Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2019

Open Access 01-12-2019 | Research article

Variation in the metabolites and α-glucosidase inhibitory activity of Cosmos caudatus at different growth stages

Authors: Wan Ahmad Wan-Nadilah, Muhammad Tayyab Akhtar, Khozirah Shaari, Alfi Khatib, Azizah Abdul Hamid, Muhajir Hamid

Published in: BMC Complementary Medicine and Therapies | Issue 1/2019

Login to get access

Abstract

Background

Cosmos caudatus is an annual plant known for its medicinal value in treating several health conditions, such as high blood pressure, arthritis, and diabetes mellitus. The α-glucosidase inhibitory activity and total phenolic content of the leaf aqueous ethanolic extracts of the plant at different growth stages (6, 8. 10, 12 and 14 weeks) were determined in an effort to ascertain the best time to harvest the plant for maximum medicinal quality with respect to its glucose-lowering effects.

Methods

The aqueous ethanolic leaf extracts of C. caudatus were characterized by NMR and LC-MS/MS. The total phenolic content and α-glucosidase inhibitory activity were evaluated by the Folin-Ciocalteu method and α-glucosidase inhibitory assay, respectively. The statistical significance of the results was evaluated using one-way ANOVA with Duncan’s post hoc test, and correlation among the different activities was performed by Pearson’s correlation test. NMR spectroscopy along with multivariate data analysis was used to identify the metabolites correlated with total phenolic content and α-glucosidase inhibitory activity of the C. caudatus leaf extracts.

Results

It was found that the α-glucosidase inhibitory activity and total phenolic content of the optimized ethanol:water (80:20) leaf extract of the plant increased significantly as the plant matured, reaching a maximum at the 10th week. The IC50 value for α-glucosidase inhibitory activity (39.18 μg mL− 1) at the 10th week showed greater potency than the positive standard, quercetin (110.50 μg mL− 1). Through an 1H NMR-based metabolomics approach, the 10-week-old samples were shown to be correlated with a high total phenolic content and α-glucosidase inhibitory activity. From the partial least squares biplot, rutin and flavonoid glycosides, consisting of quercetin 3-O-arabinofuranoside, quercetin 3-O-rhamnoside, quercetin 3-O-glucoside, and quercetin 3-O-xyloside, were identified as the major bioactive metabolites. The metabolites were identified by NMR spectroscopy (J-resolve, HSQC and HMBC experiments) and further supported by dereplication via LC-MS/MS.

