Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2019

Open Access 01-12-2019 | Research article

Evaluation of the anti-cancer potential of Cedrus deodara total lignans by inducing apoptosis of A549 cells

Authors: Xiaofeng Shi, Ruiqin Du, Junmin Zhang, Yanping Lei, Hongyun Guo

Published in: BMC Complementary Medicine and Therapies | Issue 1/2019

Login to get access

Abstract

Background

Cedrus deodara (Roxb.) Loud (normally called as deodar), one out of four species in the genus Cedrus, exhibits widely biological activities. The Cedrus deodara total lignans from the pine needles (CTL) were extracted. The aim of the study was to investigate the anticancer potential of the CTL on A549 cell line.

Methods

We extracted the CTL by ethanol and assessed the cytotoxicity by CCK-8 method. Cell cycle and apoptosis were detected by a FACS Verse Calibur flow cytometry.

Results

The CTL were extracted by means of ethanol hot refluxing and the content of total lignans in CTL was about 55.77%. By the CCK-8 assays, CTL inhibited the growth of A549 cells in a dose-dependent fashion, with the IC50 values of 39.82 ± 1.74 μg/mL. CTL also inhibited the growth to a less extent in HeLa, HepG2, MKN28 and HT-29 cells.

Conclusion

At low doses, the CTL effectively inhibited the growth of A549 cells. By comparison of IC50 values, we found that A549 cells might be more sensitive to the treatment with CTL. In addition, CTL were also able to increase the population of A549 cells in G2/M phase and the percentage of apoptotic A549 cells. CTL may have therapeutic potential in lung adenocarcinoma cancer by regulating cell cycle and apoptosis.
Literature
1.
go back to reference Zhang JM, Shi XF, Fan B. Research progress on chemical constituents and pharmacological activities of Cedrus deodara. Chin Trad Pat Med. 2009;31(6):928–33. Zhang JM, Shi XF, Fan B. Research progress on chemical constituents and pharmacological activities of Cedrus deodara. Chin Trad Pat Med. 2009;31(6):928–33.
2.
go back to reference Yadav JP, Arya V, Yadav S, Panghal M, Kumar S, Dhankhar S. Cassia occidentalis L.: a review on its ethnobotany, phytochemical and pharmacological profile. Fitoterapia. 2010;81(4):223–30.CrossRef Yadav JP, Arya V, Yadav S, Panghal M, Kumar S, Dhankhar S. Cassia occidentalis L.: a review on its ethnobotany, phytochemical and pharmacological profile. Fitoterapia. 2010;81(4):223–30.CrossRef
3.
go back to reference Patil S, Prakash T, Kotresha D, Rao NR, Pandy N. Antihyperlipidemic potential of Cedrus deodara extracts in monosodium glutamate induced obesity in neonatal rats. Indian J Pharmacol. 2011;43(6):644–7.PubMedPubMedCentral Patil S, Prakash T, Kotresha D, Rao NR, Pandy N. Antihyperlipidemic potential of Cedrus deodara extracts in monosodium glutamate induced obesity in neonatal rats. Indian J Pharmacol. 2011;43(6):644–7.PubMedPubMedCentral
4.
go back to reference Sachin BS, Koul M, Zutshi A, Singh SK, Tikoo AK, Tikoo MK, Saxena AK, Sharma SC, Johri RK. Simultaneous high-performance liquid chromatographic determination of Cedrus deodara active constituents and their pharmacokinetic profile in mice. J Chromatogr B Analyt Technol Biomed Life Sci. 2008;862(1–2):237–41.CrossRef Sachin BS, Koul M, Zutshi A, Singh SK, Tikoo AK, Tikoo MK, Saxena AK, Sharma SC, Johri RK. Simultaneous high-performance liquid chromatographic determination of Cedrus deodara active constituents and their pharmacokinetic profile in mice. J Chromatogr B Analyt Technol Biomed Life Sci. 2008;862(1–2):237–41.CrossRef
5.
go back to reference Saab AM, Lampronti I, Borgatti M, Finotti A, Harb F, Safi S, Gambari R. In vitro evaluation of the anti-proliferative activities of the wood essential oils of three Cedrus species against K562 human chronic myelogenous leukaemia cells. Nat Prod Res. 2012;26(23):2227–31.CrossRef Saab AM, Lampronti I, Borgatti M, Finotti A, Harb F, Safi S, Gambari R. In vitro evaluation of the anti-proliferative activities of the wood essential oils of three Cedrus species against K562 human chronic myelogenous leukaemia cells. Nat Prod Res. 2012;26(23):2227–31.CrossRef
