Skip to main content
Top
Published in: BMC Medical Informatics and Decision Making 1/2019

Open Access 01-12-2019 | Technical advance

Clinical MetaData ontology: a simple classification scheme for data elements of clinical data based on semantics

Authors: Hye Hyeon Kim, Yu Rang Park, Kye Hwa Lee, Young Soo Song, Ju Han Kim

Published in: BMC Medical Informatics and Decision Making | Issue 1/2019

Login to get access

Abstract

Background

The increasing use of common data elements (CDEs) in numerous research projects and clinical applications has made it imperative to create an effective classification scheme for the efficient management of these data elements. We applied high-level integrative modeling of entire clinical documents from real-world practice to create the Clinical MetaData Ontology (CMDO) for the appropriate classification and integration of CDEs that are in practical use in current clinical documents.

Methods

CMDO was developed using the General Formal Ontology method with a manual iterative process comprising five steps: (1) defining the scope of CMDO by conceptualizing its first-level terms based on an analysis of clinical-practice procedures, (2) identifying CMDO concepts for representing clinical data of general CDEs by examining how and what clinical data are generated with flows of clinical care practices, (3) assigning hierarchical relationships for CMDO concepts, (4) developing CMDO properties (e.g., synonyms, preferred terms, and definitions) for each CMDO concept, and (5) evaluating the utility of CMDO.

Results

We created CMDO comprising 189 concepts under the 4 first-level classes of Description, Event, Finding, and Procedure. CMDO has 256 definitions that cover the 189 CMDO concepts, with 459 synonyms for 139 (74.0%) of the concepts. All of the CDEs extracted from 6 HL7 templates, 25 clinical documents of 5 teaching hospitals, and 1 personal health record specification were successfully annotated by 41 (21.9%), 89 (47.6%), and 13 (7.0%) of the CMDO concepts, respectively. We created a CMDO Browser to facilitate navigation of the CMDO concept hierarchy and a CMDO-enabled CDE Browser for displaying the relationships between CMDO concepts and the CDEs extracted from the clinical documents that are used in current practice.