Conclusion

For high phytomedicinal quality, the 10th week is recommended as the best time to harvest C. caudatus leaves with respect to its glucose lowering potential.
Appendix
Available only for authorised users
Literature
1.
go back to reference Burkill IH. A dictionary of the economic products of the Malay peninsula, vol. Vol. 1 and 2. Kuala Lumpur: Ministry of Agriculture cooperative; 1966. Burkill IH. A dictionary of the economic products of the Malay peninsula, vol. Vol. 1 and 2. Kuala Lumpur: Ministry of Agriculture cooperative; 1966.
2.
go back to reference Abas F, Shaari K, Lajis NH, Israf DA, Kalsom YU. Antioxidative and radical scavenging properties of the constituents isolated from Cosmos caudatus Kunth. Nat Prod Sci. 2003;9:245–8. Abas F, Shaari K, Lajis NH, Israf DA, Kalsom YU. Antioxidative and radical scavenging properties of the constituents isolated from Cosmos caudatus Kunth. Nat Prod Sci. 2003;9:245–8.
3.
go back to reference Rasdi NHM, Samah OA, Sule A, Ahmed QU. Antimicrobial studies of Cosmos caudatus Kunth. (Compositae). J Med Plants Res. 2010;4:669–73. Rasdi NHM, Samah OA, Sule A, Ahmed QU. Antimicrobial studies of Cosmos caudatus Kunth. (Compositae). J Med Plants Res. 2010;4:669–73.
4.
go back to reference Ong HC, Norzalina J. Malay herbal medicine in Gemencheh, Negeri Sembilan. Malaysia Fitoterapia. 1999;70:10–4.CrossRef Ong HC, Norzalina J. Malay herbal medicine in Gemencheh, Negeri Sembilan. Malaysia Fitoterapia. 1999;70:10–4.CrossRef
5.
go back to reference Bunawan H, Baharum SN, Bunawan SN, Amin NA, Noor NM. Cosmos caudatus Kunth: a traditional medicinal herb. Global J Pharmacol. 2014;8:420–6. Bunawan H, Baharum SN, Bunawan SN, Amin NA, Noor NM. Cosmos caudatus Kunth: a traditional medicinal herb. Global J Pharmacol. 2014;8:420–6.
6.
go back to reference Shui G, Leong LP, Wong SP. Rapid screening and characterisation of antioxidants of Cosmos caudatus using liquid chromatography coupled with mass spectrometry. J Chromatogr B. 2005;827:127–38.CrossRef Shui G, Leong LP, Wong SP. Rapid screening and characterisation of antioxidants of Cosmos caudatus using liquid chromatography coupled with mass spectrometry. J Chromatogr B. 2005;827:127–38.CrossRef
7.
go back to reference Kerem Z, Bilkis I, Flaishman MA, Sivan L. Antioxidant activity and inhibition of α-glucosidase by trans-resveratrol, Piceid, and a novel trans-stilbene from the roots of Israeli Rumex bucephalophorus L. J Agr Food Chem. 2006;54:1243–7.CrossRef Kerem Z, Bilkis I, Flaishman MA, Sivan L. Antioxidant activity and inhibition of α-glucosidase by trans-resveratrol, Piceid, and a novel trans-stilbene from the roots of Israeli Rumex bucephalophorus L. J Agr Food Chem. 2006;54:1243–7.CrossRef
8.
go back to reference Mai TT, Thu NN, Tien PG, Chu Yen NV. Alpha-glucosidase inhibitory and antioxidant activities of Vietnamese edible plants and their relationships with polyphenol contents. J Nutr Sci Vitaminol. 2007;53:267–76.CrossRefPubMed Mai TT, Thu NN, Tien PG, Chu Yen NV. Alpha-glucosidase inhibitory and antioxidant activities of Vietnamese edible plants and their relationships with polyphenol contents. J Nutr Sci Vitaminol. 2007;53:267–76.CrossRefPubMed
9.
go back to reference Ranilla LG, Kwon Y, Apostolidis E, Shetty K. Phenolic compounds, antioxidant activity and in vitro inhibitory potential against key enzymes relevant for hyperglycemia and hypertension of commonly used medicinal plants, herbs and spices in Latin America. Bioresour Technol. 2010;101:4676–89.CrossRefPubMed Ranilla LG, Kwon Y, Apostolidis E, Shetty K. Phenolic compounds, antioxidant activity and in vitro inhibitory potential against key enzymes relevant for hyperglycemia and hypertension of commonly used medicinal plants, herbs and spices in Latin America. Bioresour Technol. 2010;101:4676–89.CrossRefPubMed
10.
go back to reference Kunyanga CN, Imungi JK, Okoth MW, Biesalski HK, Vadivel V. Total phenolic content, antioxidant and antidiabetic properties of methanolic extract of raw and traditionally processed Kenyan indigenous food ingredients. LWT-Food Sci Technol. 2012;45:269–76.CrossRef Kunyanga CN, Imungi JK, Okoth MW, Biesalski HK, Vadivel V. Total phenolic content, antioxidant and antidiabetic properties of methanolic extract of raw and traditionally processed Kenyan indigenous food ingredients. LWT-Food Sci Technol. 2012;45:269–76.CrossRef
12.
