Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2019

Open Access 01-12-2019 | Research article

The potential of antioxidant-rich Maoberry (Antidesma bunius) extract on fat metabolism in liver tissues of rats fed a high-fat diet

Authors: Chattraya Ngamlerst, Arunwan Udomkasemsab, Ratchanee Kongkachuichai, Karunee Kwanbunjan, Chaowanee Chupeerach, Pattaneeya Prangthip

Published in: BMC Complementary Medicine and Therapies | Issue 1/2019

Login to get access

Abstract

Backgound

Obesity and dyslipidemia are major risk factors associated with non-alcoholic fatty liver disease (NAFLD). NAFLD refers to the accumulation of fat in more than 5% of the liver without alcohol consumption. NAFLD is the most common liver disease and is rapidly becoming a global public health problem. Maoberry (Antidesma bunius) is a fruit rich in antioxidants, especially phenolic compounds, which are reported to have benefits for patients with NAFLD.

Methods

We evaluated the effect of Maoberry extract on fat metabolism in liver tissues of high fat diet–induced rats. Five (5) groups (n = 12) of male Sprague-Dawley (SD) rats were divided into those given a high fat diet with no treatment (HF), different dosages of Maoberry extracts (0.38 [ML], 0.76 [MM) and 1.52 [MH] g/kg body weight) and 10 mg/kg statin (STAT). The rats were fed a high fat diet for 4 weeks to induce obesity and subsequently continued more for 12 weeks with treatments of Maoberry extracts or STAT. The levels of triglyceride, liver enzymes, oxidative stress and inflammation markers, triglyceride synthesis regulators, and pathology of the liver in high fat diet-induced rats were investigated.

Results

Feeding Maoberry extract in MH groups resulted in decreasing levels of serum alanine aminotransferase (ALT), liver triglyceride, liver thiobarbituric acid reactive substances (TBARS) and mRNA expression of tumour necrosis factor (TNF)-α, interleukin (IL)-6, glycerol-3-phosphate acyltransferase (GPAT)-1 and acetyl-coenzyme A carboxylase (ACC) compared with the HF group (P < 0.05). Moreover, histopathological study of the liver showed reduced fat droplets in the Maoberry extract treatment groups, especially in MH groups and STAT treatment groups.

