Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2019

Open Access 01-12-2019 | Research article

Bitter gourd (Momordica charantia) possess developmental toxicity as revealed by screening the seeds and fruit extracts in zebrafish embryos

Authors: Muhammad Farooq Khan, Nael Abutaha, Fahd A. Nasr, Ali S. Alqahtani, Omar M. Noman, Mohammad A. M. Wadaan

Published in: BMC Complementary Medicine and Therapies | Issue 1/2019

Login to get access

Abstract

Background

Bitter gourd (Momordica charantia) has attracted the focus of researchers owing to its excellent anti-diabetic action. The beneficial effect of Momordica charantia on heart has been reported by in vitro and in vivo studies. However the developmental toxicity or potential risk of M. charantia on fetus heart development is largely unknown. Hence this study was designed to find out the developmental toxicity of M. charantia using zebrafish (Danio rerio) embryos.

Methods

The crude extracts were prepared from fruit and seeds of M. charantia. The Zebrafish embryos were exposed to serial dilution of each of the crude extract. The biologically active fractions were fractionated by C18 column using high pressure liquid chromatography. Fourier-transform infrared spectroscopy and gas chromatography coupled with mass spectrophotometry was done to identify chemical constituents in fruit and seed extract of M. charantia.

Results

The seed extract of M. charantia was lethal with LD50 values of 50 μg/ml to zebrafish embryos and multiple anomalies were observed in zebrafish embryos at sub-lethal concentration. However, the fruit extract was much safe and exposing the zebrafish embryos even to 200 μg/ml did not result any lethality. The fruit extract induced severe cardiac hypertrophy in treated embryos. The time window treatment showed that M. charantia perturbed the cardiac myoblast specification process in treated zebrafish embryos. The Fourier-transform infrared spectroscopy analyses revealed diverse chemical group in the active fruit fraction and five new type of compounds were identified in the crude seeds extract of M. charantia by gas chromatography and mass spectrophotometry.