go back to reference Yang W, Lu J, Weng J, Jia W, Ji L, Xiao J, et al. Prevalence of diabetes among men and women in China. New Engl J Med. 2010;362:1090–101.CrossRefPubMed Yang W, Lu J, Weng J, Jia W, Ji L, Xiao J, et al. Prevalence of diabetes among men and women in China. New Engl J Med. 2010;362:1090–101.CrossRefPubMed
14.
15.
go back to reference Erasto P, Adebola PO, Grierson DS, Afoloyan AJ. An ethnobotanical study of plants used for the treatment of diabetes in the eastern Cape Province, South Africa. Afr J Biotechnol. 2005;4:1458–60. Erasto P, Adebola PO, Grierson DS, Afoloyan AJ. An ethnobotanical study of plants used for the treatment of diabetes in the eastern Cape Province, South Africa. Afr J Biotechnol. 2005;4:1458–60.
16.
go back to reference Dey L, Anoja MD, Attele S. Alternative therapies for type 2 diabetes. Altern Med Rev. 2007;7:56–7. Dey L, Anoja MD, Attele S. Alternative therapies for type 2 diabetes. Altern Med Rev. 2007;7:56–7.
17.
go back to reference Ortiz-Andrade RR, Garcia-Jiménez S, Castillo-Espãna P, Raminez-Āvila G, Villalobos-Monila R, Estrada-Soto S. α-Glucosidase inhibitory activity of the methanolic extract from Tournefortia hartwegiana: an anti-hyperglycemic agent. J Ethnopharmacol. 2007;109:48–53.CrossRefPubMed Ortiz-Andrade RR, Garcia-Jiménez S, Castillo-Espãna P, Raminez-Āvila G, Villalobos-Monila R, Estrada-Soto S. α-Glucosidase inhibitory activity of the methanolic extract from Tournefortia hartwegiana: an anti-hyperglycemic agent. J Ethnopharmacol. 2007;109:48–53.CrossRefPubMed
18.
go back to reference Stuart AR, Gulve EA, Wang M. Chemistry and biochemistry of type 2 diabetes. Chem Rev. 2004;104:1255–82.CrossRef Stuart AR, Gulve EA, Wang M. Chemistry and biochemistry of type 2 diabetes. Chem Rev. 2004;104:1255–82.CrossRef
19.
go back to reference Krentz AJ, Bailey CJ. Oral antidiabetic agent’s current roles in type-2 diabetes mellitus. Drugs. 2005;65:385–411.CrossRefPubMed Krentz AJ, Bailey CJ. Oral antidiabetic agent’s current roles in type-2 diabetes mellitus. Drugs. 2005;65:385–411.CrossRefPubMed
20.
go back to reference Jong-Anurakkun N, Bhandari MR, Kawabata J. α-Glucosidase inhibitors from devil tree (Alstonia scholaris). Food Chem. 2007;103:1319–23.CrossRef Jong-Anurakkun N, Bhandari MR, Kawabata J. α-Glucosidase inhibitors from devil tree (Alstonia scholaris). Food Chem. 2007;103:1319–23.CrossRef
21.
go back to reference Bhandari MR, Nilubon JA, Gao H, Kawabata J. α-Glucosidase and α-amylase inhibitory activities of Nepalese medicinal herb Pakhanbhed (Bergenia ciliate haw.). Food Chem. 2008;106:247–52.CrossRef Bhandari MR, Nilubon JA, Gao H, Kawabata J. α-Glucosidase and α-amylase inhibitory activities of Nepalese medicinal herb Pakhanbhed (Bergenia ciliate haw.). Food Chem. 2008;106:247–52.CrossRef
22.
go back to reference Abesundara KJ, Matisui T, Matsumoto K. Alpha-glucosidase inhibitory activity of some Sri Lanka plant extracts, one of which, Cassia auriculata, exerts a strong antihyperglycemic effects in rats comparable to therapeutic drug acarbose. J Agr Food Chem. 2004;52:2541–5.CrossRef Abesundara KJ, Matisui T, Matsumoto K. Alpha-glucosidase inhibitory activity of some Sri Lanka plant extracts, one of which, Cassia auriculata, exerts a strong antihyperglycemic effects in rats comparable to therapeutic drug acarbose. J Agr Food Chem. 2004;52:2541–5.CrossRef
23.
go back to reference Yuhao L, Wen S, Prasad-Kota B, Peng G, Qian-Li G, Yamahara J, Roufogalis BD. Punica granatum flower extract, potent α-glucosidase inhibitors, improves postprandial hyperglycemia in Zucker diabetic fatty rats. J Ethnopharmacol. 2005;99:239–44.CrossRef Yuhao L, Wen S, Prasad-Kota B, Peng G, Qian-Li G, Yamahara J, Roufogalis BD. Punica granatum flower extract, potent α-glucosidase inhibitors, improves postprandial hyperglycemia in Zucker diabetic fatty rats. J Ethnopharmacol. 2005;99:239–44.CrossRef
24.
go back to reference Önal S, Timmur S, Okuttucu B, Zihnioglu F. Inhibition of α-glucosidase by aqueous extracts of some potent antidiabetic medicinal herbs. Prep Biochem Biotech. 2005;35:29–36.CrossRef Önal S, Timmur S, Okuttucu B, Zihnioglu F. Inhibition of α-glucosidase by aqueous extracts of some potent antidiabetic medicinal herbs. Prep Biochem Biotech. 2005;35:29–36.CrossRef
25.
