad N, Moore L, Kambhampati C, Cleland JGF. Issues in the mining of heart failure datasets. Int J Autom Comput. 2015; 11(2):162–79.CrossRef Poolsawad N, Moore L, Kambhampati C, Cleland JGF. Issues in the mining of heart failure datasets. Int J Autom Comput. 2015; 11(2):162–79.CrossRef
32.
go back to reference Buzaev IV, Plechev VV, Nikolaeva IE, Galimova RM. Artificial intelligence: neural network model as the multidisciplinary team member in clinical decision support to avoid medical mistakes. Chron Dis Transl Med. 2016; 2(3):166–72. Buzaev IV, Plechev VV, Nikolaeva IE, Galimova RM. Artificial intelligence: neural network model as the multidisciplinary team member in clinical decision support to avoid medical mistakes. Chron Dis Transl Med. 2016; 2(3):166–72.
33.
go back to reference Benjamins J-W, Hendriks T, Knuuti J, Juarez-Orozco LE, van der Harst P. A primer in artificial intelligence in cardiovascular medicine. Neth Heart J. 2019; 27:392–402.PubMedPubMedCentralCrossRef Benjamins J-W, Hendriks T, Knuuti J, Juarez-Orozco LE, van der Harst P. A primer in artificial intelligence in cardiovascular medicine. Neth Heart J. 2019; 27:392–402.PubMedPubMedCentralCrossRef
34.
go back to reference Bello GA, Dawes TJW, Duan J, Biffi C, de Marvao A, Howard LSGE, Gibbs JSR, Wilkins MR, Cook SA, Rueckert D, O’Regan DP. Deep-learning cardiac motion analysis for human survival prediction. Nat Mach Intell. 2019; 1(2):95–104.PubMedPubMedCentralCrossRef Bello GA, Dawes TJW, Duan J, Biffi C, de Marvao A, Howard LSGE, Gibbs JSR, Wilkins MR, Cook SA, Rueckert D, O’Regan DP. Deep-learning cardiac motion analysis for human survival prediction. Nat Mach Intell. 2019; 1(2):95–104.PubMedPubMedCentralCrossRef
35.
go back to reference Smith DH, Johnson ES, Thorp ML, Yang X, Petrik A, Platt RW, Crispell K. Predicting poor outcomes in heart failure. Permanente J. 2011; 15(4):4–11.CrossRef Smith DH, Johnson ES, Thorp ML, Yang X, Petrik A, Platt RW, Crispell K. Predicting poor outcomes in heart failure. Permanente J. 2011; 15(4):4–11.CrossRef
36.
go back to reference Dokainish H, Teo K, Zhu J, Roy A, AlHabib KF, ElSayed A, Palileo-Villaneuva L, Lopez-Jaramillo P, Karaye K, Yusoff K, Orlandini A, Sliwa K, Mondo C, Lanas F, Prabhakaran D, Badr A, Elmaghawry M, Damasceno A, Tibazarwa K, Belley-Cote E, Balasubramanian K, Islam S, Yacoub MH, Huffman MD, Harkness K, Grinvalds A, McKelvie R, Bangdiwala SI, Yusuf S, Campos R, Chacón C, Cursack G, Diez F, Escobar C, Garcia C, Vilamajo OG, Hominal M, Ingaramo A, Kucharczuk G, Pelliza M, Rojas A, Villani A, Zapata G, Bourke P, Lanas F, Nahuelpan L, Olivares C, Riquelme R, Ai F, Bai X, Chen X, Chen Y, Gao M, Ge C, He Y, Huang W, Jiang H, Liang T, Liang X, Liao Y, Liu S, Luo Y, Lu L, Qin S, Tan G, Tan H, Wang T, Wang X, Wei F, Xiao F, Zhang B, Zheng T, Mendoza JLA, Anaya MB, Gomez E, de Salazar DIM, Quiroz F, Rodríguez MJ, Sotomayor MS, Navas AT, León MB, Montalvo LAF, Jaramillo ML, Patiño EP, Perugachi C, Trujillo Cruz F, Elmaghawry M, Wagdy K, Bhardwaj AK, Chaturvedi V, Gokhale GK, Gupta R, Honnutagi R, Joshi P, Ladhani S, Negi PC, Roy A, Reddy N, Abdullah A, Hassan MRA, Balasinga M, Kasim S, Tan WY, Yusoff K, Damasceno A, Banze R, Calua E, Novela C, Chemane J, Akintunde AA, Ansa V, Gbadamosi H, Karaye KM, Mbakwem A, Mohammed S, Nwafor E, Ojji D, Olunuga T, Sa’idu BOH, Umuerri E, Alcaraz J, Palileo-Villanueva L, Palomares E, Timonera MR, Badr A, Alghamdi S, Alhabib K, Almasood A, Alsaif S, Elasfar A, Ghabashi A, Mimish L, Bester F, Kelbe D, Klug E, Sliwa K, Tibarzawa K, Abdalla OE, Dimitri ME, Mustafa H, Osman O, Saad A, Mondo C. Global mortality variations in patients with heart failure: results from the International Congestive Heart Failure (INTER-CHF) prospective cohort study. Lancet Glob Health. 