Conclusions

The improvements of fat metabolism in liver tissues of rats fed a high-fat diet were observed in Maoberry extracts treatment groups. The underline mechanism that link to fat metabolism might be through the process accompanied with down-regulated the gene expression of key enzymes of lipid production, antioxidant activity, and anti-inflammation properties of Maoberry extracts which contains high levels of phenolic and flavonoid compounds.
Literature
2.
go back to reference Aekplakorn W, Inthawong R, Kessomboon P, Sangthong R, Chariyalertsak S, Putwatana P, et al. Prevalence and trends of obesity and association with socioeconomic status in Thai adults: National Health Examination Surveys, 1991–2009. J Obes. 2014;2014:41029.CrossRef Aekplakorn W, Inthawong R, Kessomboon P, Sangthong R, Chariyalertsak S, Putwatana P, et al. Prevalence and trends of obesity and association with socioeconomic status in Thai adults: National Health Examination Surveys, 1991–2009. J Obes. 2014;2014:41029.CrossRef
3.
go back to reference Aekplakorn W, Taneepanichskul S, Kessomboon P, Chongsuvivatwong V, Putwatana P, Sritara P, et al. Prevalence of dyslipidemia and Management in the Thai Population, National Health Examination Survey IV, 2009. J Lipids. 2014;2014:249584.PubMedPubMedCentralCrossRef Aekplakorn W, Taneepanichskul S, Kessomboon P, Chongsuvivatwong V, Putwatana P, Sritara P, et al. Prevalence of dyslipidemia and Management in the Thai Population, National Health Examination Survey IV, 2009. J Lipids. 2014;2014:249584.PubMedPubMedCentralCrossRef
4.
go back to reference Bedogni G, Miglioli L, Masutti F, Tiribelli C, Marchesini G, Bellentani S. Prevalence of and risk factors for nonalcoholic fatty liver disease: the Dionysos nutrition and liver study. Hepatology. 2005;42:44–52.PubMedCrossRef Bedogni G, Miglioli L, Masutti F, Tiribelli C, Marchesini G, Bellentani S. Prevalence of and risk factors for nonalcoholic fatty liver disease: the Dionysos nutrition and liver study. Hepatology. 2005;42:44–52.PubMedCrossRef
5.
go back to reference Araújo AR, Rosso N, Bedogni G, Tiribelli C, Bellentani S. Global epidemiology of non-alcoholic fatty liver disease/non-alcoholic steatohepatitis: what we need in the future. Liver Int. 2018;38:47–51.PubMedCrossRef Araújo AR, Rosso N, Bedogni G, Tiribelli C, Bellentani S. Global epidemiology of non-alcoholic fatty liver disease/non-alcoholic steatohepatitis: what we need in the future. Liver Int. 2018;38:47–51.PubMedCrossRef
6.
go back to reference Pavlides M, Cobbold JFL. Non-alcoholic fatty liver disease. Medicine. 2015;43(10):585–9.CrossRef Pavlides M, Cobbold JFL. Non-alcoholic fatty liver disease. Medicine. 2015;43(10):585–9.CrossRef
7.
go back to reference Buettner R, Scholmerich J, Bollheimer LC. High-fat diets: modeling the metabolic disorders of human obesity in rodents. Obesity. 2007;15:798–808.PubMedCrossRef Buettner R, Scholmerich J, Bollheimer LC. High-fat diets: modeling the metabolic disorders of human obesity in rodents. Obesity. 2007;15:798–808.PubMedCrossRef
8.
go back to reference Udomkasemsab A, Ngamlerst C, Adisakwattana P, Aroonnual A, Tungtrongchitr R, Prangthip P. Maoberry (Antidesma bunius) ameliorates oxidative stress and inflammation in cardiac tissues of rats fed a high-fat diet. BMC Complement Altern Med. 2018;18:344.PubMedPubMedCentralCrossRef Udomkasemsab A, Ngamlerst C, Adisakwattana P, Aroonnual A, Tungtrongchitr R, Prangthip P. Maoberry (Antidesma bunius) ameliorates oxidative stress and inflammation in cardiac tissues of rats fed a high-fat diet. BMC Complement Altern Med. 2018;18:344.PubMedPubMedCentralCrossRef
9.