go back to reference Grochowski DM, Uysal S, Aktumsek A, Granica S, Zengin G, Ceylan R, Locatelli M, Tomczyk M. In vitro enzyme inhibitory properties, antioxidant activities, and phytochemical profile of Potentilla thuringiaca. Phytochem Lett. 2017;20:365–72.CrossRef Grochowski DM, Uysal S, Aktumsek A, Granica S, Zengin G, Ceylan R, Locatelli M, Tomczyk M. In vitro enzyme inhibitory properties, antioxidant activities, and phytochemical profile of Potentilla thuringiaca. Phytochem Lett. 2017;20:365–72.CrossRef
26.
go back to reference Adriano M, Gokhan Z, Marcello L, Azzurra S, Andrei M, Giorgia M, Simone C, Olakunle O, Adejoke O, Juliet A, Marufat O, Abdurrahman A. Ettore. Anti-diabetic and anti-hyperlipidemic properties of Capparis spinosa L.: In vivo and in vitro evaluation of its nutraceutical potential. J Funct Foods. 2017;35:32–42.CrossRef Adriano M, Gokhan Z, Marcello L, Azzurra S, Andrei M, Giorgia M, Simone C, Olakunle O, Adejoke O, Juliet A, Marufat O, Abdurrahman A. Ettore. Anti-diabetic and anti-hyperlipidemic properties of Capparis spinosa L.: In vivo and in vitro evaluation of its nutraceutical potential. J Funct Foods. 2017;35:32–42.CrossRef
27.
go back to reference Lawal U, Mediani A, Maulidiani H, Shaari K, Ismail IS, Khatib A, Abas F. Metabolite profiling of Ipomoea aquatica at different growth stages in correlation to the antioxidant and α-glucosidase inhibitory activities elucidated by 1H NMR-based metabolomics. Sci Hortic. 2015;192:400–8.CrossRef Lawal U, Mediani A, Maulidiani H, Shaari K, Ismail IS, Khatib A, Abas F. Metabolite profiling of Ipomoea aquatica at different growth stages in correlation to the antioxidant and α-glucosidase inhibitory activities elucidated by 1H NMR-based metabolomics. Sci Hortic. 2015;192:400–8.CrossRef
28.
go back to reference Zainudin MAM, Hamid AA, Anwar F, Osman A, Saari N. Variation of bioactive compounds and antioxidant activity of carambola (Averrhoa carambola L.) fruit at different ripening stages. Sci Hortic. 2014;172:325–31.CrossRef Zainudin MAM, Hamid AA, Anwar F, Osman A, Saari N. Variation of bioactive compounds and antioxidant activity of carambola (Averrhoa carambola L.) fruit at different ripening stages. Sci Hortic. 2014;172:325–31.CrossRef
29.
go back to reference Mediani A, Abas F, KhatibA MH, Shaari K, Choi YH, Lajis NH. 1H-NMR-based metabolomics approach to understanding the drying effects on the phytochemicals in Cosmos caudatus. Food Res Int. 2012;49:763–70.CrossRef Mediani A, Abas F, KhatibA MH, Shaari K, Choi YH, Lajis NH. 1H-NMR-based metabolomics approach to understanding the drying effects on the phytochemicals in Cosmos caudatus. Food Res Int. 2012;49:763–70.CrossRef
30.
go back to reference Mediani A, Abas F, Ping TC, Khatib A, Lajis NH. Influence of growth stage and season on the antioxidant constituents of Cosmos caudatus. Plant Food Hum Nutr. 2012;67:344–50.CrossRef Mediani A, Abas F, Ping TC, Khatib A, Lajis NH. Influence of growth stage and season on the antioxidant constituents of Cosmos caudatus. Plant Food Hum Nutr. 2012;67:344–50.CrossRef
31.
go back to reference Siddiqui MW, Momin CM, Acharya P, Kabir J, Debnath MK, Dhua RS. Dynamics of changes in bioactive molecules and antioxidant potential of Capsicum chinense Jacq. cv. Habanero at nine maturity stages. Acta Physiol Plant. 2013;35:1141–8.CrossRef Siddiqui MW, Momin CM, Acharya P, Kabir J, Debnath MK, Dhua RS. Dynamics of changes in bioactive molecules and antioxidant potential of Capsicum chinense Jacq. cv. Habanero at nine maturity stages. Acta Physiol Plant. 2013;35:1141–8.CrossRef
32.
go back to reference Zewdie Y, Bosland PW. Evaluation of genotype, environment, and genotype by-environment interaction for capsaicinoids in Capsicum annuum L. Euphytica. 2000;111:185–90.CrossRef Zewdie Y, Bosland PW. Evaluation of genotype, environment, and genotype by-environment interaction for capsaicinoids in Capsicum annuum L. Euphytica. 2000;111:185–90.CrossRef
33.
go back to reference Conforti F, Statti GA, Menichini F. Chemical and biological variability of hot pepper fruits (Capsicum annuum var. accuminatum L.) in relation to maturity stage. Food Chem. 2007;102:1096–104.CrossRef Conforti F, Statti GA, Menichini F. Chemical and biological variability of hot pepper fruits (Capsicum annuum var. accuminatum L.) in relation to maturity stage. Food Chem. 2007;102:1096–104.CrossRef
34.