2017; 5:665–72.CrossRef Dokainish H, Teo K, Zhu J, Roy A, AlHabib KF, ElSayed A, Palileo-Villaneuva L, Lopez-Jaramillo P, Karaye K, Yusoff K, Orlandini A, Sliwa K, Mondo C, Lanas F, Prabhakaran D, Badr A, Elmaghawry M, Damasceno A, Tibazarwa K, Belley-Cote E, Balasubramanian K, Islam S, Yacoub MH, Huffman MD, Harkness K, Grinvalds A, McKelvie R, Bangdiwala SI, Yusuf S, Campos R, Chacón C, Cursack G, Diez F, Escobar C, Garcia C, Vilamajo OG, Hominal M, Ingaramo A, Kucharczuk G, Pelliza M, Rojas A, Villani A, Zapata G, Bourke P, Lanas F, Nahuelpan L, Olivares C, Riquelme R, Ai F, Bai X, Chen X, Chen Y, Gao M, Ge C, He Y, Huang W, Jiang H, Liang T, Liang X, Liao Y, Liu S, Luo Y, Lu L, Qin S, Tan G, Tan H, Wang T, Wang X, Wei F, Xiao F, Zhang B, Zheng T, Mendoza JLA, Anaya MB, Gomez E, de Salazar DIM, Quiroz F, Rodríguez MJ, Sotomayor MS, Navas AT, León MB, Montalvo LAF, Jaramillo ML, Patiño EP, Perugachi C, Trujillo Cruz F, Elmaghawry M, Wagdy K, Bhardwaj AK, Chaturvedi V, Gokhale GK, Gupta R, Honnutagi R, Joshi P, Ladhani S, Negi PC, Roy A, Reddy N, Abdullah A, Hassan MRA, Balasinga M, Kasim S, Tan WY, Yusoff K, Damasceno A, Banze R, Calua E, Novela C, Chemane J, Akintunde AA, Ansa V, Gbadamosi H, Karaye KM, Mbakwem A, Mohammed S, Nwafor E, Ojji D, Olunuga T, Sa’idu BOH, Umuerri E, Alcaraz J, Palileo-Villanueva L, Palomares E, Timonera MR, Badr A, Alghamdi S, Alhabib K, Almasood A, Alsaif S, Elasfar A, Ghabashi A, Mimish L, Bester F, Kelbe D, Klug E, Sliwa K, Tibarzawa K, Abdalla OE, Dimitri ME, Mustafa H, Osman O, Saad A, Mondo C. Global mortality variations in patients with heart failure: results from the International Congestive Heart Failure (INTER-CHF) prospective cohort study. Lancet Glob Health. 2017; 5:665–72.CrossRef
37.
go back to reference Voors AA, Ouwerkerk W, Zannad F, van Veldhuisen DJ, Samani NJ, Ponikowski P, Ng LL, Metra M, ter Maaten JM, Lang CC, Hillege HL, van der Harst P, Filippatos G, Dickstein K, Cleland JG, Anker SD, Zwinderman AH. Development and validation of multivariable models to predict mortality and hospitalization in patients with heart failure. Eur J Heart Fail. 2017; 19:627–34.PubMedCrossRef Voors AA, Ouwerkerk W, Zannad F, van Veldhuisen DJ, Samani NJ, Ponikowski P, Ng LL, Metra M, ter Maaten JM, Lang CC, Hillege HL, van der Harst P, Filippatos G, Dickstein K, Cleland JG, Anker SD, Zwinderman AH. Development and validation of multivariable models to predict mortality and hospitalization in patients with heart failure. Eur J Heart Fail. 2017; 19:627–34.PubMedCrossRef
38.
go back to reference Levy WC, Mozaffarian D, Linker DT, Sutradhar SC, Anker SD, Cropp AB, Anand I, Maggioni AP, Burton P, Sullivan MD, Pitt B, Poole-wilson PA, Mann DL, Packer M. The Seattle heart failure model: prediction of survival in heart failure. Circulation. 2006; 113(11):1424–33.PubMedCrossRef Levy WC, Mozaffarian D, Linker DT, Sutradhar SC, Anker SD, Cropp AB, Anand I, Maggioni AP, Burton P, Sullivan MD, Pitt B, Poole-wilson PA, Mann DL, Packer M. The Seattle heart failure model: prediction of survival in heart failure. Circulation. 2006; 113(11):1424–33.PubMedCrossRef
39.
go back to reference Sakamoto M, Fukuda H, Kim J, Ide T, Kinugawa S, Fukushima A, Tsutsui H, Ishii A, Ito S, Asanuma H, Asakura M, Washio T, Kitakaze M. The impact of creating mathematical formula to predict cardiovascular events in patients with heart failure. Sci Rep. 2018; 8(1):3986.PubMedPubMedCentralCrossRef Sakamoto M, Fukuda H, Kim J, Ide T, Kinugawa S, Fukushima A, Tsutsui H, Ishii A, Ito S, Asanuma H, Asakura M, Washio T, Kitakaze M. The impact of creating mathematical formula to predict cardiovascular events in patients with heart failure. Sci Rep. 2018; 8(1):3986.PubMedPubMedCentralCrossRef
40.
go back to reference Alba AC, Agoritsas T, Jankowski M, Courvoisier D, Walter SD, Guyatt GH, Ross HJ. Risk prediction models for mortality in ambulatory patients with heart failure: a systematic review. Circ Heart Fail. 2013; 6:881–89.PubMedCrossRef Alba AC, Agoritsas T, Jankowski M, Courvoisier D, Walter SD, Guyatt GH, Ross HJ. Risk prediction models for mortality in ambulatory patients with heart failure: a systematic review. Circ Heart Fail. 2013; 6:881–89.PubMedCrossRef
41.
go back to reference Yap J, Chia SY, Lim FY, Allen JC, Teo L, Sim D, Go YY, Jaufeerally FR, Seow M, Kwok B, Liew R, Lam CS, Ching CK. The Singapore heart failure risk score: prediction of survival in Southeast Asian patients. Ann Acad Med Singap. 2019; 48:86–94.PubMed Yap J, Chia SY, Lim FY, Allen JC, Teo L, Sim D, Go YY, Jaufeerally FR, Seow M, Kwok B, Liew R, Lam CS, Ching CK. The Singapore heart failure risk score: prediction of survival in Southeast Asian patients. Ann Acad Med Singap. 2019; 48:86–94.PubMed
42.