6.
go back to reference Chaudhary AK, Ahmad S, Mazumder A. Isolation, structural elucidation and in vitro antioxidant activity of compounds from chloroform extract of Cedrus deodara (Roxb.) loud. Nat Prod Res. 2015;29(3):268–73.CrossRef Chaudhary AK, Ahmad S, Mazumder A. Isolation, structural elucidation and in vitro antioxidant activity of compounds from chloroform extract of Cedrus deodara (Roxb.) loud. Nat Prod Res. 2015;29(3):268–73.CrossRef
7.
go back to reference Wu Y, Bai J, Zhong K, Huang Y, Gao H. A dual antibacterial mechanism involved in membrane disruption and DNA binding of 2R,3R-dihydromyricetin from pine needles of Cedrus deodara against Staphylococcus aureus. Food Chem. 2017;218:463–70.CrossRef Wu Y, Bai J, Zhong K, Huang Y, Gao H. A dual antibacterial mechanism involved in membrane disruption and DNA binding of 2R,3R-dihydromyricetin from pine needles of Cedrus deodara against Staphylococcus aureus. Food Chem. 2017;218:463–70.CrossRef
8.
go back to reference Bai J, Wu Y, Liu X, Zhong K, Huang Y, Gao H. Antibacterial activity of Shikimic acid from pine needles of Cedrus deodara against Staphylococcus aureus through damage to cell membrane. Int J Mol Sci. 2015;16(11):27145–55.CrossRef Bai J, Wu Y, Liu X, Zhong K, Huang Y, Gao H. Antibacterial activity of Shikimic acid from pine needles of Cedrus deodara against Staphylococcus aureus through damage to cell membrane. Int J Mol Sci. 2015;16(11):27145–55.CrossRef
9.
go back to reference Zhao Z, Dong Z, Ming J, Liu Y. Cedrin identified from Cedrus deodara (Roxb.) G. Don protects PC12 cells against neurotoxicity induced by Abeta1–42. Nat Prod Res. 2017:1–4. Zhao Z, Dong Z, Ming J, Liu Y. Cedrin identified from Cedrus deodara (Roxb.) G. Don protects PC12 cells against neurotoxicity induced by Abeta1–42. Nat Prod Res. 2017:1–4.
10.
go back to reference Shi XF, Bai ZH, Liu DY. Li S: [study on the chemical constituent from the dichloromethane extract. Of the pine needles of Cedrus deodara]. Zhong Yao Cai. 2012;35(3):404–6.PubMed Shi XF, Bai ZH, Liu DY. Li S: [study on the chemical constituent from the dichloromethane extract. Of the pine needles of Cedrus deodara]. Zhong Yao Cai. 2012;35(3):404–6.PubMed
11.
go back to reference Bai CH, Shi XF, Liu DY. Li S: [study on the chemical constituent from the dichloromethane extract of the pine needle of Cedrus deodara (II)]. Zhong Yao Cai. 2013;36(4):567–9.PubMed Bai CH, Shi XF, Liu DY. Li S: [study on the chemical constituent from the dichloromethane extract of the pine needle of Cedrus deodara (II)]. Zhong Yao Cai. 2013;36(4):567–9.PubMed
12.
go back to reference Zhang JM, Shi XF, Li C, Fan B, Wang DD, Liu DY. Study on the chemical constituents from pine needles of Cedrus deodara. Zhong Yao Cai. 2010;33(2):215–8.PubMed Zhang JM, Shi XF, Li C, Fan B, Wang DD, Liu DY. Study on the chemical constituents from pine needles of Cedrus deodara. Zhong Yao Cai. 2010;33(2):215–8.PubMed
13.
go back to reference Zhang JM, Shi XF, Ma QH, He FJ, Wang DD, Liu DY. Fan B: [studies on the chemical constituents from pine needles of Cedrus deodara (II)]. Zhong Yao Cai. 2010;33(7):1084–6.PubMed Zhang JM, Shi XF, Ma QH, He FJ, Wang DD, Liu DY. Fan B: [studies on the chemical constituents from pine needles of Cedrus deodara (II)]. Zhong Yao Cai. 2010;33(7):1084–6.PubMed
14.
go back to reference Liu DY, Shi XF, Wang DD, He FJ, Ma QH, Fan B. Two new myricetin glycosides from pine needles of Cedrus deodara. Chem Nat Compd. 2011;47(5):704–7.CrossRef Liu DY, Shi XF, Wang DD, He FJ, Ma QH, Fan B. Two new myricetin glycosides from pine needles of Cedrus deodara. Chem Nat Compd. 2011;47(5):704–7.CrossRef