Conclusions

CMDO is an ontology and classification scheme for CDEs used in clinical documents. Given the increasing use of CDEs in many studies and real-world clinical documentation, CMDO will be a useful tool for integrating numerous CDEs from different research projects and clinical documents. The CMDO Browser and CMDO-enabled CDE Browser make it easy to search, share, and reuse CDEs, and also effectively integrate and manage CDEs from different studies and clinical documents.
Appendix
Available only for authorised users
Literature
2.
go back to reference Lim Choi Keung SN, Zhao L, Rossiter J, McGilchrist M, Culross F, Ethier JF, Burgun A, Verheij RA, Khan N, Taweel A, Curcin V, Delaney BC, Arvanitis TN. Detailed clinical modeling approach to data extraction from heterogeneous data sources for clinical research. AMIA Jt Summits Transl Sci Proc. 2014;2014:55–9.PubMedPubMedCentral Lim Choi Keung SN, Zhao L, Rossiter J, McGilchrist M, Culross F, Ethier JF, Burgun A, Verheij RA, Khan N, Taweel A, Curcin V, Delaney BC, Arvanitis TN. Detailed clinical modeling approach to data extraction from heterogeneous data sources for clinical research. AMIA Jt Summits Transl Sci Proc. 2014;2014:55–9.PubMedPubMedCentral
4.
go back to reference Tennison J, O'Hara K, Shadbolt N. APECKS: using and evaluating a tool for ontology construction with internal and external KA support. Int J Hum Comput Stud. 2002;56:375–422.CrossRef Tennison J, O'Hara K, Shadbolt N. APECKS: using and evaluating a tool for ontology construction with internal and external KA support. Int J Hum Comput Stud. 2002;56:375–422.CrossRef
5.
go back to reference Roberts K, Rodriguez L, Shooshan SE, Demner-Fushman D. Automatic extraction and post-coordination of spatial relations in consumer language. AMIA Annu Symp Proc. 2015;2015:1083–92.PubMedPubMedCentral Roberts K, Rodriguez L, Shooshan SE, Demner-Fushman D. Automatic extraction and post-coordination of spatial relations in consumer language. AMIA Annu Symp Proc. 2015;2015:1083–92.PubMedPubMedCentral
9.
go back to reference Richesson RL, Nadkarni P. Data standards for clinical research data collection forms: current status and challenges. J Am Med Inform Assoc. 2011;18:341–6.PubMedPubMedCentralCrossRef Richesson RL, Nadkarni P. Data standards for clinical research data collection forms: current status and challenges. J Am Med Inform Assoc. 2011;18:341–6.PubMedPubMedCentralCrossRef
17.
go back to reference Barton C, Kallem C, Van Dyke P, Mon D, Richesson R. Demonstrating "collect once, use many"--assimilating public health secondary data use requirements into an existing domain analysis model. AMIA Annu Symp Proc. 2011;2011:98–107.PubMedPubMedCentral Barton C, Kallem C, Van Dyke P, Mon D, Richesson R. Demonstrating "collect once, use many"--assimilating public health secondary data use requirements into an existing domain analysis model. AMIA Annu Symp Proc. 2011;2011:98–107.PubMedPubMedCentral
18.
go back to reference Park YR, Yoon YJ, Kim HH, Kim JH. Establishing semantic interoperability of biomedical metadata registries using extended semantic relationships. Stud Health Technol Inform. 2013;192:618–21.PubMed Park YR, Yoon YJ, Kim HH, Kim JH. Establishing semantic interoperability of biomedical metadata registries using extended semantic relationships. Stud Health Technol Inform. 2013;192:618–21.PubMed
19.
go back to reference Park YR, Kim JH. Metadata registry and management system based on ISO 11179 for Cancer clinical trials information system. AMIA Annu Symp Proc. 2006:1056. Park YR, Kim JH. Metadata registry and management system based on ISO 11179 for Cancer clinical trials information system. AMIA Annu Symp Proc. 2006:1056.
27.
go back to reference Obrst L. Ontological architectures. In: Poli R, Healy M, Kameas A, editors. Theory and applications of ontology: computer applications. Dordrecht: Springer; 2010. p. 27–66.CrossRef Obrst L. Ontological architectures. In: Poli R, Healy M, Kameas A, editors. Theory and applications of ontology: computer applications. Dordrecht: Springer; 2010. p. 27–66.CrossRef
30.
go back to reference Tudorache T, Nyulas C, Noy NF, Musen MA. WebProtégé: a collaborative ontology editor and knowledge acquisition tool for the web. Semant Web. 2013;4(1):89–99.PubMedPubMedCentral Tudorache T, Nyulas C, Noy NF, Musen MA. WebProtégé: a collaborative ontology editor and knowledge acquisition tool for the web. Semant Web. 2013;4(1):89–99.PubMedPubMedCentral
33.
go back to reference Chen ES, Melton GB, Engelstad ME, Sarkar IN. Standardizing clinical document names using the HL7/LOINC document ontology and LOINC codes. AMIA Annu Symp Proc. 2010;2010:101–5.PubMedPubMedCentral Chen ES, Melton GB, Engelstad ME, Sarkar IN. Standardizing clinical document names using the HL7/LOINC document ontology and LOINC codes. AMIA Annu Symp Proc. 2010;2010:101–5.PubMedPubMedCentral
Metadata
Title
Clinical MetaData ontology: a simple classification scheme for data elements of clinical data based on semantics
Authors
Hye Hyeon Kim
Yu Rang Park
Kye Hwa Lee
Young Soo Song
Ju Han Kim
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Medical Informatics and Decision Making / Issue 1/2019
Electronic ISSN: 1472-6947
DOI
https://doi.org/10.1186/s12911-019-0877-x

Other articles of this Issue 1/2019

BMC Medical Informatics and Decision Making 1/2019 Go to the issue