Conclusion

The teratogenicity of seeds extract and cardiac toxicity by the fruit extract of M. charantia warned that the supplementation made from the fruit and seeds of M. charantia should be used with much care in pregnant diabetic patients to avoid possible damage to developing fetus.
Appendix
Available only for authorised users
Literature
1.
go back to reference Grover JK, Yadav SP. Pharmacological actions and potential uses of Momordica charantia: a review. J Ethnopharmacol. 2004;93(1):123–32.PubMedCrossRef Grover JK, Yadav SP. Pharmacological actions and potential uses of Momordica charantia: a review. J Ethnopharmacol. 2004;93(1):123–32.PubMedCrossRef
2.
go back to reference Beloin N, Gbeassor M, Akpagana K, Hudson J, de Soussa K, Koumaglo K, Arnason JT. Ethnomedicinal uses of Momordicacharantia (Cucurbitaceae) in Togo and relation to its phytochemistry and biological activity. J Ethnopharmacol. 2005;96(1–2):49–55.PubMedCrossRef Beloin N, Gbeassor M, Akpagana K, Hudson J, de Soussa K, Koumaglo K, Arnason JT. Ethnomedicinal uses of Momordicacharantia (Cucurbitaceae) in Togo and relation to its phytochemistry and biological activity. J Ethnopharmacol. 2005;96(1–2):49–55.PubMedCrossRef
3.
go back to reference Saxena A, Vikram NK. Role of selected Indian plants in management of type 2 diabetes: a review. J Altern Complement Med. 2004;10(2):369–78.PubMedCrossRef Saxena A, Vikram NK. Role of selected Indian plants in management of type 2 diabetes: a review. J Altern Complement Med. 2004;10(2):369–78.PubMedCrossRef
4.
go back to reference Soo May L, Sanip Z, Ahmed Shokri A, Abdul Kadir A, Md Lazin MR. The effects of Momordica charantia (bitter melon) supplementation in patients with primary knee osteoarthritis: a single-blinded, randomized controlled trial. Complement Ther Clin Pract. 2018;32:181–6.PubMedCrossRef Soo May L, Sanip Z, Ahmed Shokri A, Abdul Kadir A, Md Lazin MR. The effects of Momordica charantia (bitter melon) supplementation in patients with primary knee osteoarthritis: a single-blinded, randomized controlled trial. Complement Ther Clin Pract. 2018;32:181–6.PubMedCrossRef
5.
go back to reference Cortez-Navarrete M, Martinez-Abundis E, Perez-Rubio KG, Gonzalez-Ortiz M, Mendez-Del Villar M. Momordica charantia administration improves insulin secretion in type 2 diabetes mellitus. J Med Food. 2018;21(7):672–7.PubMedCrossRef Cortez-Navarrete M, Martinez-Abundis E, Perez-Rubio KG, Gonzalez-Ortiz M, Mendez-Del Villar M. Momordica charantia administration improves insulin secretion in type 2 diabetes mellitus. J Med Food. 2018;21(7):672–7.PubMedCrossRef
6.
go back to reference Krawinkel MB, Ludwig C, Swai ME, Yang RY, Chun KP, Habicht SD. Bitter gourd reduces elevated fasting plasma glucose levels in an intervention study among prediabetics in Tanzania. J Ethnopharmacol. 2018;216:1–7.PubMedCrossRef Krawinkel MB, Ludwig C, Swai ME, Yang RY, Chun KP, Habicht SD. Bitter gourd reduces elevated fasting plasma glucose levels in an intervention study among prediabetics in Tanzania. J Ethnopharmacol. 2018;216:1–7.PubMedCrossRef
7.
go back to reference Inayat UR, Khan RU, Khalil Ur R, Bashir M. Lower hypoglycemic but higher antiatherogenic effects of bitter melon than glibenclamide in type 2 diabetic patients. Nutr J. 2015;14:13.CrossRef Inayat UR, Khan RU, Khalil Ur R, Bashir M. Lower hypoglycemic but higher antiatherogenic effects of bitter melon than glibenclamide in type 2 diabetic patients. Nutr J. 2015;14:13.CrossRef
8.
go back to reference Basch E, Gabardi S, Ulbricht C. Bitter melon (Momordica charantia): a review of efficacy and safety. Am J Health-Syst Ph. 2003;60(4):356–9.CrossRef Basch E, Gabardi S, Ulbricht C. Bitter melon (Momordica charantia): a review of efficacy and safety. Am J Health-Syst Ph. 2003;60(4):356–9.CrossRef
9.