15.
go back to reference Zhang JM, Shi XF, Ma QH, He FJ, Fan B, Wang DD, Liu DY. Chemical constituents from pine needles of Cedrus deodara. Chem Nat Compd. 2011;47(2):272–4.CrossRef Zhang JM, Shi XF, Ma QH, He FJ, Fan B, Wang DD, Liu DY. Chemical constituents from pine needles of Cedrus deodara. Chem Nat Compd. 2011;47(2):272–4.CrossRef
16.
go back to reference Zhang JM, Shi XF, Fu SW, Zhao J, Guo YL. Separation of acidic compounds and determination of shikimic acid in water extracts of several conifers by HPLC. Chem Nat Compd. 2013;49(4):728–9.CrossRef Zhang JM, Shi XF, Fu SW, Zhao J, Guo YL. Separation of acidic compounds and determination of shikimic acid in water extracts of several conifers by HPLC. Chem Nat Compd. 2013;49(4):728–9.CrossRef
17.
go back to reference Shi X, Liu D, Zhang J, Hu P, Shen W, Fan B, Ma Q, Wang X. Extraction and purification of total flavonoids from pine needles of Cedrus deodara contribute to anti-tumor in vitro. BMC Complement Altern Med. 2016;16:245.CrossRef Shi X, Liu D, Zhang J, Hu P, Shen W, Fan B, Ma Q, Wang X. Extraction and purification of total flavonoids from pine needles of Cedrus deodara contribute to anti-tumor in vitro. BMC Complement Altern Med. 2016;16:245.CrossRef
18.
go back to reference Saxena A, Saxena AK, Singh J, Bhushan S. Natural antioxidants synergistically enhance the anticancer potential of AP9-cd, a novel lignan composition from Cedrus deodara in human leukemia HL-60 cells. Chem Biol Interact. 2010;188(3):580–90.CrossRef Saxena A, Saxena AK, Singh J, Bhushan S. Natural antioxidants synergistically enhance the anticancer potential of AP9-cd, a novel lignan composition from Cedrus deodara in human leukemia HL-60 cells. Chem Biol Interact. 2010;188(3):580–90.CrossRef
19.
go back to reference Sharma PR, Shanmugavel M, Saxena AK, Qazi GN. Induction of apoptosis by a synergistic lignan composition from Cedrus deodara in human cancer cells. Phytother Res. 2008;22(12):1587–94.CrossRef Sharma PR, Shanmugavel M, Saxena AK, Qazi GN. Induction of apoptosis by a synergistic lignan composition from Cedrus deodara in human cancer cells. Phytother Res. 2008;22(12):1587–94.CrossRef
20.
go back to reference Shashi B, Jaswant S, Madhusudana RJ, Kumar SA, Nabi QG. A novel lignan composition from Cedrus deodara induces apoptosis and early nitric oxide generation in human leukemia Molt-4 and HL-60 cells. Nitric Oxide. 2006;14(1):72–88.CrossRef Shashi B, Jaswant S, Madhusudana RJ, Kumar SA, Nabi QG. A novel lignan composition from Cedrus deodara induces apoptosis and early nitric oxide generation in human leukemia Molt-4 and HL-60 cells. Nitric Oxide. 2006;14(1):72–88.CrossRef
21.
go back to reference Newman DJ, Cragg GM. Natural products as sources of new drugs from 1981 to 2014. J Nat Prod. 2016;79(3):629–61.CrossRef Newman DJ, Cragg GM. Natural products as sources of new drugs from 1981 to 2014. J Nat Prod. 2016;79(3):629–61.CrossRef
22.
go back to reference Touillaud MS, Thiebaut AC, Fournier A, Niravong M, Boutron-Ruault MC, Clavel-Chapelon F. Dietary lignan intake and postmenopausal breast cancer risk by estrogen and progesterone receptor status. J Natl Cancer Inst. 2007;99(6):475–86.CrossRef Touillaud MS, Thiebaut AC, Fournier A, Niravong M, Boutron-Ruault MC, Clavel-Chapelon F. Dietary lignan intake and postmenopausal breast cancer risk by estrogen and progesterone receptor status. J Natl Cancer Inst. 2007;99(6):475–86.CrossRef
23.
go back to reference Fini L, Hotchkiss E, Fogliano V, Graziani G, Romano M, De Vol EB, Qin H, Selgrad M, Boland CR, Ricciardiello L. Chemopreventive properties of pinoresinol-rich olive oil involve a selective activation of the ATM-p53 cascade in colon cancer cell lines. Carcinogenesis. 2008;29(1):139–46.CrossRef Fini L, Hotchkiss E, Fogliano V, Graziani G, Romano M, De Vol EB, Qin H, Selgrad M, Boland CR, Ricciardiello L. Chemopreventive properties of pinoresinol-rich olive oil involve a selective activation of the ATM-p53 cascade in colon cancer cell lines. Carcinogenesis. 2008;29(1):139–46.CrossRef