go back to reference Yap J, Lim FY, Chia SY, Allen Jr. JC, Jaufeerally FR, Macdonald MR, Chai P, Loh SY, Lim P, Zaw MWW, Teo L, Sim D, Lam CSP. Prediction of survival in Asian patients hospitalized with heart failure: validation of the OPTIMIZE-HF risk score. J Card Fail. 2019; 25(7):571–5.PubMedCrossRef Yap J, Lim FY, Chia SY, Allen Jr. JC, Jaufeerally FR, Macdonald MR, Chai P, Loh SY, Lim P, Zaw MWW, Teo L, Sim D, Lam CSP. Prediction of survival in Asian patients hospitalized with heart failure: validation of the OPTIMIZE-HF risk score. J Card Fail. 2019; 25(7):571–5.PubMedCrossRef
43.
go back to reference Kasahara S, Sakata Y, Sakata Y, Nochioka K, Tay WT, Claggett BL, Abe R, Oikawa T, Sato M, Aoyanagi H, Miura M, Shiroto T, Takahashi J, Sugimura K, Teng T-HK, Miyata S, Shimokawa H. The 3A3B score: the simple risk score for heart failure with preserved ejection fraction – A report from the CHART-2 Study. Int J Cardiol. 2019; 284:42–9.PubMedCrossRef Kasahara S, Sakata Y, Sakata Y, Nochioka K, Tay WT, Claggett BL, Abe R, Oikawa T, Sato M, Aoyanagi H, Miura M, Shiroto T, Takahashi J, Sugimura K, Teng T-HK, Miyata S, Shimokawa H. The 3A3B score: the simple risk score for heart failure with preserved ejection fraction – A report from the CHART-2 Study. Int J Cardiol. 2019; 284:42–9.PubMedCrossRef
44.
go back to reference Miyagawa S, Pak K, Hikoso S, Ohtani T, Amiya E, Sakata Y, Ueda S, Takeuchi M, Komuro I, Sawa Y. Japan heart failure model – Derivation and accuracy of survival prediction in Japanese heart failure patients. Circ Rep. 2019; 1(1):29–34.CrossRef Miyagawa S, Pak K, Hikoso S, Ohtani T, Amiya E, Sakata Y, Ueda S, Takeuchi M, Komuro I, Sawa Y. Japan heart failure model – Derivation and accuracy of survival prediction in Japanese heart failure patients. Circ Rep. 2019; 1(1):29–34.CrossRef
45.
go back to reference Boralkar KA, Kobayashi Y, Moneghetti KJ, Pargaonkar VS, Tuzovic M, Krishnan G, Wheeler MT, Banerjee D, Kuznetsova T, Horne BD, Knowlton KU, Heidenreich PA, Haddad F. Improving risk stratification in heart failure with preserved ejection fraction by combining two validated risk scores. Open Heart. 2019; 6(1):e000961.PubMedPubMedCentralCrossRef Boralkar KA, Kobayashi Y, Moneghetti KJ, Pargaonkar VS, Tuzovic M, Krishnan G, Wheeler MT, Banerjee D, Kuznetsova T, Horne BD, Knowlton KU, Heidenreich PA, Haddad F. Improving risk stratification in heart failure with preserved ejection fraction by combining two validated risk scores. Open Heart. 2019; 6(1):e000961.PubMedPubMedCentralCrossRef
46.
go back to reference Kouwert IJM, Bakker EA, Cramer MJ, Snoek JA, Eijsvogels TMH. Comparison of MAGGIC and MECKI risk scores to predict mortality after cardiac rehabilitation among Dutch heart failure patients. Eur J Prev Cardiol. 2019; First published online:26. Kouwert IJM, Bakker EA, Cramer MJ, Snoek JA, Eijsvogels TMH. Comparison of MAGGIC and MECKI risk scores to predict mortality after cardiac rehabilitation among Dutch heart failure patients. Eur J Prev Cardiol. 2019; First published online:26.
47.
go back to reference Canepa M, Fonseca C, Chioncel O, Laroche C, Crespo-Leiro MG, Coats AJS, Mebazaa A, Piepoli MF, Tavazzi L, Maggioni AP, Crespo-Leiro M, Anker S, Mebazaa A, Coats A, Filippatos G, Ferrari R, Maggioni AP, Piepoli MF, Amir O, Chioncel O, Dahlström U, Delgado Jimenez JF, Drozdz J, et al.Performance of prognostic risk scores in chronic heart failure patients enrolled in the European society of cardiology heart failure long-term registry. J Am Coll Cardiol (JACC) Heart Fail. 2018; 6(6):452–62. Canepa M, Fonseca C, Chioncel O, Laroche C, Crespo-Leiro MG, Coats AJS, Mebazaa A, Piepoli MF, Tavazzi L, Maggioni AP, Crespo-Leiro M, Anker S, Mebazaa A, Coats A, Filippatos G, Ferrari R, Maggioni AP, Piepoli MF, Amir O, Chioncel O, Dahlström U, Delgado Jimenez JF, Drozdz J, et al.Performance of prognostic risk scores in chronic heart failure patients enrolled in the European society of cardiology heart failure long-term registry. J Am Coll Cardiol (JACC) Heart Fail. 2018; 6(6):452–62.
48.
go back to reference Straw S, Byrom R, Gierula J, Paton MF, Koshy A, Cubbon R, Drozd M, Kearney M, Witte KK. Predicting one-year mortality in heart failure using the ’surprise question’: a prospective pilot study. Eur J Heart Fail. 2019; 21(2):227–34.PubMed Straw S, Byrom R, Gierula J, Paton MF, Koshy A, Cubbon R, Drozd M, Kearney M, Witte KK. Predicting one-year mortality in heart failure using the ’surprise question’: a prospective pilot study. Eur J Heart Fail. 2019; 21(2):227–34.PubMed
49.
go back to reference Dauriz M, Mantovani A, Bonapace S, Verlato G, Zoppini G, Bonora E, Targher G. Prognostic impact of diabetes on long-term survival outcomes in patients with heart failure: a meta-analysis. Diabetes Care. 2017; 40(11):1597–605.PubMedCrossRef Dauriz M, Mantovani A, Bonapace S, Verlato G, Zoppini G, Bonora E, Targher G. Prognostic impact of diabetes on long-term survival outcomes in patients with heart failure: a meta-analysis. Diabetes Care. 2017; 40(11):1597–605.PubMedCrossRef
50.