go back to reference Menichini F, Tundis R, Bonesi M, Loizzo MR, Conforti F, Statti G, Cindio BD, Houghton PJ, Menichini F. The influence of fruit ripening on the phytochemical content and biological activity of Capsicum chinense Jacq. cv Habanero. Food Chem. 2009;114:553–60.CrossRef Menichini F, Tundis R, Bonesi M, Loizzo MR, Conforti F, Statti G, Cindio BD, Houghton PJ, Menichini F. The influence of fruit ripening on the phytochemical content and biological activity of Capsicum chinense Jacq. cv Habanero. Food Chem. 2009;114:553–60.CrossRef
35.
go back to reference Javadi N, Abas F, Mediani A, Hamid AA, Khatib A, Simoh S, Shaari K. Effect of storage on metabolite profile and alpha-glucosidase activity of Cosmos caudatus leaves- GCMS metabolomics approach. J Food Drug Anal. 2015;23:433–41.CrossRefPubMed Javadi N, Abas F, Mediani A, Hamid AA, Khatib A, Simoh S, Shaari K. Effect of storage on metabolite profile and alpha-glucosidase activity of Cosmos caudatus leaves- GCMS metabolomics approach. J Food Drug Anal. 2015;23:433–41.CrossRefPubMed
36.
go back to reference Javadi N, Abas F, Hamid AA, Simoh S, Shaari K, Ismail IS, Mediani A, Khatib A. GC-MS-based metabolite profiling of Cosmos caudatus leaves possessing alpha-glucosidase inhibitory activity. J Food Sci. 2014;79(6):1130–6.CrossRef Javadi N, Abas F, Hamid AA, Simoh S, Shaari K, Ismail IS, Mediani A, Khatib A. GC-MS-based metabolite profiling of Cosmos caudatus leaves possessing alpha-glucosidase inhibitory activity. J Food Sci. 2014;79(6):1130–6.CrossRef
37.
go back to reference Fiehn O. Metabolomics -the link between genotypes and phenotypes. Plant Mol Biol. 2002;48:155–71.CrossRefPubMed Fiehn O. Metabolomics -the link between genotypes and phenotypes. Plant Mol Biol. 2002;48:155–71.CrossRefPubMed
38.
go back to reference Ossipov V, Ossipova S, Bykov V, Oksanen E, Koricheva J, Haukioja E. Application of metabolomics to genotype and phenotype discrimination of birch trees grown in a long-term open-field experiment. Metabolomics. 2008;4(1):39–51.CrossRef Ossipov V, Ossipova S, Bykov V, Oksanen E, Koricheva J, Haukioja E. Application of metabolomics to genotype and phenotype discrimination of birch trees grown in a long-term open-field experiment. Metabolomics. 2008;4(1):39–51.CrossRef
39.
go back to reference Kim HK, Verpoorte R. Sample preparation for plant metabolomics. Phytochem Analysis. 2010;21:4–13.CrossRef Kim HK, Verpoorte R. Sample preparation for plant metabolomics. Phytochem Analysis. 2010;21:4–13.CrossRef
40.
go back to reference Kim HK, Choi YH, Verpoorte R. NMR-based metabolomic analysis of plants. Nat Protoc. 2010;5:536–49.CrossRefPubMed Kim HK, Choi YH, Verpoorte R. NMR-based metabolomic analysis of plants. Nat Protoc. 2010;5:536–49.CrossRefPubMed
41.
go back to reference Zhang Q, Zhang J, Shen J, Silva A, Dennis DA, Barrow CJ. A simple 96-well microplate method for estimation of total polyphenol content in seaweeds. J Appl Phycol. 2006;18:445–50.CrossRef Zhang Q, Zhang J, Shen J, Silva A, Dennis DA, Barrow CJ. A simple 96-well microplate method for estimation of total polyphenol content in seaweeds. J Appl Phycol. 2006;18:445–50.CrossRef
42.
go back to reference Collins RA, Ng TB, Fong WP, Wan CC, Yeung HW. Inhibition of glycohydrolase enzymes by aqueous extracts of Chinese medicinal herbs in a microplate format. IUBMB Life. 1997;42:1163–9.CrossRef Collins RA, Ng TB, Fong WP, Wan CC, Yeung HW. Inhibition of glycohydrolase enzymes by aqueous extracts of Chinese medicinal herbs in a microplate format. IUBMB Life. 1997;42:1163–9.CrossRef
43.
go back to reference Subramanian R, Asmawi MZ, Sadikun A. In vitro alpha-glucosidase and alpha-amylase enzyme inhibitory effects of Andrographis paniculata extract and andrographolide. Acta Biochim Pol. 2008;55:391–8.PubMed Subramanian R, Asmawi MZ, Sadikun A. In vitro alpha-glucosidase and alpha-amylase enzyme inhibitory effects of Andrographis paniculata extract and andrographolide. Acta Biochim Pol. 2008;55:391–8.PubMed
44.
go back to reference Deutschländer MS, Van de Venter M, Roux S, Louw J, Lall N. Hypoglycaemic activity of four plant extracts traditionally used in South Africa for diabetes. J Ethnopharmacol. 2009;124:619–24.CrossRefPubMed Deutschländer MS, Van de Venter M, Roux S, Louw J, Lall N. Hypoglycaemic activity of four plant extracts traditionally used in South Africa for diabetes. J Ethnopharmacol. 2009;124:619–24.CrossRefPubMed
45.
go back to reference De Moraes SL, Gregório LE, Tomaz JC, Lopes NP. Rapid screening and identification of polar constituents from Brazilian Arnica Lychnophora sp. by LC-UV/DAD-ESI-MS and LC-UV/DAD-ESI-MS/MS analysis. Chromatographia. 2009;69:157–65.CrossRef De Moraes SL, Gregório LE, Tomaz JC, Lopes NP. Rapid screening and identification of polar constituents from Brazilian Arnica Lychnophora sp. by LC-UV/DAD-ESI-MS and LC-UV/DAD-ESI-MS/MS analysis. Chromatographia. 2009;69:157–65.CrossRef
