Skip to main content
Top
Published in: BMC Medical Informatics and Decision Making 1/2017

Open Access 01-12-2017 | Research article

Implementing 360° Quantified Self for childhood obesity: feasibility study and experiences from a weight loss camp in Qatar

Authors: Luis Fernandez-Luque, Meghna Singh, Ferda Ofli, Yelena A Mejova, Ingmar Weber, Michael Aupetit, Sahar Karim Jreige, Ahmed Elmagarmid, Jaideep Srivastava, Mohamed Ahmedna

Published in: BMC Medical Informatics and Decision Making | Issue 1/2017

Login to get access

Abstract

Background

The explosion of consumer electronics and social media are facilitating the rise of the Quantified Self (QS) movement where millions of users are tracking various aspects of their daily life using social media, mobile technology, and wearable devices. Data from mobile phones, wearables and social media can facilitate a better understanding of the health behaviors of individuals. At the same time, there is an unprecedented increase in childhood obesity rates worldwide. This is a cause for grave concern due to its potential long-term health consequences (e.g., diabetes or cardiovascular diseases). Childhood obesity is highly prevalent in Qatar and the Gulf Region. In this study we examine the feasibility of capturing quantified-self data from social media, wearables and mobiles within a weight lost camp for overweight children in Qatar.

Methods

Over 50 children (9–12 years old) and parents used a wide range of technologies, including wearable sensors (actigraphy), mobile and social media (WhatsApp and Instagram) to collect data related to physical activity and food, that was then integrated with physiological data to gain insights about their health habits.
In this paper, we report about the acquired data and visualization techniques following the 360° Quantified Self (360QS) methodology (Haddadi et al., ICHI 587–92, 2015).

Results

360QS allows for capturing insights on the behavioral patterns of children and serves as a mechanism to reinforce education of their mothers via social media. We also identified human factors, such as gender and cultural acceptability aspects that can affect the implementation of this technology beyond a feasibility study. Furthermore, technical challenges regarding the visualization and integration of heterogeneous and sparse data sets are described in the paper.

Conclusions

We proved the feasibility of using 360QS in childhood obesity through this pilot study. However, in order to fully implement the 360QS technology careful planning and integration in the health professionals’ workflow is needed.