go back to reference Segar MW, Vaduganathan M, Patel KV, McGuire DK, Butler J, Fonarow GC, Basit M, Kannan V, Grodin JL, Everett B, Willett D, Berry J, Pandey A. Machine learning to predict the risk of incident heart failure hospitalization among patients with diabetes: the WATCH-DM risk score. Diabetes Care. 2019; 42(12):2298–306.PubMedCrossRefPubMedCentral Segar MW, Vaduganathan M, Patel KV, McGuire DK, Butler J, Fonarow GC, Basit M, Kannan V, Grodin JL, Everett B, Willett D, Berry J, Pandey A. Machine learning to predict the risk of incident heart failure hospitalization among patients with diabetes: the WATCH-DM risk score. Diabetes Care. 2019; 42(12):2298–306.PubMedCrossRefPubMedCentral
51.
go back to reference Son MK, Lim N-K, Park H-Y. Predicting stroke and death in patients with heart failure using CHA2DS2-VASc score in Asia. BMC Cardiovasc Disord. 2019; 19(1):193.PubMedPubMedCentralCrossRef Son MK, Lim N-K, Park H-Y. Predicting stroke and death in patients with heart failure using CHA2DS2-VASc score in Asia. BMC Cardiovasc Disord. 2019; 19(1):193.PubMedPubMedCentralCrossRef
52.
go back to reference Ahmad T, Munir A, Bhatti SH, Aftab M, Raza MA. Survival analysis of heart failure patients: a case study. PLoS ONE. 2017; 12(7):0181001.CrossRef Ahmad T, Munir A, Bhatti SH, Aftab M, Raza MA. Survival analysis of heart failure patients: a case study. PLoS ONE. 2017; 12(7):0181001.CrossRef
53.
go back to reference Fitrianto A, Jiin RLT. Several types of residuals in Cox regression model: an empirical study. Int J Math Anal. 2013; 7:2645–54.CrossRef Fitrianto A, Jiin RLT. Several types of residuals in Cox regression model: an empirical study. Int J Math Anal. 2013; 7:2645–54.CrossRef
54.
go back to reference Kleinbaum DG, Klein M. Kaplan–Meier survival curves and the log-rank test. Heidelberg, Germany: Springer; 2012, pp. 55–96.CrossRef Kleinbaum DG, Klein M. Kaplan–Meier survival curves and the log-rank test. Heidelberg, Germany: Springer; 2012, pp. 55–96.CrossRef
55.
go back to reference Wilkinson M, Dumontier M, Aalbersberg I, Appleton G, Axton M, Baak A, Blomberg N, Boiten J, da Silva Santos L, Bourne P, Bouwman J, Brookes A, Clark T, Crosas M, Dillo I, Dumon O, Edmunds S, Evelo C, Finkers R, Gonzalez-Beltran A, Gray A, Groth P, Goble C, Grethe J, Heringa J, ’t Hoen P, Hooft R, Kuhn T, Kok R, Kok J, Lusher S, Martone M, Mons A, Packer A, Persson B, Rocca-Serra P, Roos M, van Schaik R, Sansone S, Schultes E, Sengstag T, Slater T, Strawn G, Swertz M, Thompson M, van Der Lei J, van Mulligen E, Velterop J, Waagmeester A, Wittenburg P, Wolstencroft K, Zhao J, Mons B. The FAIR Guiding Principles for scientific data management and stewardship. Sci Data. 2016; 3:160018.PubMedPubMedCentralCrossRef Wilkinson M, Dumontier M, Aalbersberg I, Appleton G, Axton M, Baak A, Blomberg N, Boiten J, da Silva Santos L, Bourne P, Bouwman J, Brookes A, Clark T, Crosas M, Dillo I, Dumon O, Edmunds S, Evelo C, Finkers R, Gonzalez-Beltran A, Gray A, Groth P, Goble C, Grethe J, Heringa J, ’t Hoen P, Hooft R, Kuhn T, Kok R, Kok J, Lusher S, Martone M, Mons A, Packer A, Persson B, Rocca-Serra P, Roos M, van Schaik R, Sansone S, Schultes E, Sengstag T, Slater T, Strawn G, Swertz M, Thompson M, van Der Lei J, van Mulligen E, Velterop J, Waagmeester A, Wittenburg P, Wolstencroft K, Zhao J, Mons B. The FAIR Guiding Principles for scientific data management and stewardship. Sci Data. 2016; 3:160018.PubMedPubMedCentralCrossRef
56.
go back to reference Zahid FM, Ramzan S, Faisal S, Hussain I. Gender based survival prediction models for heart failure patients: a case study in Pakistan. PLoS ONE. 2019; 14(2):0210602. Zahid FM, Ramzan S, Faisal S, Hussain I. Gender based survival prediction models for heart failure patients: a case study in Pakistan. PLoS ONE. 2019; 14(2):0210602.
57.
go back to reference Núñez J, Garcia S, Núñez E, Bonanad C, Bodí V, Miñana G, Santas E, Escribano D, Bayes-Genis A, Pascual-Figal D, Chorro FJ, Sanchis J. Early serum creatinine changes and outcomes in patients admitted for acute heart failure: the cardio-renal syndrome revisited. Eur Heart J Acute Cardiovasc Care. 2017; 6(5):430–40.PubMedCrossRef Núñez J, Garcia S, Núñez E, Bonanad C, Bodí V, Miñana G, Santas E, Escribano D, Bayes-Genis A, Pascual-Figal D, Chorro FJ, Sanchis J. Early serum creatinine changes and outcomes in patients admitted for acute heart failure: the cardio-renal syndrome revisited. Eur Heart J Acute Cardiovasc Care. 2017; 6(5):430–40.PubMedCrossRef
58.