46.
go back to reference Ryu HW, Cho JK, Curtis-Long MJ, Yuk HJ, Kim YS, Jung S, Kim YS, Lee BW, Park KH. α-Glucosidase inhibition and antihyperglycemic activity of prenylated xanthones from Garcinia mangostana. Phytochemistry. 2011;72:2148–54.CrossRefPubMed Ryu HW, Cho JK, Curtis-Long MJ, Yuk HJ, Kim YS, Jung S, Kim YS, Lee BW, Park KH. α-Glucosidase inhibition and antihyperglycemic activity of prenylated xanthones from Garcinia mangostana. Phytochemistry. 2011;72:2148–54.CrossRefPubMed
47.
go back to reference Siddhuraju P, Becker K. Antioxidant properties of various solvent extracts of total phenolic constituents from three different agro climatic origins of drumstick tree (Moringa oleifera lam.) leaves. J Agr Food Chem. 2003;5:2144–55.CrossRef Siddhuraju P, Becker K. Antioxidant properties of various solvent extracts of total phenolic constituents from three different agro climatic origins of drumstick tree (Moringa oleifera lam.) leaves. J Agr Food Chem. 2003;5:2144–55.CrossRef
48.
go back to reference Anwar F, Jamil A, Iqbal S, Sheikh MA. Antioxidant activity of various plant extracts under ambient and accelerated storage of sunflower oil. Grasas Aceites. 2006;57:189–97. Anwar F, Jamil A, Iqbal S, Sheikh MA. Antioxidant activity of various plant extracts under ambient and accelerated storage of sunflower oil. Grasas Aceites. 2006;57:189–97.
49.
go back to reference Sultana B, Anwar F, Ashraf M. Effect of extraction solvent/ technique on the antioxidant activity of selected medicinal plant extracts. Molecules. 2009;14:2167–80.CrossRefPubMedPubMedCentral Sultana B, Anwar F, Ashraf M. Effect of extraction solvent/ technique on the antioxidant activity of selected medicinal plant extracts. Molecules. 2009;14:2167–80.CrossRefPubMedPubMedCentral
50.
go back to reference Wijekoon MMJO, Bhat R, Karim AA. Effect of extraction solvents on the phenolic compounds and antioxidant activities of bunga kantan (Etlingera elatior Jack) inflorescence. J Food Compos Anal. 2011;24:615–9.CrossRef Wijekoon MMJO, Bhat R, Karim AA. Effect of extraction solvents on the phenolic compounds and antioxidant activities of bunga kantan (Etlingera elatior Jack) inflorescence. J Food Compos Anal. 2011;24:615–9.CrossRef
51.
go back to reference Markom M, Hasan M, Daud W, Sigh H, Jahim JM. Extraction of hydrolysable tannins from Phyllanthus niruri Linn. Effects of solvents and extraction methods. Sep Purif Technol. 2007;52:487–96.CrossRef Markom M, Hasan M, Daud W, Sigh H, Jahim JM. Extraction of hydrolysable tannins from Phyllanthus niruri Linn. Effects of solvents and extraction methods. Sep Purif Technol. 2007;52:487–96.CrossRef
52.
go back to reference Kim J, Yang J, Kim M. Alpha glucosidase inhibitory effect, anti-microbial activity and UPLC analysis of Rhus verniciflua under various extract conditions. J Med Plants Res. 2011;5:778–83. Kim J, Yang J, Kim M. Alpha glucosidase inhibitory effect, anti-microbial activity and UPLC analysis of Rhus verniciflua under various extract conditions. J Med Plants Res. 2011;5:778–83.
53.
go back to reference Alothman M, Bhatt R, Karim AA. Antioxidant capacity and phenolic content of selected tropical fruits from Malaysia, extracted with different solvents. Food Chem. 2009;15:785–8.CrossRef Alothman M, Bhatt R, Karim AA. Antioxidant capacity and phenolic content of selected tropical fruits from Malaysia, extracted with different solvents. Food Chem. 2009;15:785–8.CrossRef
54.
go back to reference Do QD, Angkawijaya AE, Tran-Nguyen PL, Huynh LH, Soetaredjo FE, Ismadji S, Yi-Hsu J. Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatic. J Food Drug Anal. 2014;22:296–302.CrossRef Do QD, Angkawijaya AE, Tran-Nguyen PL, Huynh LH, Soetaredjo FE, Ismadji S, Yi-Hsu J. Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatic. J Food Drug Anal. 2014;22:296–302.CrossRef
55.
go back to reference Turkmen N, Sari F, Velioglu YS. Effects of extraction solvents on concentration and antioxidant activity of black and black mate tea polyphenols determined by ferrous tartrate and Foline-Ciocalteu methods. Food Chem. 2006;99:835–41.CrossRef Turkmen N, Sari F, Velioglu YS. Effects of extraction solvents on concentration and antioxidant activity of black and black mate tea polyphenols determined by ferrous tartrate and Foline-Ciocalteu methods. Food Chem. 2006;99:835–41.CrossRef