go back to reference Chen JC, Liu WQ, Lu L, Qiu MH, Zheng YT, Yang LM, Zhang XM, Zhou L, Li ZR. Kuguacins F-S, cucurbitane triterpenoids from Momordica charantia. Phytochemistry. 2009;70(1):133–40.PubMedCrossRef Chen JC, Liu WQ, Lu L, Qiu MH, Zheng YT, Yang LM, Zhang XM, Zhou L, Li ZR. Kuguacins F-S, cucurbitane triterpenoids from Momordica charantia. Phytochemistry. 2009;70(1):133–40.PubMedCrossRef
10.
go back to reference Sonibare MA, Moody JO, Adesanya EO. Use of medicinal plants for the treatment of measles in Nigeria. J Ethnopharmacol. 2009;122(2):268–72.PubMedCrossRef Sonibare MA, Moody JO, Adesanya EO. Use of medicinal plants for the treatment of measles in Nigeria. J Ethnopharmacol. 2009;122(2):268–72.PubMedCrossRef
11.
go back to reference Chunthorng-Orn J, Panthong S, Itharat A. Antimicrobial, antioxidant activities and total phenolic content of Thai medicinal plants used to treat HIV patients. J Med Assoc Thai. 2012;95(Suppl 1):S154–8.PubMed Chunthorng-Orn J, Panthong S, Itharat A. Antimicrobial, antioxidant activities and total phenolic content of Thai medicinal plants used to treat HIV patients. J Med Assoc Thai. 2012;95(Suppl 1):S154–8.PubMed
12.
14.
go back to reference Jha DK, Koneri R, Samaddar S. Medicinal use of an ancient herb Momordica Cymbalaria: a review. Int J Pharm Sci Res. 2018;9(2):432–41. Jha DK, Koneri R, Samaddar S. Medicinal use of an ancient herb Momordica Cymbalaria: a review. Int J Pharm Sci Res. 2018;9(2):432–41.
15.
go back to reference Hussan F, Yahaya MF, Teoh SL, Das S. Herbs for effective treatment of diabetes mellitus wounds: medicinal chemistry and future therapeutic options. Mini-Rev Med Chem. 2018;18(8):697–710.PubMedCrossRef Hussan F, Yahaya MF, Teoh SL, Das S. Herbs for effective treatment of diabetes mellitus wounds: medicinal chemistry and future therapeutic options. Mini-Rev Med Chem. 2018;18(8):697–710.PubMedCrossRef
16.
go back to reference Alippilakkotte S, Kumar S, Sreejith L. Fabrication of PLA/ag nanofibers by green synthesis method using Momordica charantia fruit extract for wound dressing applications. Colloid Surface A. 2017;529:771–82.CrossRef Alippilakkotte S, Kumar S, Sreejith L. Fabrication of PLA/ag nanofibers by green synthesis method using Momordica charantia fruit extract for wound dressing applications. Colloid Surface A. 2017;529:771–82.CrossRef
17.
go back to reference Abu Bakar FI, Abu Bakar MF, Rahmat A, Abdullah N, Sabran SF, Endrini S. Anti-gout potential of Malaysian medicinal plants. Front Pharmacol. 2018;9:261.PubMedPubMedCentralCrossRef Abu Bakar FI, Abu Bakar MF, Rahmat A, Abdullah N, Sabran SF, Endrini S. Anti-gout potential of Malaysian medicinal plants. Front Pharmacol. 2018;9:261.PubMedPubMedCentralCrossRef
19.
go back to reference Wang SZ, Li ZL, Yang GL, Ho CT, Li SM. Momordica charantia: a popular health-promoting vegetable with multifunctionality. Food Funct. 2017;8(5):1749–62.PubMedCrossRef Wang SZ, Li ZL, Yang GL, Ho CT, Li SM. Momordica charantia: a popular health-promoting vegetable with multifunctionality. Food Funct. 2017;8(5):1749–62.PubMedCrossRef
20.
go back to reference Rashid MMO, Ferdous J, Banik S, Islam MR, Uddin AHMM, Robel FN. Anthelmintic activity of silver-extract nanoparticles synthesized from the combination of silver nanoparticles and M. charantia fruit extract. BMC Complem Altern M. 2016;16:242.CrossRef Rashid MMO, Ferdous J, Banik S, Islam MR, Uddin AHMM, Robel FN. Anthelmintic activity of silver-extract nanoparticles synthesized from the combination of silver nanoparticles and M. charantia fruit extract. BMC Complem Altern M. 2016;16:242.CrossRef
21.
go back to reference Upadhyay A, Agrahari P, Singh DK. A review on salient pharmacological features of Momordica charantia. Int J Pharmacol. 2015;11(5):405–13.CrossRef Upadhyay A, Agrahari P, Singh DK. A review on salient pharmacological features of Momordica charantia. Int J Pharmacol. 2015;11(5):405–13.CrossRef