24.
go back to reference Saarinen NM, Warri A, Dings RP, Airio M, Smeds AI, Makela S. Dietary lariciresinol attenuates mammary tumor growth and reduces blood vessel density in human MCF-7 breast cancer xenografts and carcinogen-induced mammary tumors in rats. Int J Cancer. 2008;123(5):1196–204.CrossRef Saarinen NM, Warri A, Dings RP, Airio M, Smeds AI, Makela S. Dietary lariciresinol attenuates mammary tumor growth and reduces blood vessel density in human MCF-7 breast cancer xenografts and carcinogen-induced mammary tumors in rats. Int J Cancer. 2008;123(5):1196–204.CrossRef
25.
go back to reference Yang SE, Hsieh MT, Tsai TH, Hsu SL. Down-modulation of Bcl-XL, release of cytochrome c and sequential activation of caspases during honokiol-induced apoptosis in human squamous lung cancer CH27 cells. Biochem Pharmacol. 2002;63(9):1641–51.CrossRef Yang SE, Hsieh MT, Tsai TH, Hsu SL. Down-modulation of Bcl-XL, release of cytochrome c and sequential activation of caspases during honokiol-induced apoptosis in human squamous lung cancer CH27 cells. Biochem Pharmacol. 2002;63(9):1641–51.CrossRef
26.
go back to reference Peuhu E, Rivero-Muller A, Stykki H, Torvaldson E, Holmbom T, Eklund P, Unkila M, Sjoholm R, Eriksson JE. Inhibition of Akt signaling by the lignan matairesinol sensitizes prostate cancer cells to TRAIL-induced apoptosis. Oncogene. 2010;29(6):898–908.CrossRef Peuhu E, Rivero-Muller A, Stykki H, Torvaldson E, Holmbom T, Eklund P, Unkila M, Sjoholm R, Eriksson JE. Inhibition of Akt signaling by the lignan matairesinol sensitizes prostate cancer cells to TRAIL-induced apoptosis. Oncogene. 2010;29(6):898–908.CrossRef
27.
go back to reference Rao J M, Srinivas P V, Yadav J S. Herbal chemical composition for the treatment of cancer [P]. US: 6649650B2, 2003-11-18. Rao J M, Srinivas P V, Yadav J S. Herbal chemical composition for the treatment of cancer [P]. US: 6649650B2, 2003-11-18.
28.
go back to reference Rao J M, Srinivas P V, Yadav J S. Novel herbal composition for the treatment of cancer [P]. US: 2003118676A1, 2003-06-26. Rao J M, Srinivas P V, Yadav J S. Novel herbal composition for the treatment of cancer [P]. US: 2003118676A1, 2003-06-26.
29.
go back to reference Singh SK, Shanmugavel M, Kampasi H, Singh R, Mondhe DM, Rao JM, Adwankar MK, Saxena AK, Qazi GN. Chemically standardized isolates from Cedrus deodara stem wood having anticancer activity. Planta Med. 2007;73:519–26.CrossRef Singh SK, Shanmugavel M, Kampasi H, Singh R, Mondhe DM, Rao JM, Adwankar MK, Saxena AK, Qazi GN. Chemically standardized isolates from Cedrus deodara stem wood having anticancer activity. Planta Med. 2007;73:519–26.CrossRef
30.
go back to reference Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.CrossRef Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.CrossRef
31.
go back to reference Chen T, Stephens PA, Middleton FK, Curtin NJ. Targeting the S and G2 checkpoint to treat cancer. Drug Discov Today. 2012;17:194–202.CrossRef Chen T, Stephens PA, Middleton FK, Curtin NJ. Targeting the S and G2 checkpoint to treat cancer. Drug Discov Today. 2012;17:194–202.CrossRef
Metadata
Title
Evaluation of the anti-cancer potential of Cedrus deodara total lignans by inducing apoptosis of A549 cells
Authors
Xiaofeng Shi
Ruiqin Du
Junmin Zhang
Yanping Lei
Hongyun Guo
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2019
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-019-2682-6

Other articles of this Issue 1/2019

BMC Complementary Medicine and Therapies 1/2019 Go to the issue