Trial Registration

The trial where this study took place is registered at ClinicalTrials.gov on 14 November 2016 (NCT02972164).
Literature
1.
go back to reference de Onis M, Blossner M, Borghi E. Global prevalence and trends of overweight and obesity among preschool children. Am J Clin Nutr. 2010;92(5):1257–64.CrossRefPubMed de Onis M, Blossner M, Borghi E. Global prevalence and trends of overweight and obesity among preschool children. Am J Clin Nutr. 2010;92(5):1257–64.CrossRefPubMed
2.
3.
go back to reference Haddadi H, Ofli F, Mejova Y, Weber I, Srivastava J. 360° Quantified Self. IEEE International Conference on Health Informatics (ICHI). 2015;587–92. doi:10.1109/ICHI.2015.95. Haddadi H, Ofli F, Mejova Y, Weber I, Srivastava J. 360° Quantified Self. IEEE International Conference on Health Informatics (ICHI). 2015;587–92. doi:10.​1109/​ICHI.​2015.​95.
4.
go back to reference Taylor MJ, Vlaev I, Taylor D, Gately P, Ahmedna M, Kerkadi A, Lothian J, Alsaadi A, Al-Kuwari M, Gholoum S, Al-Kuwari H, Darzi A. A weight-management camp followed by weekly after-school lifestyle education sessions as an obesity intervention for Qatari children: a prospective cohort study. Lancet. 2015;386:72.CrossRef Taylor MJ, Vlaev I, Taylor D, Gately P, Ahmedna M, Kerkadi A, Lothian J, Alsaadi A, Al-Kuwari M, Gholoum S, Al-Kuwari H, Darzi A. A weight-management camp followed by weekly after-school lifestyle education sessions as an obesity intervention for Qatari children: a prospective cohort study. Lancet. 2015;386:72.CrossRef
5.
go back to reference Zhang X, Han X, Dang Y, Meng F, Guo X, Lin J. User acceptance of mobile health services from users’ perspectives: The role of self-efficacy and response-efficacy in technology acceptance. Informatics for Health and Social Care. 2017;42(2):194–206. Zhang X, Han X, Dang Y, Meng F, Guo X, Lin J. User acceptance of mobile health services from users’ perspectives: The role of self-efficacy and response-efficacy in technology acceptance. Informatics for Health and Social Care. 2017;42(2):194–206.
6.
go back to reference Daniels SR, Arnett DK, Eckel RH, Gidding SS, Hayman LL, Kumanyika S, Robinson TN, Scott BJ, StJeor S, Williams CL. Overweight in children and adolescents. Circulation. 2005;111(15):1999–2012.CrossRefPubMed Daniels SR, Arnett DK, Eckel RH, Gidding SS, Hayman LL, Kumanyika S, Robinson TN, Scott BJ, StJeor S, Williams CL. Overweight in children and adolescents. Circulation. 2005;111(15):1999–2012.CrossRefPubMed
7.
go back to reference Freedman DS, Mei Z, Srinivasan SR, Berenson GS, Dietz WH. Cardiovascular risk factors and excess adiposity among overweight children and adolescents: the Bogalusa Heart Study. J Pediatr. 2007;150(1):12–172.CrossRefPubMed Freedman DS, Mei Z, Srinivasan SR, Berenson GS, Dietz WH. Cardiovascular risk factors and excess adiposity among overweight children and adolescents: the Bogalusa Heart Study. J Pediatr. 2007;150(1):12–172.CrossRefPubMed
8.
go back to reference Li C, Ford ES, Zhao G, Mokdad AH. Prevalence of pre-diabetes and its association with clustering of cardiometabolic risk factors and hyperinsulinemia among U.S. adolescents: National Health and Nutrition Examination Survey 2005–2006. Diabetes Care. 2009;32(2):342–7.CrossRefPubMedPubMedCentral Li C, Ford ES, Zhao G, Mokdad AH. Prevalence of pre-diabetes and its association with clustering of cardiometabolic risk factors and hyperinsulinemia among U.S. adolescents: National Health and Nutrition Examination Survey 2005–2006. Diabetes Care. 2009;32(2):342–7.CrossRefPubMedPubMedCentral
9.
10.
go back to reference Arora, T., Broglia, E., Pushpakumar, e.a.: An Investigation into the Strength of the Association and Agreement Levels between Subjective and Objective Sleep Duration in Adolescents. PLoS ONE 8(8), 72406 (2013) Arora, T., Broglia, E., Pushpakumar, e.a.: An Investigation into the Strength of the Association and Agreement Levels between Subjective and Objective Sleep Duration in Adolescents. PLoS ONE 8(8), 72406 (2013)
11.