22.
go back to reference Licastro F, Franceschi C, Barbieri L, Stirpe F. Toxicity of Momordica charantia lectin and inhibitor for human normal and leukaemic lymphocytes. Virchows Arch B Cell Pathol Incl Mol Pathol. 1980;33(3):257–65.PubMedCrossRef Licastro F, Franceschi C, Barbieri L, Stirpe F. Toxicity of Momordica charantia lectin and inhibitor for human normal and leukaemic lymphocytes. Virchows Arch B Cell Pathol Incl Mol Pathol. 1980;33(3):257–65.PubMedCrossRef
23.
go back to reference da Silva TB, Costa CO, Galvao AF, Bomfim LM, Rodrigues AC, Mota MC, Dantas AA, Dos Santos TR, Soares MB, Bezerra DP. Cytotoxic potential of selected medicinal plants in Northeast Brazil. BMC Complement Altern Med. 2016;16:199.PubMedPubMedCentralCrossRef da Silva TB, Costa CO, Galvao AF, Bomfim LM, Rodrigues AC, Mota MC, Dantas AA, Dos Santos TR, Soares MB, Bezerra DP. Cytotoxic potential of selected medicinal plants in Northeast Brazil. BMC Complement Altern Med. 2016;16:199.PubMedPubMedCentralCrossRef
24.
25.
go back to reference Pitchakarn P, Suzuki S, Ogawa K, Pompimon W, Takahashi S, Asamoto M, Limtrakul P, Shirai T. Kuguacin J, a triterpeniod from Momordica charantia leaf, modulates the progression of androgen-independent human prostate cancer cell line, PC3. Food Chem Toxicol. 2012;50(3–4):840–7.PubMedCrossRef Pitchakarn P, Suzuki S, Ogawa K, Pompimon W, Takahashi S, Asamoto M, Limtrakul P, Shirai T. Kuguacin J, a triterpeniod from Momordica charantia leaf, modulates the progression of androgen-independent human prostate cancer cell line, PC3. Food Chem Toxicol. 2012;50(3–4):840–7.PubMedCrossRef
26.
go back to reference Ru P, Steele R, Nerurkar PV, Phillips N, Ray RB. Bitter melon extract impairs prostate cancer cell-cycle progression and delays prostatic intraepithelial neoplasia in TRAMP model. Cancer Prev Res (Phila). 2011;4(12):2122–30.CrossRef Ru P, Steele R, Nerurkar PV, Phillips N, Ray RB. Bitter melon extract impairs prostate cancer cell-cycle progression and delays prostatic intraepithelial neoplasia in TRAMP model. Cancer Prev Res (Phila). 2011;4(12):2122–30.CrossRef
27.
go back to reference Pitchakarn P, Suzuki S, Ogawa K, Pompimon W, Takahashi S, Asamoto M, Limtrakul P, Shirai T. Induction of G1 arrest and apoptosis in androgen-dependent human prostate cancer by Kuguacin J, a triterpenoid from Momordica charantia leaf. Cancer Lett. 2011;306(2):142–50.PubMedCrossRef Pitchakarn P, Suzuki S, Ogawa K, Pompimon W, Takahashi S, Asamoto M, Limtrakul P, Shirai T. Induction of G1 arrest and apoptosis in androgen-dependent human prostate cancer by Kuguacin J, a triterpenoid from Momordica charantia leaf. Cancer Lett. 2011;306(2):142–50.PubMedCrossRef
28.
go back to reference Pitchakarn P, Ogawa K, Suzuki S, Takahashi S, Asamoto M, Chewonarin T, Limtrakul P, Shirai T. Momordica charantia leaf extract suppresses rat prostate cancer progression in vitro and in vivo. Cancer Sci. 2010;101(10):2234–40.PubMedCrossRef Pitchakarn P, Ogawa K, Suzuki S, Takahashi S, Asamoto M, Chewonarin T, Limtrakul P, Shirai T. Momordica charantia leaf extract suppresses rat prostate cancer progression in vitro and in vivo. Cancer Sci. 2010;101(10):2234–40.PubMedCrossRef
29.
go back to reference Singh J, Cumming E, Manoharan G, Kalasz H, Adeghate E. Medicinal chemistry of the anti-diabetic effects of momordica charantia: active constituents and modes of actions. Open Med Chem J. 2011;5(Suppl 2):70–7.PubMedPubMedCentralCrossRef Singh J, Cumming E, Manoharan G, Kalasz H, Adeghate E. Medicinal chemistry of the anti-diabetic effects of momordica charantia: active constituents and modes of actions. Open Med Chem J. 2011;5(Suppl 2):70–7.PubMedPubMedCentralCrossRef
30.