56.
go back to reference Hayouni A, Abedrabba M, Bouix M, Hamdi M. The effects of solvents and extraction method on the phenolic contents and biological activities in vitro of Tunisian quercuscoccifera L. and Juniperusphoenicea L. fruit extracts. Food Chem. 2007;105:1126–34.CrossRef Hayouni A, Abedrabba M, Bouix M, Hamdi M. The effects of solvents and extraction method on the phenolic contents and biological activities in vitro of Tunisian quercuscoccifera L. and Juniperusphoenicea L. fruit extracts. Food Chem. 2007;105:1126–34.CrossRef
57.
go back to reference Dutta AK, Gope PS, Makhnoon S, Siddiquee MA, Kabir Y. Effect of solvent extraction on phenolic content, antioxidant and α-amylase inhibition activities of Swertia chirata. Int J Drug Dev Res. 2012;4:317–25. Dutta AK, Gope PS, Makhnoon S, Siddiquee MA, Kabir Y. Effect of solvent extraction on phenolic content, antioxidant and α-amylase inhibition activities of Swertia chirata. Int J Drug Dev Res. 2012;4:317–25.
58.
go back to reference Jung M, Park M, Lee HC, Kang YH, Kang ES, Kim SK. Antidiabetic agents from medicinal plants. Curr Med Chem. 2006;13:1203–18.CrossRefPubMed Jung M, Park M, Lee HC, Kang YH, Kang ES, Kim SK. Antidiabetic agents from medicinal plants. Curr Med Chem. 2006;13:1203–18.CrossRefPubMed
59.
go back to reference Andrade-Cetto A, Becerra-Jiménez J, Cárdenas-Vázquez R. Alfa- glucosidase -inhibiting activity of some Mexican plants used in the treatment of type 2 diabetes. J Ethnopharmacol. 2008;116:27–32.CrossRefPubMed Andrade-Cetto A, Becerra-Jiménez J, Cárdenas-Vázquez R. Alfa- glucosidase -inhibiting activity of some Mexican plants used in the treatment of type 2 diabetes. J Ethnopharmacol. 2008;116:27–32.CrossRefPubMed
60.
go back to reference Sugiwati S, Setiasih S, Afifah E. Antihyperglycemic activity of the mahkota dewa Phaleria macrocarpa (scheff.) boerl. Leaf extracts as an alpha-glucosidase inhibitor. Makara J Heal Res. 2009;13:74–8. Sugiwati S, Setiasih S, Afifah E. Antihyperglycemic activity of the mahkota dewa Phaleria macrocarpa (scheff.) boerl. Leaf extracts as an alpha-glucosidase inhibitor. Makara J Heal Res. 2009;13:74–8.
61.
go back to reference Wang H, Du YJ, Song HC. α-Glucosidase and α-amylase inhibitory activities of guava leaves. Food Chem. 2010;123:6–13.CrossRef Wang H, Du YJ, Song HC. α-Glucosidase and α-amylase inhibitory activities of guava leaves. Food Chem. 2010;123:6–13.CrossRef
62.
go back to reference Wresdiyati T, Sa’diah S, Winarto A, Febriyani V. Alpha-glucosidase inhibition and hypoglycemic activities of Sweitenia mahagoni seed extract. Hayati J Biosci. 2015;22:73–8.CrossRef Wresdiyati T, Sa’diah S, Winarto A, Febriyani V. Alpha-glucosidase inhibition and hypoglycemic activities of Sweitenia mahagoni seed extract. Hayati J Biosci. 2015;22:73–8.CrossRef
63.
go back to reference Sukrasno S, Fidriany I, Anggadiredja K, Handayani WA, Anam K. Influence of drying method on flavonoid content of Cosmos caudatus (Kunth) leaves. Res J Med Plant. 2011;5:189–95.CrossRef Sukrasno S, Fidriany I, Anggadiredja K, Handayani WA, Anam K. Influence of drying method on flavonoid content of Cosmos caudatus (Kunth) leaves. Res J Med Plant. 2011;5:189–95.CrossRef
64.
go back to reference Choi HK, Kim KH, Kim YS, Lee MW, Whang WK. Metabolomic differentiation of deer antlers of various origins by 1H-NMR spectrometry and principal components analysis. J Pharmaceut Biomed. 2006;41:1047–50.CrossRef Choi HK, Kim KH, Kim YS, Lee MW, Whang WK. Metabolomic differentiation of deer antlers of various origins by 1H-NMR spectrometry and principal components analysis. J Pharmaceut Biomed. 2006;41:1047–50.CrossRef
65.
go back to reference Erikkson L, Johansson E, Kettaneh-Wold N, Wold S, Trygg J, Wikstrom C. Multi and Megavariate data analysis part 1: basic principles and applications. 2nd ed. Götoborg: Umetrics Academy; 2006. p. 39–62. Erikkson L, Johansson E, Kettaneh-Wold N, Wold S, Trygg J, Wikstrom C. Multi and Megavariate data analysis part 1: basic principles and applications. 2nd ed. Götoborg: Umetrics Academy; 2006. p. 39–62.
66.
go back to reference Knekt P, Kumpulainen J, Järvinen R, Rissanen H, Heliövaara M, Reunanen A, Hakulinen T, Aromaa A. Flavonoid intake and risk of chronic diseases. Am J Clin Nutr. 2002;76:560–8.CrossRefPubMed Knekt P, Kumpulainen J, Järvinen R, Rissanen H, Heliövaara M, Reunanen A, Hakulinen T, Aromaa A. Flavonoid intake and risk of chronic diseases. Am J Clin Nutr. 2002;76:560–8.CrossRefPubMed