go back to reference Ho M, Garnett SP, Baur L, Burrows T, Stewart L, Neve M, Collins C. Effectiveness of lifestyle interventions in child obesity: systematic review with meta-analysis. Pediatrics. 2012;130(6):1647–71.CrossRef Ho M, Garnett SP, Baur L, Burrows T, Stewart L, Neve M, Collins C. Effectiveness of lifestyle interventions in child obesity: systematic review with meta-analysis. Pediatrics. 2012;130(6):1647–71.CrossRef
12.
go back to reference Christakis NA, Fowler JH. The spread of obesity in a large social network over 32 year. N Engl J Med. 2007;357(4):370–9.CrossRefPubMed Christakis NA, Fowler JH. The spread of obesity in a large social network over 32 year. N Engl J Med. 2007;357(4):370–9.CrossRefPubMed
13.
go back to reference Heron KE, Smyth JM. Ecological momentary interventions: incorporating mobile technology into psychosocial and health behavior treatments. Br J Health Psychol. 2010;15(Pt 1):1–39.CrossRefPubMed Heron KE, Smyth JM. Ecological momentary interventions: incorporating mobile technology into psychosocial and health behavior treatments. Br J Health Psychol. 2010;15(Pt 1):1–39.CrossRefPubMed
15.
go back to reference Swan M. Melanie: emerging patient-driven health care models: an examination of health social networks, consumer personalized medicine and quantified self-tracking. Int J Environ Res Public Health. 2009;6(2):492–525.CrossRefPubMedPubMedCentral Swan M. Melanie: emerging patient-driven health care models: an examination of health social networks, consumer personalized medicine and quantified self-tracking. Int J Environ Res Public Health. 2009;6(2):492–525.CrossRefPubMedPubMedCentral
16.
go back to reference Wang, Y., Weber, I., Mitra, P.: Quantified Self Meets Social Media: Sharing of Weight Updates on Twitter (2016) Wang, Y., Weber, I., Mitra, P.: Quantified Self Meets Social Media: Sharing of Weight Updates on Twitter (2016)
17.
go back to reference Fatema Akbar IW. #sleep as android: Feasibility of using sleep logs on twitter for sleep studies. International Conference on Health Informatics (ICHI). 2016. p. 227–233. doi:10.1109/ICHI.2016.32. Fatema Akbar IW. #sleep as android: Feasibility of using sleep logs on twitter for sleep studies. International Conference on Health Informatics (ICHI). 2016. p. 227–233. doi:10.​1109/​ICHI.​2016.​32.
18.
go back to reference Harris JK, Mart A, Moreland-Russell S, Caburnay CA. Diabetes topics associated with engagement on twitter. Prev Chronic Dis. 2015;12:62.CrossRef Harris JK, Mart A, Moreland-Russell S, Caburnay CA. Diabetes topics associated with engagement on twitter. Prev Chronic Dis. 2015;12:62.CrossRef
19.
go back to reference Abbar, S., Mejova, Y., Weber, I.: You Tweet What You Eat: Studying Food Consumption Through Twitter. Conference on Human Factors in Computing Systems (ACM CHI) (2015) Abbar, S., Mejova, Y., Weber, I.: You Tweet What You Eat: Studying Food Consumption Through Twitter. Conference on Human Factors in Computing Systems (ACM CHI) (2015)
20.
go back to reference Gimpel H, Nißen M, Gorlitz RA. Quantifying the quantified self: A study on the motivation of patients to track their own health. In: ICIS 2013. 2013. pp. 128–133. Gimpel H, Nißen M, Gorlitz RA. Quantifying the quantified self: A study on the motivation of patients to track their own health. In: ICIS 2013. 2013. pp. 128–133.
21.
go back to reference Swan M. Sensor mania! the internet of things, wearable computing, objective metrics, and the quantified self 2.0. J Sensor Actuator Netw. 2012;1(3):217–53.CrossRef Swan M. Sensor mania! the internet of things, wearable computing, objective metrics, and the quantified self 2.0. J Sensor Actuator Netw. 2012;1(3):217–53.CrossRef
22.
go back to reference Rodgers MM, Pai VM, Conroy RS. Recent advances in wearable sensors for health monitoring. IEEE Sensors J. 2015;15(6):3119–26.CrossRef Rodgers MM, Pai VM, Conroy RS. Recent advances in wearable sensors for health monitoring. IEEE Sensors J. 2015;15(6):3119–26.CrossRef
23.