go back to reference Akhter MW, Aronson D, Bitar F, Khan S, Singh H, Singh RP, Burger AJ, Elkayam U. Effect of elevated admission serum creatinine and its worsening on outcome in hospitalized patients with decompensated heart failure. Am J Cardiol. 2004; 94:957–60.PubMedCrossRef Akhter MW, Aronson D, Bitar F, Khan S, Singh H, Singh RP, Burger AJ, Elkayam U. Effect of elevated admission serum creatinine and its worsening on outcome in hospitalized patients with decompensated heart failure. Am J Cardiol. 2004; 94:957–60.PubMedCrossRef
59.
go back to reference Brisco MA, Zile MR, Hanberg JS, Wilson FP, Parikh CR, Coca SG, Tang WHW, Testani JM. Relevance of changes in serum creatinine during a heart failure trial of decongestive strategies: insights from the DOSE trial. J Card Fail. 2016; 22(10):753–60.PubMedPubMedCentralCrossRef Brisco MA, Zile MR, Hanberg JS, Wilson FP, Parikh CR, Coca SG, Tang WHW, Testani JM. Relevance of changes in serum creatinine during a heart failure trial of decongestive strategies: insights from the DOSE trial. J Card Fail. 2016; 22(10):753–60.PubMedPubMedCentralCrossRef
60.
go back to reference Vistarini N, Deschamps A, Cartier R. Preoperative creatinine clearance affects long-term survival after off-pump coronary artery bypass surgery. Can J Cardiol. 2014; 30:238–9.CrossRef Vistarini N, Deschamps A, Cartier R. Preoperative creatinine clearance affects long-term survival after off-pump coronary artery bypass surgery. Can J Cardiol. 2014; 30:238–9.CrossRef
61.
go back to reference Tomaselli Muensterman E, Tisdale JE. Predictive analytics for identification of patients at risk for QT interval prolongation: a systematic review. Pharmacotherapy. 2018; 38(8):813–21.PubMedCrossRef Tomaselli Muensterman E, Tisdale JE. Predictive analytics for identification of patients at risk for QT interval prolongation: a systematic review. Pharmacotherapy. 2018; 38(8):813–21.PubMedCrossRef
62.
go back to reference Kosztin AA, Tokodi M, Toser Z, Schwertner W, Boros A, Kovacs A, Perge P, Szeplaki G, Geller L, Merkely B. Utilization of machine learning to identify gender-specific patterns in short-and long-term mortality after cardiac resynchronization therapy. In: Proceedings of the Heart Failure 2019 Congress, vol. 1: 2019. p. 834. Kosztin AA, Tokodi M, Toser Z, Schwertner W, Boros A, Kovacs A, Perge P, Szeplaki G, Geller L, Merkely B. Utilization of machine learning to identify gender-specific patterns in short-and long-term mortality after cardiac resynchronization therapy. In: Proceedings of the Heart Failure 2019 Congress, vol. 1: 2019. p. 834.
63.
go back to reference Stasiak MM, Rozentryt P, Jankowska E, Retwinski A, Straburzynska-Migaj E, Nowalany-Kozielska E, Ponikowski P, Mirek-Bryniarska E, Polonski L, Drozdz J. Renal failure in patients with heart failure – analysis based on ESC-HF Pilot survey. Eur Heart J. 2013; 34(Suppl 1):645.CrossRef Stasiak MM, Rozentryt P, Jankowska E, Retwinski A, Straburzynska-Migaj E, Nowalany-Kozielska E, Ponikowski P, Mirek-Bryniarska E, Polonski L, Drozdz J. Renal failure in patients with heart failure – analysis based on ESC-HF Pilot survey. Eur Heart J. 2013; 34(Suppl 1):645.CrossRef
64.
go back to reference Sutherland SM, Chawla LS, Kane-Gill S, Hsu RK, Kramer AA, Goldstein SA, Kellum JA, Ronco C, Bagshaw SM, the 15 ADQI Consensus Group. Utilizing electronic health records to predict acute kidney injury risk and outcomes: workgroup statements from the 15th ADQI Consensus Conference. Can J Kidney Health Dis. 2016; 3:11.PubMedPubMedCentralCrossRef Sutherland SM, Chawla LS, Kane-Gill S, Hsu RK, Kramer AA, Goldstein SA, Kellum JA, Ronco C, Bagshaw SM, the 15 ADQI Consensus Group. Utilizing electronic health records to predict acute kidney injury risk and outcomes: workgroup statements from the 15th ADQI Consensus Conference. Can J Kidney Health Dis. 2016; 3:11.PubMedPubMedCentralCrossRef
65.
go back to reference Lee H-C, Yoon H-K, Nam K, Cho YJ, Kim TK, Kim WH, Bahk J-H. Derivation and validation of machine learning approaches to predict acute kidney injury after cardiac surgery. J Clin Med. 2018; 7:322.PubMedCentralCrossRef Lee H-C, Yoon H-K, Nam K, Cho YJ, Kim TK, Kim WH, Bahk J-H. Derivation and validation of machine learning approaches to predict acute kidney injury after cardiac surgery. J Clin Med. 2018; 7:322.PubMedCentralCrossRef
67.
go back to reference Bredy C, Ministeri M, Kempny A, Alonso-Gonzalez R, Swan L, Uebing A, Diller G-P, Gatzoulis MA, Dimopoulos K. New York Heart Association (NYHA) classification in adults with congenital heart disease: relation to objective measures of exercise and outcome. Eur Heart J – Qual Care Clin Outcomes. 2017; 4(1):51–8.CrossRef Bredy C, Ministeri M, Kempny A, Alonso-Gonzalez R, Swan L, Uebing A, Diller G-P, Gatzoulis MA, Dimopoulos K. New York Heart Association (NYHA) classification in adults with congenital heart disease: relation to objective measures of exercise and outcome. Eur Heart J – Qual Care Clin Outcomes. 2017; 4(1):51–8.CrossRef
69.
go back to reference Stephens C. What is a creatinine blood test?https://www.healthline.com/health/creatinine-blood. Accessed 25 Jan 2019. Stephens C. What is a creatinine blood test?https://​www.​healthline.​com/​health/​creatinine-blood.​ Accessed 25 Jan 2019.