go back to reference Udomkasemsab A, Ngamlerst C, Kwanbunjun K, Krasae T, Amnuaysookkasem K, Chunthanom P, Prangthip P. Maoberry (Antidesma bunius) improves glucose metabolism, triglyceride levels, and splenic lesions in high-fat diet-induced hypercholesterolemic rats. J Med Food. 2019;22:29–37.PubMedCrossRef Udomkasemsab A, Ngamlerst C, Kwanbunjun K, Krasae T, Amnuaysookkasem K, Chunthanom P, Prangthip P. Maoberry (Antidesma bunius) improves glucose metabolism, triglyceride levels, and splenic lesions in high-fat diet-induced hypercholesterolemic rats. J Med Food. 2019;22:29–37.PubMedCrossRef
10.
go back to reference Park H, Liu Y, Kim HS, Shin JH. Chokeberry attenuates the expression of genes related to de novo lipogenesis in the hepatocytes of mice with nonalcoholic fatty liver disease. Nutr Res. 2016;36:57–64.PubMedCrossRef Park H, Liu Y, Kim HS, Shin JH. Chokeberry attenuates the expression of genes related to de novo lipogenesis in the hepatocytes of mice with nonalcoholic fatty liver disease. Nutr Res. 2016;36:57–64.PubMedCrossRef
11.
go back to reference Guerra JFDC, Maciel PS, de Abreu ICME, Pereira RR, Silva M, Cardoso LDM, et al. Dietary açai attenuates hepatic steatosis via adiponectin-mediated effects on lipid metabolism in high-fat diet mice. J Funct Foods. 2015;14:192–202.CrossRef Guerra JFDC, Maciel PS, de Abreu ICME, Pereira RR, Silva M, Cardoso LDM, et al. Dietary açai attenuates hepatic steatosis via adiponectin-mediated effects on lipid metabolism in high-fat diet mice. J Funct Foods. 2015;14:192–202.CrossRef
12.
go back to reference Guo H, Zhong R, Liu Y, Jiang X, Tang X, Li Z, et al. Effects of bayberry extract on inflammatory and apoptotic markers in young adults with features of non-alcoholic fatty liver disease. Nutrition. 2014;30:198–203.PubMedCrossRef Guo H, Zhong R, Liu Y, Jiang X, Tang X, Li Z, et al. Effects of bayberry extract on inflammatory and apoptotic markers in young adults with features of non-alcoholic fatty liver disease. Nutrition. 2014;30:198–203.PubMedCrossRef
13.
go back to reference Jorjong S, Butkhup L, Samappito S. Phytochemicals and antioxidant capacities of Mao-Luang (Antidesma bunius L.) cultivars from northeastern Thailand. Food Chem. 2015;181:248–55.PubMedCrossRef Jorjong S, Butkhup L, Samappito S. Phytochemicals and antioxidant capacities of Mao-Luang (Antidesma bunius L.) cultivars from northeastern Thailand. Food Chem. 2015;181:248–55.PubMedCrossRef
14.
go back to reference Butkhup L, Samappito S. Analysis of anthocyanin, flavonoids, and phenolic acids in tropical bignay berries. Int J Fruit Sci. 2008;8:15–34.CrossRef Butkhup L, Samappito S. Analysis of anthocyanin, flavonoids, and phenolic acids in tropical bignay berries. Int J Fruit Sci. 2008;8:15–34.CrossRef
15.
go back to reference Chowtivannakul P, Srichaikul B, Talubmook C. Hypoglycemic and Hypolipidemic Effects of Seed Extract from Antidesma bunius (L.) Spreng in Streptozotocin-induced Diabetic Rats. Pak J Biol Sci. 2016;19:211–8.PubMedCrossRef Chowtivannakul P, Srichaikul B, Talubmook C. Hypoglycemic and Hypolipidemic Effects of Seed Extract from Antidesma bunius (L.) Spreng in Streptozotocin-induced Diabetic Rats. Pak J Biol Sci. 2016;19:211–8.PubMedCrossRef
16.
go back to reference El-Tantawy WH, Soliman ND, El-naggar D, Shafei A. Investigation of antidiabetic action of Antidesma bunius extract in type 1 diabetes. Arch Physiol Biochem. 2015;121:116–22.PubMedCrossRef El-Tantawy WH, Soliman ND, El-naggar D, Shafei A. Investigation of antidiabetic action of Antidesma bunius extract in type 1 diabetes. Arch Physiol Biochem. 2015;121:116–22.PubMedCrossRef
17.
go back to reference Kongkachuichai R, Charoensiri R, Yakoh K, Kringkasemsee A, Insung P. Nutrients value and antioxidant content of indigenous vegetables from southern Thailand. Food Chem. 2015;173:838–46.PubMedCrossRef Kongkachuichai R, Charoensiri R, Yakoh K, Kringkasemsee A, Insung P. Nutrients value and antioxidant content of indigenous vegetables from southern Thailand. Food Chem. 2015;173:838–46.PubMedCrossRef