go back to reference Swan M. Health 2050: the realization of personalized medicine through crowdsourcing, the quantified self, and the participatory biocitizen. J Personalized Med. 2012;2(3):93–118.CrossRef Swan M. Health 2050: the realization of personalized medicine through crowdsourcing, the quantified self, and the participatory biocitizen. J Personalized Med. 2012;2(3):93–118.CrossRef
24.
go back to reference Azmak O, Bayer H, Caplin A, Chun M, Glimcher P, Koonin S, Patrinos A. Using Big data to understand the human condition: the kavli HUMAN project. Big data. 2015;3(3):173–88.CrossRefPubMedPubMedCentral Azmak O, Bayer H, Caplin A, Chun M, Glimcher P, Koonin S, Patrinos A. Using Big data to understand the human condition: the kavli HUMAN project. Big data. 2015;3(3):173–88.CrossRefPubMedPubMedCentral
25.
go back to reference Godinho C, Domingos J, Cunha G, Santos AT, Fernandes RM, Abreu D, Goncalves N, Matthews H, Isaacs T, Duffen J, Al-Jawad A, Larsen F, Serrano A, Weber P, Thoms A, Sollinger S, Graessner H, Maetzler W, Ferreira JJ. A systematic review of the characteristics and validity of monitoring technologies to assess Parkinson’s disease. J Neuroeng Rehabil. 2016;13(1):24.CrossRefPubMedPubMedCentral Godinho C, Domingos J, Cunha G, Santos AT, Fernandes RM, Abreu D, Goncalves N, Matthews H, Isaacs T, Duffen J, Al-Jawad A, Larsen F, Serrano A, Weber P, Thoms A, Sollinger S, Graessner H, Maetzler W, Ferreira JJ. A systematic review of the characteristics and validity of monitoring technologies to assess Parkinson’s disease. J Neuroeng Rehabil. 2016;13(1):24.CrossRefPubMedPubMedCentral
26.
go back to reference Tsamardinos I, Triantafillou S, Lagani V. Towards integrative causal analysis of heterogeneous data sets and studies. J Mach Learn Res. 2012;13(Apr):1097–157. Tsamardinos I, Triantafillou S, Lagani V. Towards integrative causal analysis of heterogeneous data sets and studies. J Mach Learn Res. 2012;13(Apr):1097–157.
28.
go back to reference Shneiderman, B.: The eyes have it: A task by data type taxonomy for information visualizations. In: VL ’96: Proceedings of the 1996 IEEE Symposium on Visual Languages, p. 336. IEEE Computer Society (1996) Shneiderman, B.: The eyes have it: A task by data type taxonomy for information visualizations. In: VL ’96: Proceedings of the 1996 IEEE Symposium on Visual Languages, p. 336. IEEE Computer Society (1996)
29.
go back to reference Alotaibi MM, Istepanian RSH, Sungoor A, Philip N. An intelligent mobile diabetes management and educational system for Saudi Arabia: System architecture. In: 2014 IEEE-EMBS International Conference on Biomedical and Health Informatics. BHI. 2014;2014:29–32. Alotaibi MM, Istepanian RSH, Sungoor A, Philip N. An intelligent mobile diabetes management and educational system for Saudi Arabia: System architecture. In: 2014 IEEE-EMBS International Conference on Biomedical and Health Informatics. BHI. 2014;2014:29–32.
30.
go back to reference Alhazbi, S., Alkhateeb, M.: Mobile application for diabetes control in Qatar. Computing Technology and Information Management (ICCM), 2012 8th International Conference on, Volume: 2 (1), 763–766 (2012) Alhazbi, S., Alkhateeb, M.: Mobile application for diabetes control in Qatar. Computing Technology and Information Management (ICCM), 2012 8th International Conference on, Volume: 2 (1), 763–766 (2012)
31.
go back to reference Mansar, S.L., Kekre, S.: A founding framework for addressing obesity in Qatar using mobile technologies. In: Communications in Computer and Information Science, vol. 221 CCIS, pp. 402–412 (2011) Mansar, S.L., Kekre, S.: A founding framework for addressing obesity in Qatar using mobile technologies. In: Communications in Computer and Information Science, vol. 221 CCIS, pp. 402–412 (2011)
32.
go back to reference Choe EK, Lee B, Schraefel MC. Characterizing visualization insights from quantified Selfers’ personal data presentations. IEEE Comput Graph Appl. 2015;35(4):28–37.CrossRef Choe EK, Lee B, Schraefel MC. Characterizing visualization insights from quantified Selfers’ personal data presentations. IEEE Comput Graph Appl. 2015;35(4):28–37.CrossRef