70.
go back to reference Case-Lo C. What is a sodium blood test?https://www.healthline.com/health/sodium-blood. Accessed 25 Jan 2019. Case-Lo C. What is a sodium blood test?https://​www.​healthline.​com/​health/​sodium-blood.​ Accessed 25 Jan 2019.
71.
go back to reference Seber GA, Lee AJ. Linear Regression Analysis, Wiley Series in Probability and Statistics. vol. 329. Hoboken: John Wiley and Sons; 2012. Seber GA, Lee AJ. Linear Regression Analysis, Wiley Series in Probability and Statistics. vol. 329. Hoboken: John Wiley and Sons; 2012.
73.
go back to reference Holte RC. Very simple classification rules perform well on most commonly used datasets. Mach Learn. 1993; 11(1):63–90.CrossRef Holte RC. Very simple classification rules perform well on most commonly used datasets. Mach Learn. 1993; 11(1):63–90.CrossRef
74.
go back to reference Loh W-Y. Classification and regression trees. Wiley Interdiscip Rev Data Min Knowl Disc. 2011; 1(1):14–23.CrossRef Loh W-Y. Classification and regression trees. Wiley Interdiscip Rev Data Min Knowl Disc. 2011; 1(1):14–23.CrossRef
76.
go back to reference Amari S-I, Wu S. Improving support vector machine classifiers by modifying kernel functions. Neural Netw. 1999; 12(6):783–9.PubMedCrossRef Amari S-I, Wu S. Improving support vector machine classifiers by modifying kernel functions. Neural Netw. 1999; 12(6):783–9.PubMedCrossRef
77.
go back to reference Cover TM, Hart PE. Nearest neighbor pattern classification. IEEE Trans Inf Theory. 1967; 13(1):21–7.CrossRef Cover TM, Hart PE. Nearest neighbor pattern classification. IEEE Trans Inf Theory. 1967; 13(1):21–7.CrossRef
78.
go back to reference Rish I. An empirical study of the naive Bayes classifier. In: Proceedings of IJCAI 2001 – the 17th International Joint Conferences on Artificial Intelligence Workshop on Empirical Methods in Artificial Intelligence, vol. 3. Menlo Park: American Association for Artificial Intelligence: 2001. p. 41–46. Rish I. An empirical study of the naive Bayes classifier. In: Proceedings of IJCAI 2001 – the 17th International Joint Conferences on Artificial Intelligence Workshop on Empirical Methods in Artificial Intelligence, vol. 3. Menlo Park: American Association for Artificial Intelligence: 2001. p. 41–46.
79.
go back to reference Chen T, Guestrin C. XgBoost: a scalable tree boosting system. In: Proceedings of KDD 2016 – the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York City: Association for Computing Machinery (ACM): 2016. p. 785–794. Chen T, Guestrin C. XgBoost: a scalable tree boosting system. In: Proceedings of KDD 2016 – the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York City: Association for Computing Machinery (ACM): 2016. p. 785–794.
80.
go back to reference Matthews BW. Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochim Biophys Acta (BBA) – Protein Struct. 1975; 405(2):442–51.CrossRef Matthews BW. Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochim Biophys Acta (BBA) – Protein Struct. 1975; 405(2):442–51.CrossRef
81.
go back to reference Saito T, Rehmsmeier M. The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets. PLoS ONE. 2015; 10(3):0118432.CrossRef Saito T, Rehmsmeier M. The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets. PLoS ONE. 2015; 10(3):0118432.CrossRef
82.
go back to reference Jurman G, Riccadonna S, Furlanello C. A comparison of MCC and CEN error measures in multi-class prediction. PLoS ONE. 2012; 7(8):41882.CrossRef Jurman G, Riccadonna S, Furlanello C. A comparison of MCC and CEN error measures in multi-class prediction. PLoS ONE. 2012; 7(8):41882.CrossRef
83.
go back to reference Chicco D. Ten quick tips for machine learning in computational biology. BioData Min. 2017; 10(35):1–17. Chicco D. Ten quick tips for machine learning in computational biology. BioData Min. 2017; 10(35):1–17.
84.
go back to reference Chicco D, Jurman G. The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genomics. 2020; 21(1):6.PubMedPubMedCentralCrossRef Chicco D, Jurman G. The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genomics. 2020; 21(1):6.PubMedPubMedCentralCrossRef
85.
go back to reference Wilcoxon F. Individual comparisons by ranking methods. Biom Bull. 1945; 1(6):80–3.CrossRef Wilcoxon F. Individual comparisons by ranking methods. Biom Bull. 1945; 1(6):80–3.CrossRef
86.
go back to reference Benesty J, Chen J, Huang Y, Cohen I. Pearson correlation coefficient. In: Noise Reduction in Speech Processing. Heidelberg: Springer: 2009. p. 1–4. Benesty J, Chen J, Huang Y, Cohen I. Pearson correlation coefficient. In: Noise Reduction in Speech Processing. Heidelberg: Springer: 2009. p. 1–4.
88.
go back to reference Shapiro SS, Wilk MB. An analysis of variance test for normality (complete samples). Biometrika. 1965; 52(3/4):591–611.CrossRef Shapiro SS, Wilk MB. An analysis of variance test for normality (complete samples). Biometrika. 1965; 52(3/4):591–611.CrossRef
90.
go back to reference Patrício M, Pereira J, Crisóstomo J, Matafome P, Gomes M, Seiça R, Caramelo F. Using resistin, glucose, age and BMI to predict the presence of breast cancer. BMC Cancer. 2018; 18(1):29.PubMedPubMedCentralCrossRef Patrício M, Pereira J, Crisóstomo J, Matafome P, Gomes M, Seiça R, Caramelo F. Using resistin, glucose, age and BMI to predict the presence of breast cancer. BMC Cancer. 2018; 18(1):29.PubMedPubMedCentralCrossRef
92.
go back to reference Chicco D, Rovelli C. Computational prediction of diagnosis and feature selection on mesothelioma patient health records. PLoS ONE. 2019; 14(1):0208737.CrossRef Chicco D, Rovelli C. Computational prediction of diagnosis and feature selection on mesothelioma patient health records. PLoS ONE. 2019; 14(1):0208737.CrossRef
93.
go back to reference Kononenko I. Estimating attributes: analysis and extensions of RELIEF. In: Proceedings of ECML 1994 – the 7th European Conference on Machine Learning. Heidelberg: Springer: 1994. p. 171–82. Kononenko I. Estimating attributes: analysis and extensions of RELIEF. In: Proceedings of ECML 1994 – the 7th European Conference on Machine Learning. Heidelberg: Springer: 1994. p. 171–82.