18.
go back to reference Baba SA, Malik SA. Determination of total phenolic and flavonoid content, antimicrobial and antioxidant activity of a root extract of Arisaema jacquemontii Blume. J Taibah Univ Sci. 2015;9:449–54.CrossRef Baba SA, Malik SA. Determination of total phenolic and flavonoid content, antimicrobial and antioxidant activity of a root extract of Arisaema jacquemontii Blume. J Taibah Univ Sci. 2015;9:449–54.CrossRef
19.
go back to reference Yang X, Yang L, Zheng H. Hypolipidemic and antioxidant effects of mulberry (Morus alba L.) fruit in hyperlipidaemia rats. Food Chem Toxicol. 2010;48:2374–9.PubMedCrossRef Yang X, Yang L, Zheng H. Hypolipidemic and antioxidant effects of mulberry (Morus alba L.) fruit in hyperlipidaemia rats. Food Chem Toxicol. 2010;48:2374–9.PubMedCrossRef
20.
go back to reference Jurgoński A, Juśkiewicz J, Zduńczyk Z. An anthocyanin-rich extract from Kamchatka honeysuckle increases enzymatic activity within the gut and ameliorates abnormal lipid and glucose metabolism in rats. Nutrition. 2013;29:898–902.PubMedCrossRef Jurgoński A, Juśkiewicz J, Zduńczyk Z. An anthocyanin-rich extract from Kamchatka honeysuckle increases enzymatic activity within the gut and ameliorates abnormal lipid and glucose metabolism in rats. Nutrition. 2013;29:898–902.PubMedCrossRef
21.
go back to reference Takahashi A, Okazaki Y, Nakamoto A, Watanabe S, Sakaguchi H, Tagashira Y, et al. Dietary anthocyanin-rich Haskap phytochemicals inhibit postprandial hyperlipidemia and hyperglycemia in rats. J Oleo Sci. 2014;63:201–9.PubMedCrossRef Takahashi A, Okazaki Y, Nakamoto A, Watanabe S, Sakaguchi H, Tagashira Y, et al. Dietary anthocyanin-rich Haskap phytochemicals inhibit postprandial hyperlipidemia and hyperglycemia in rats. J Oleo Sci. 2014;63:201–9.PubMedCrossRef
22.
go back to reference Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods. 2001;25:402–8.PubMed Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods. 2001;25:402–8.PubMed
23.
go back to reference Lieber CS, Leo MA, Mak KM, Xu Y, Cao Q, Ren C, Ponomarenko A, Decarli LM. Model of nonalcoholic steatohepatitis. Am J Clin Nutr. 2004;79:502–9.PubMedCrossRef Lieber CS, Leo MA, Mak KM, Xu Y, Cao Q, Ren C, Ponomarenko A, Decarli LM. Model of nonalcoholic steatohepatitis. Am J Clin Nutr. 2004;79:502–9.PubMedCrossRef
25.
go back to reference Willebrords J, Pereira IV, Maes M, Crespo Yanguas S, Colle I, Van Den Bossche B, et al. Strategies, models and biomarkers in experimental non-alcoholic fatty liver disease research. Prog Lipid Res. 2015;59:106–25.PubMedPubMedCentralCrossRef Willebrords J, Pereira IV, Maes M, Crespo Yanguas S, Colle I, Van Den Bossche B, et al. Strategies, models and biomarkers in experimental non-alcoholic fatty liver disease research. Prog Lipid Res. 2015;59:106–25.PubMedPubMedCentralCrossRef
26.
go back to reference Brown GT, Kleiner DE. Histopathology of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Metabolism. 2016;65:1080–6.PubMedCrossRef Brown GT, Kleiner DE. Histopathology of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Metabolism. 2016;65:1080–6.PubMedCrossRef
27.
go back to reference Greaves P. Liver and Pancreas. In: Histopathology of Preclinical Toxicity Studies. third ed. New York: Academic Press; 2007. p. 457–569.CrossRef Greaves P. Liver and Pancreas. In: Histopathology of Preclinical Toxicity Studies. third ed. New York: Academic Press; 2007. p. 457–569.CrossRef
28.
go back to reference Petta S, Muratore C, Craxi A. Non-alcoholic fatty liver disease pathogenesis: the present and the future. Dig Liver Dis. 2009;41:615–25.PubMedCrossRef Petta S, Muratore C, Craxi A. Non-alcoholic fatty liver disease pathogenesis: the present and the future. Dig Liver Dis. 2009;41:615–25.PubMedCrossRef
29.