67.
go back to reference De Souza Schmidt Goncalves AE, Lajolo FM, Genovese MI. Chemical composition and antioxidant/antidiabetic potential of Brazilian native fruits and commercial frozen pulps. J Agr Food Chem. 2010;58:4666–74.CrossRef De Souza Schmidt Goncalves AE, Lajolo FM, Genovese MI. Chemical composition and antioxidant/antidiabetic potential of Brazilian native fruits and commercial frozen pulps. J Agr Food Chem. 2010;58:4666–74.CrossRef
68.
go back to reference Bansal P, Paul P, Mudgal J, Nayak PG, Panakal ST, Priyadarsini KI, Unnikrishnan MK. Antidiabetic, antihyperlipidemic and antioxidant effects of the flavonoid rich fraction of Pilea microphylla (L.) in high fat diet/streptozotocin-induced diabetes in mice. Exp Toxicol Pathol. 2000;64:651–8.CrossRef Bansal P, Paul P, Mudgal J, Nayak PG, Panakal ST, Priyadarsini KI, Unnikrishnan MK. Antidiabetic, antihyperlipidemic and antioxidant effects of the flavonoid rich fraction of Pilea microphylla (L.) in high fat diet/streptozotocin-induced diabetes in mice. Exp Toxicol Pathol. 2000;64:651–8.CrossRef
69.
go back to reference Wang H, Liu T, Huang D. Starch hydrolase inhibitors from edible plants. Adv Food Nutr Res. 2013;70:103–36.CrossRefPubMed Wang H, Liu T, Huang D. Starch hydrolase inhibitors from edible plants. Adv Food Nutr Res. 2013;70:103–36.CrossRefPubMed
70.
go back to reference Sreelatha S, Padma PR. Antioxidant activity and total phenolic content of Moringa oleifera leaves in two stages of maturity. Plant Food Hum Nutr. 2009;64:303–11.CrossRef Sreelatha S, Padma PR. Antioxidant activity and total phenolic content of Moringa oleifera leaves in two stages of maturity. Plant Food Hum Nutr. 2009;64:303–11.CrossRef
71.
go back to reference Drazkiewicz M, Baszynski T. Growth parameters and photosynthetic pigments in leaf segments of Zea mays exposed to cadmium, the related to protection mechanisms. J Plant Physiol. 2005;162:1013–21.CrossRefPubMed Drazkiewicz M, Baszynski T. Growth parameters and photosynthetic pigments in leaf segments of Zea mays exposed to cadmium, the related to protection mechanisms. J Plant Physiol. 2005;162:1013–21.CrossRefPubMed
72.
go back to reference Abdel-Farid IB, Hye KK, Young HC, Verpoorte R. Metabolic characterization of Brassica rapa leaves by NMR spectroscopy. J Agric Food Chem. 2007;55:7936–43.CrossRefPubMed Abdel-Farid IB, Hye KK, Young HC, Verpoorte R. Metabolic characterization of Brassica rapa leaves by NMR spectroscopy. J Agric Food Chem. 2007;55:7936–43.CrossRefPubMed
73.
go back to reference Ketchi DO, Kuiper PJC. Fatty acid levels in apple leaves of different age as affected by temperature. Physiol Plant. 1979;46(2):93–6.CrossRef Ketchi DO, Kuiper PJC. Fatty acid levels in apple leaves of different age as affected by temperature. Physiol Plant. 1979;46(2):93–6.CrossRef
74.
go back to reference Nguyen QH, Talou T, Cerny M, Evon P, Merah O. Oil and fatty acid accumulation during coriander (Coriandrum sativum L.) fruit ripening under organic cultivation. Crop J. 2015;3(4):366–9.CrossRef Nguyen QH, Talou T, Cerny M, Evon P, Merah O. Oil and fatty acid accumulation during coriander (Coriandrum sativum L.) fruit ripening under organic cultivation. Crop J. 2015;3(4):366–9.CrossRef
75.
go back to reference Ghasemzadeh A, Jaafar HZ, Rahmat A. Identification and concentration of some flavonoid components in Malaysian young ginger (Zingiber officinale roscoe) varieties by a high performance liquid chromatography method. Molecules. 2010;15:6231–43.CrossRefPubMedPubMedCentral Ghasemzadeh A, Jaafar HZ, Rahmat A. Identification and concentration of some flavonoid components in Malaysian young ginger (Zingiber officinale roscoe) varieties by a high performance liquid chromatography method. Molecules. 2010;15:6231–43.CrossRefPubMedPubMedCentral
Metadata
Title
Variation in the metabolites and α-glucosidase inhibitory activity of Cosmos caudatus at different growth stages
Authors
Wan Ahmad Wan-Nadilah
Muhammad Tayyab Akhtar
Khozirah Shaari
Alfi Khatib
Azizah Abdul Hamid
Muhajir Hamid
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2019
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-019-2655-9

Other articles of this Issue 1/2019

BMC Complementary Medicine and Therapies 1/2019 Go to the issue