94.
go back to reference Robnik-Sikonja M, Kononenko I. An adaptation of Relief for attribute estimation in regression. In: Proceedings of ICML 1997 – the 14th International Conference on Machine Learning. Burlington: Morgan Kaufmann Publishers: 1997. p. 296–304. Robnik-Sikonja M, Kononenko I. An adaptation of Relief for attribute estimation in regression. In: Proceedings of ICML 1997 – the 14th International Conference on Machine Learning. Burlington: Morgan Kaufmann Publishers: 1997. p. 296–304.
95.
go back to reference Urbanowicz RJ, Olson RS, Schmitt P, Meeker M, Moore JR. Benchmarking relief-based feature selection methods for bioinformatics data mining. J Biomed Inform. 2018; 85:168–88.PubMedPubMedCentralCrossRef Urbanowicz RJ, Olson RS, Schmitt P, Meeker M, Moore JR. Benchmarking relief-based feature selection methods for bioinformatics data mining. J Biomed Inform. 2018; 85:168–88.PubMedPubMedCentralCrossRef
96.
go back to reference Brown LE, Tsamardinos I, Aliferis CF. A novel algorithm for scalable and accurate Bayesian network learning. In: Proceedings of MEDINFO 2004 – the 11th World Congress on Medical Informatics. Amsterdam: IOS Press: 2004. p. 711–5. Brown LE, Tsamardinos I, Aliferis CF. A novel algorithm for scalable and accurate Bayesian network learning. In: Proceedings of MEDINFO 2004 – the 11th World Congress on Medical Informatics. Amsterdam: IOS Press: 2004. p. 711–5.
97.
go back to reference Lagani V, Athineou G, Farcomeni A, Tsagris M, Tsamardinos I. Feature selection with the R package MXM: discovering statistically equivalent feature subsets. J Stat Softw Artic. 2017; 80(7):1–25. Lagani V, Athineou G, Farcomeni A, Tsagris M, Tsamardinos I. Feature selection with the R package MXM: discovering statistically equivalent feature subsets. J Stat Softw Artic. 2017; 80(7):1–25.
98.
go back to reference Borboudakis G, Tsamardinos I. Forward-backward selection with early dropping. J Mach Learn Res. 2019; 20(1):276–314. Borboudakis G, Tsamardinos I. Forward-backward selection with early dropping. J Mach Learn Res. 2019; 20(1):276–314.
99.
go back to reference Breiman L, Friedman JH, Ohlsen RA, Stone CJ. Classification and Regression Trees. The Wadsworth Statistics Probability Series. Boston: Wadsworth Publishing; 1984, p. 358. Breiman L, Friedman JH, Ohlsen RA, Stone CJ. Classification and Regression Trees. The Wadsworth Statistics Probability Series. Boston: Wadsworth Publishing; 1984, p. 358.
100.
go back to reference Cortes C, Vapnik VN. Support-vector networks. Mach Learn. 1995; 20(3):273–97. Cortes C, Vapnik VN. Support-vector networks. Mach Learn. 1995; 20(3):273–97.
101.
go back to reference Friedman JH, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). Ann Stat. 2000; 28(2):337–407.CrossRef Friedman JH, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). Ann Stat. 2000; 28(2):337–407.CrossRef
102.
go back to reference Friedman JH. Greedy function approximation: a gradient boosting machine. Ann Stat. 2001; 29(5):1189–232.CrossRef Friedman JH. Greedy function approximation: a gradient boosting machine. Ann Stat. 2001; 29(5):1189–232.CrossRef
103.
go back to reference de Borda J-C. Mémoire sur les élections au scrutin. Histoire de l’Académie Royale des Sciences. 1784; Jg. 1781:657–65. de Borda J-C. Mémoire sur les élections au scrutin. Histoire de l’Académie Royale des Sciences. 1784; Jg. 1781:657–65.
104.
go back to reference Barla A, Galea A, Furlanello C, Jurman G, Paoli S, Merler S. Algebraic stability indicators for ranked lists in molecular profiling. Bioinformatics. 2007; 24(2):258–64.PubMed Barla A, Galea A, Furlanello C, Jurman G, Paoli S, Merler S. Algebraic stability indicators for ranked lists in molecular profiling. Bioinformatics. 2007; 24(2):258–64.PubMed
105.
go back to reference Guyon I, Weston J, Barnhill S, Vapnik V. Gene selection for cancer classification using support vector machines. Mach Learn. 2002; 46(1-3):389–422.CrossRef Guyon I, Weston J, Barnhill S, Vapnik V. Gene selection for cancer classification using support vector machines. Mach Learn. 2002; 46(1-3):389–422.CrossRef
106.
go back to reference Liu S, Zheng H, Feng Y, Li W. Prostate cancer diagnosis using deep learning with 3D multiparametric MRI. In: Proceedings of Medical Imaging 2017: Computer-Aided Diagnosis, vol. 10134. Bellingham: International Society for Optics and Photonics (SPIE): 2017. p. 1013428. Liu S, Zheng H, Feng Y, Li W. Prostate cancer diagnosis using deep learning with 3D multiparametric MRI. In: Proceedings of Medical Imaging 2017: Computer-Aided Diagnosis, vol. 10134. Bellingham: International Society for Optics and Photonics (SPIE): 2017. p. 1013428.