go back to reference Kargiotis K, Athyros VG, Giouleme O, Katsiki N, Katsiki E, Anagnostis P, et al. Resolution of non-alcoholic steatohepatitis by rosuvastatin monotherapy in patients with metabolic syndrome. World J Gastroenterol. 2015;21:7860–8.PubMedPubMedCentralCrossRef Kargiotis K, Athyros VG, Giouleme O, Katsiki N, Katsiki E, Anagnostis P, et al. Resolution of non-alcoholic steatohepatitis by rosuvastatin monotherapy in patients with metabolic syndrome. World J Gastroenterol. 2015;21:7860–8.PubMedPubMedCentralCrossRef
30.
go back to reference Zhang S, Zheng L, Dong D, Xu L, Yin L, Qi Y, et al. Effects of flavonoids from Rosa laevigata Michx fruit against high-fat diet-induced non-alcoholic fatty liver disease in rats. Food Chem. 2013;141:2108–16.PubMedCrossRef Zhang S, Zheng L, Dong D, Xu L, Yin L, Qi Y, et al. Effects of flavonoids from Rosa laevigata Michx fruit against high-fat diet-induced non-alcoholic fatty liver disease in rats. Food Chem. 2013;141:2108–16.PubMedCrossRef
31.
go back to reference Song H, Lai J, Tang Q, Zheng X. Mulberry ethanol extract attenuates hepatic steatosis and insulin resistance in high-fat diet–fed mice. Nutr Res. 2016;36:710–8.PubMedCrossRef Song H, Lai J, Tang Q, Zheng X. Mulberry ethanol extract attenuates hepatic steatosis and insulin resistance in high-fat diet–fed mice. Nutr Res. 2016;36:710–8.PubMedCrossRef
32.
go back to reference Lohachoompol V, Srzednicki G, Craske J. The change of Total Anthocyanins in blueberries and their antioxidant effect after drying and freezing. J Biomed Biotechnol. 2004;2004:248–52.PubMedPubMedCentralCrossRef Lohachoompol V, Srzednicki G, Craske J. The change of Total Anthocyanins in blueberries and their antioxidant effect after drying and freezing. J Biomed Biotechnol. 2004;2004:248–52.PubMedPubMedCentralCrossRef
33.
go back to reference Chien-Min K, Cheng-Chuan L. Clinical criteria correlated with the incidence of patients with non-alcoholic fatty liver disease. Ann Clin Lab Sci. 2017;47:191–200.PubMed Chien-Min K, Cheng-Chuan L. Clinical criteria correlated with the incidence of patients with non-alcoholic fatty liver disease. Ann Clin Lab Sci. 2017;47:191–200.PubMed
34.
go back to reference Chalasani N, Younossi Z, Lavine JE, Diehl AM, Brunt EM, Cusi K, et al. The diagnosis and management of non-alcoholic fatty liver disease: practice guideline by the American Association for the Study of Liver Diseases, American College of Gastroenterology, and the American Gastroenterological Association. Hepatology. 2012;55:2005–23.PubMedCrossRef Chalasani N, Younossi Z, Lavine JE, Diehl AM, Brunt EM, Cusi K, et al. The diagnosis and management of non-alcoholic fatty liver disease: practice guideline by the American Association for the Study of Liver Diseases, American College of Gastroenterology, and the American Gastroenterological Association. Hepatology. 2012;55:2005–23.PubMedCrossRef
35.
go back to reference Zheng W, Wang SY. Oxygen radical absorbing capacity of phenolics in blueberries, crannberries, chokeberries, and lingonberries. J Agric Food Chem. 2003;5:502–9.CrossRef Zheng W, Wang SY. Oxygen radical absorbing capacity of phenolics in blueberries, crannberries, chokeberries, and lingonberries. J Agric Food Chem. 2003;5:502–9.CrossRef
36.
go back to reference Sripakdee T, Sriwicha A, Jansam N, Mahachai R, Chanthai S. Determination of total phenolics and ascorbic acid related to an antioxidantactivity and thermal stability of the Mao fruit juice. Int Food Res J. 2015;22:618–24. Sripakdee T, Sriwicha A, Jansam N, Mahachai R, Chanthai S. Determination of total phenolics and ascorbic acid related to an antioxidantactivity and thermal stability of the Mao fruit juice. Int Food Res J. 2015;22:618–24.
37.