33.
go back to reference Larsen, J.E., Cuttone, A., Lehmann, S.: QS Spiral : Visualizing Periodic Quantified Self Data. Personal Informatics in the Wild: Hacking Habits for Health & Happiness — CHI 2013 Workshop, 5–8 (2013) Larsen, J.E., Cuttone, A., Lehmann, S.: QS Spiral : Visualizing Periodic Quantified Self Data. Personal Informatics in the Wild: Hacking Habits for Health & Happiness — CHI 2013 Workshop, 5–8 (2013)
34.
go back to reference West, V.L., Borland, D., Hammond, W.E.: Innovative information visualization of electronic health record data: a systematic review. Journal of the American Medical Informatics Association : JAMIA, 1–7 (2014) West, V.L., Borland, D., Hammond, W.E.: Innovative information visualization of electronic health record data: a systematic review. Journal of the American Medical Informatics Association : JAMIA, 1–7 (2014)
35.
go back to reference Badgeley MA, Shameer K, Glicksberg BS, Tomlinson MS, Levin MA, McCormick PJ, Kasarskis A, Reich DL, Dudley JT. EHDViz: clinical dashboard development using open-source technologies. BMJ Open. 2016;6(3):010579.CrossRef Badgeley MA, Shameer K, Glicksberg BS, Tomlinson MS, Levin MA, McCormick PJ, Kasarskis A, Reich DL, Dudley JT. EHDViz: clinical dashboard development using open-source technologies. BMJ Open. 2016;6(3):010579.CrossRef
36.
go back to reference de Folter, J., Gokalp, H., Fursse, J., Sharma, U., Clarke, M., Crepeau, e.a.: Designing effective visualizations of habits data to aid clinical decision making. BMC Medical Informatics and Decision Making 2014 14:1 14(1), 942–945 (2014) de Folter, J., Gokalp, H., Fursse, J., Sharma, U., Clarke, M., Crepeau, e.a.: Designing effective visualizations of habits data to aid clinical decision making. BMC Medical Informatics and Decision Making 2014 14:1 14(1), 942–945 (2014)
37.
go back to reference Ledesma A, Al-Musawi M, Nieminen H, Hood L, Flores C, Shneiderman B. Health figures: an open source JavaScript library for health data visualization. BMC Med Inform Decis Mak. 2016;16(1):38.CrossRefPubMedPubMedCentral Ledesma A, Al-Musawi M, Nieminen H, Hood L, Flores C, Shneiderman B. Health figures: an open source JavaScript library for health data visualization. BMC Med Inform Decis Mak. 2016;16(1):38.CrossRefPubMedPubMedCentral
38.
go back to reference Peters DH, Tran NT, Adam T. Implementation Research in Health: A Practical Guide. WHO; 2013. p. 1–69. Peters DH, Tran NT, Adam T. Implementation Research in Health: A Practical Guide. WHO; 2013. p. 1–69.
39.
go back to reference Bakken S, Ruland CM. Translating clinical informatics interventions into routine clinical care: How Can the RE-AIM framework help? J Am Med Inform Assoc. 2009;16(6):889–97.CrossRefPubMedPubMedCentral Bakken S, Ruland CM. Translating clinical informatics interventions into routine clinical care: How Can the RE-AIM framework help? J Am Med Inform Assoc. 2009;16(6):889–97.CrossRefPubMedPubMedCentral
40.
go back to reference Abbott, P.A., Foster, J., Marin, H.d.F., Dykes, P.C.: Complexity and the science of implementation in health IT–knowledge gaps and future visions. International journal of medical informatics 83(7), 12–22 (2014) Abbott, P.A., Foster, J., Marin, H.d.F., Dykes, P.C.: Complexity and the science of implementation in health IT–knowledge gaps and future visions. International journal of medical informatics 83(7), 12–22 (2014)
Metadata
Title
Implementing 360° Quantified Self for childhood obesity: feasibility study and experiences from a weight loss camp in Qatar
Authors
Luis Fernandez-Luque
Meghna Singh
Ferda Ofli
Yelena A Mejova
Ingmar Weber
Michael Aupetit
Sahar Karim Jreige
Ahmed Elmagarmid
Jaideep Srivastava
Mohamed Ahmedna
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Medical Informatics and Decision Making / Issue 1/2017
Electronic ISSN: 1472-6947
DOI
https://doi.org/10.1186/s12911-017-0432-6

Other articles of this Issue 1/2017

BMC Medical Informatics and Decision Making 1/2017 Go to the issue