107.
go back to reference Mehta CR, Patel NR. Exact logistic regression: theory and examples. Stat Med. 1995; 14(19):2143–60.PubMedCrossRef Mehta CR, Patel NR. Exact logistic regression: theory and examples. Stat Med. 1995; 14(19):2143–60.PubMedCrossRef
108.
go back to reference Liaw A, Wiener M. Classification and regression by randomForest. R News. 2002; 2(3):18–22. Liaw A, Wiener M. Classification and regression by randomForest. R News. 2002; 2(3):18–22.
109.
go back to reference Chicco D, Ciceri E, Masseroli M. Extended Spearman and Kendall coefficients for gene annotation list correlation. In: Proceedings of the International Meeting on Computational Intelligence Methods for Bioinformatics and Biostatistics (CIBB 2014). Springer: 2014. p. 19–32. Chicco D, Ciceri E, Masseroli M. Extended Spearman and Kendall coefficients for gene annotation list correlation. In: Proceedings of the International Meeting on Computational Intelligence Methods for Bioinformatics and Biostatistics (CIBB 2014). Springer: 2014. p. 19–32.
110.
go back to reference Sculley D. Rank aggregation for similar items. In: Proceedings of the 2007 SIAM International Conference on Data Mining. Philadelphia: Society for Industrial and Applied Mathematics: 2007. p. 587–592. Sculley D. Rank aggregation for similar items. In: Proceedings of the 2007 SIAM International Conference on Data Mining. Philadelphia: Society for Industrial and Applied Mathematics: 2007. p. 587–592.
111.
go back to reference Yunus I, Fasih A, Wang Y. The use of procalcitonin in the determination of severity of sepsis, patient outcomes and infection characteristics. PLoS ONE. 2018; 13(11):0206527.CrossRef Yunus I, Fasih A, Wang Y. The use of procalcitonin in the determination of severity of sepsis, patient outcomes and infection characteristics. PLoS ONE. 2018; 13(11):0206527.CrossRef
112.
go back to reference Masino AJ, Harris MC, Forsyth D, Ostapenko S, Srinivasan L, Bonafide CP, Balamuth F, Schmatz M, Grundmeier RW. Machine learning models for early sepsis recognition in the neonatal intensive care unit using readily available electronic health record data. PLoS ONE. 2019; 14(2):0212665.CrossRef Masino AJ, Harris MC, Forsyth D, Ostapenko S, Srinivasan L, Bonafide CP, Balamuth F, Schmatz M, Grundmeier RW. Machine learning models for early sepsis recognition in the neonatal intensive care unit using readily available electronic health record data. PLoS ONE. 2019; 14(2):0212665.CrossRef
113.
go back to reference Aushev A, Ripoll VR, Vellido A, Aletti F, Pinto BB, Herpain A, Post EH, Medina ER, Ferrer R, Baselli G. Feature selection for the accurate prediction of septic and cardiogenic shock ICU mortality in the acute phase. PLoS ONE. 2018; 13(11):0199089.CrossRef Aushev A, Ripoll VR, Vellido A, Aletti F, Pinto BB, Herpain A, Post EH, Medina ER, Ferrer R, Baselli G. Feature selection for the accurate prediction of septic and cardiogenic shock ICU mortality in the acute phase. PLoS ONE. 2018; 13(11):0199089.CrossRef
114.
go back to reference Fernandes K, Chicco D, Cardoso JS, Fernandes J. Supervised deep learning embeddings for the prediction of cervical cancer diagnosis. PeerJ Comput Sci. 2018; 4:154.CrossRef Fernandes K, Chicco D, Cardoso JS, Fernandes J. Supervised deep learning embeddings for the prediction of cervical cancer diagnosis. PeerJ Comput Sci. 2018; 4:154.CrossRef
115.
go back to reference Maggio V, Chierici M, Jurman G, Furlanello C. Distillation of the clinical algorithm improves prognosis by multi-task deep learning in high-risk neuroblastoma. PLoS ONE. 2018; 13(12):0208924.CrossRef Maggio V, Chierici M, Jurman G, Furlanello C. Distillation of the clinical algorithm improves prognosis by multi-task deep learning in high-risk neuroblastoma. PLoS ONE. 2018; 13(12):0208924.CrossRef
116.
go back to reference Kueffner R, Zach N, Bronfeld M, Norel R, Atassi N, Balagurusamy V, Camillo BD, Chio A, Cudkowicz M, Dillenberger D, Garcia-Garcia J, Hardiman O, Hoff B, Knight J, Leitner ML, Li G, Mangravite L, Norman T, Wang L, the ALS Stratification Consortium, Xiao J, Fang W-C, Peng J, Yang C, Chang H-J, Stolovitzky G. Stratification of amyotrophic lateral sclerosis patients: a crowdsourcing approach. Sci Rep. 2019; 9(1):690.PubMedPubMedCentralCrossRef Kueffner R, Zach N, Bronfeld M, Norel R, Atassi N, Balagurusamy V, Camillo BD, Chio A, Cudkowicz M, Dillenberger D, Garcia-Garcia J, Hardiman O, Hoff B, Knight J, Leitner ML, Li G, Mangravite L, Norman T, Wang L, the ALS Stratification Consortium, Xiao J, Fang W-C, Peng J, Yang C, Chang H-J, Stolovitzky G. Stratification of amyotrophic lateral sclerosis patients: a crowdsourcing approach. Sci Rep. 2019; 9(1):690.PubMedPubMedCentralCrossRef
Metadata
Title
Machine learning can predict survival of patients with heart failure from serum creatinine and ejection fraction alone
Authors
Davide Chicco
Giuseppe Jurman
Publication date
01-12-2020
Publisher
BioMed Central
Keyword
Heart Failure
Published in
BMC Medical Informatics and Decision Making / Issue 1/2020
Electronic ISSN: 1472-6947
DOI
https://doi.org/10.1186/s12911-020-1023-5

Other articles of this Issue 1/2020

BMC Medical Informatics and Decision Making 1/2020 Go to the issue