go back to reference Pirozzi C, Lama A, Simeoli R, Paciello O, Pagano TB, Mollica MP, et al. Hydroxytyrosol prevents metabolic impairment reducing hepatic inflammation and restoring duodenal integrity in a rat model of NAFLD. J Nutr Biochem. 2016;30:108–15.PubMedCrossRef Pirozzi C, Lama A, Simeoli R, Paciello O, Pagano TB, Mollica MP, et al. Hydroxytyrosol prevents metabolic impairment reducing hepatic inflammation and restoring duodenal integrity in a rat model of NAFLD. J Nutr Biochem. 2016;30:108–15.PubMedCrossRef
38.
go back to reference Ayala A, Munoz MF, Arguelles S. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxidative Med Cell Longev. 2014;2014:360438.CrossRef Ayala A, Munoz MF, Arguelles S. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxidative Med Cell Longev. 2014;2014:360438.CrossRef
40.
go back to reference Lin YL, Chang YY, Yang DJ, Tzang BS, Chen YC. Beneficial effects of noni (Morinda citrifolia L.) extract on livers of high-fat dietary hamsters. Food Chem. 2013;140:31–8.PubMedCrossRef Lin YL, Chang YY, Yang DJ, Tzang BS, Chen YC. Beneficial effects of noni (Morinda citrifolia L.) extract on livers of high-fat dietary hamsters. Food Chem. 2013;140:31–8.PubMedCrossRef
41.
go back to reference Ellis CL, Edirisinghe I, Kappagoda T, Burton-Freeman B. Attenuation of meal-induced inflammatory and thrombotic responses in overweight men and women after 6-week daily strawberry (Fragaria) intake. A randomized placebo-controlled trial. J Atheroscler Thromb. 2011;18:318–27.PubMedCrossRef Ellis CL, Edirisinghe I, Kappagoda T, Burton-Freeman B. Attenuation of meal-induced inflammatory and thrombotic responses in overweight men and women after 6-week daily strawberry (Fragaria) intake. A randomized placebo-controlled trial. J Atheroscler Thromb. 2011;18:318–27.PubMedCrossRef
42.
go back to reference Pantsulaia I, Iobadze M, Pantsulaia N, Chikovani T. The effect of citrus peel extracts on cytokines levels and T regulatory cells in acute liver injury. Biomed Res Int. 2014;2014:127879.PubMedPubMedCentralCrossRef Pantsulaia I, Iobadze M, Pantsulaia N, Chikovani T. The effect of citrus peel extracts on cytokines levels and T regulatory cells in acute liver injury. Biomed Res Int. 2014;2014:127879.PubMedPubMedCentralCrossRef
43.
go back to reference Tessari P, Coracina A, Cosma A, Tiengo A. Hepatic lipid metabolism and non-alcoholic fatty liver disease. Nutr Metab Cardiovasc Dis. 2009;19:291–302.PubMedCrossRef Tessari P, Coracina A, Cosma A, Tiengo A. Hepatic lipid metabolism and non-alcoholic fatty liver disease. Nutr Metab Cardiovasc Dis. 2009;19:291–302.PubMedCrossRef
44.
go back to reference Wendel AA, Lewin TM, Coleman RA. Glycerol-3-phosphate acyltransferases: rate limiting enzymes of triacylglycerol biosynthesis. Biochim Biophys Acta Mol Cell Biol Lipids. 1791;2009:501–6. Wendel AA, Lewin TM, Coleman RA. Glycerol-3-phosphate acyltransferases: rate limiting enzymes of triacylglycerol biosynthesis. Biochim Biophys Acta Mol Cell Biol Lipids. 1791;2009:501–6.
45.
go back to reference Lai M, Chandrasekera PC, Barnard ND. You are what you eat, or are you? The challenges of translating high-fat-fed rodents to human obesity and diabetes Nutr Diabetes. 2014;4:e135.PubMed Lai M, Chandrasekera PC, Barnard ND. You are what you eat, or are you? The challenges of translating high-fat-fed rodents to human obesity and diabetes Nutr Diabetes. 2014;4:e135.PubMed
Metadata
Title
The potential of antioxidant-rich Maoberry (Antidesma bunius) extract on fat metabolism in liver tissues of rats fed a high-fat diet
Authors
Chattraya Ngamlerst
Arunwan Udomkasemsab
Ratchanee Kongkachuichai
Karunee Kwanbunjan
Chaowanee Chupeerach
Pattaneeya Prangthip
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2019
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-019-2716-0

Other articles of this Issue 1/2019

BMC Complementary Medicine and Therapies 1/2019 Go to the issue