go back to reference Raman A, Lau C. Anti-diabetic properties and phytochemistry of Momordica charantia L. (Cucurbitaceae). Phytomedicine. 1996;2(4):349–62.PubMedCrossRef Raman A, Lau C. Anti-diabetic properties and phytochemistry of Momordica charantia L. (Cucurbitaceae). Phytomedicine. 1996;2(4):349–62.PubMedCrossRef
31.
go back to reference Wang L, Clardy A, Hui DF, Gao AW, Wu Y. Antioxidant and antidiabetic properties of Chinese and Indian bitter melons (Momordica charantia L.). Food Biosci. 2019;29:73–80.CrossRef Wang L, Clardy A, Hui DF, Gao AW, Wu Y. Antioxidant and antidiabetic properties of Chinese and Indian bitter melons (Momordica charantia L.). Food Biosci. 2019;29:73–80.CrossRef
32.
go back to reference Njume C, Donkor O, McAinch AJ. Predisposing factors of type 2 diabetes mellitus and the potential protective role of native plants with functional properties. J Funct Foods. 2019;53:115–24.CrossRef Njume C, Donkor O, McAinch AJ. Predisposing factors of type 2 diabetes mellitus and the potential protective role of native plants with functional properties. J Funct Foods. 2019;53:115–24.CrossRef
33.
go back to reference Wan-Nadilah WA, Khozirah S, Khatib A, Hamid AA, Hamid M. Evaluation of the alpha-glucosidase inhibitory and free radical scavenging activities of selected traditional medicine plant species used in treating diabetes. Int Food Res J. 2019;26(1):75–85. Wan-Nadilah WA, Khozirah S, Khatib A, Hamid AA, Hamid M. Evaluation of the alpha-glucosidase inhibitory and free radical scavenging activities of selected traditional medicine plant species used in treating diabetes. Int Food Res J. 2019;26(1):75–85.
34.
go back to reference Maneenin C, Burawat J, Maneenin N, Nualkaew S, Arun S, Sampannang A, Iamsaard S. Antioxidant capacity of Momordica charantia extract and its protective effect on testicular damage in Valproic acid-induced rats. Int J Morphol. 2018;36(2):447–53.CrossRef Maneenin C, Burawat J, Maneenin N, Nualkaew S, Arun S, Sampannang A, Iamsaard S. Antioxidant capacity of Momordica charantia extract and its protective effect on testicular damage in Valproic acid-induced rats. Int J Morphol. 2018;36(2):447–53.CrossRef
35.
go back to reference Sandikapura MJ, Nyamathulla S, Noordin MI. Comparative antioxidant and antidiabetic effects of Syzygium polyanthum leaf and Momordica charantia fruit extracts. Pak J Pharm Sci. 2018;31(2):623–35.PubMed Sandikapura MJ, Nyamathulla S, Noordin MI. Comparative antioxidant and antidiabetic effects of Syzygium polyanthum leaf and Momordica charantia fruit extracts. Pak J Pharm Sci. 2018;31(2):623–35.PubMed
36.
go back to reference Torkamani AE, Syahariza ZA, Norziah MH, Wan AKM, Juliano P. Encapsulation of polyphenolic antioxidants obtained from Momordica charantia fruit within zein/gelatin shell core fibers via coaxial electrospinning. Food Biosci. 2018;21:60–71.CrossRef Torkamani AE, Syahariza ZA, Norziah MH, Wan AKM, Juliano P. Encapsulation of polyphenolic antioxidants obtained from Momordica charantia fruit within zein/gelatin shell core fibers via coaxial electrospinning. Food Biosci. 2018;21:60–71.CrossRef
37.
go back to reference Tripathi UN, Chandra D. The plant extracts of Momordica charantia and Trigonella foenum graecum have antioxidant and anti-hyperglycemic properties for cardiac tissue during diabetes mellitus. Oxidative Med Cell Longev. 2009;2(5):290–6.CrossRef Tripathi UN, Chandra D. The plant extracts of Momordica charantia and Trigonella foenum graecum have antioxidant and anti-hyperglycemic properties for cardiac tissue during diabetes mellitus. Oxidative Med Cell Longev. 2009;2(5):290–6.CrossRef
38.
go back to reference Raish M. Momordica charantia polysaccharides ameliorate oxidative stress, hyperlipidemia, inflammation, and apoptosis during myocardial infarction by inhibiting the NF-kappaB signaling pathway. Int J Biol Macromol. 2017;97:544–51.PubMedCrossRef Raish M. Momordica charantia polysaccharides ameliorate oxidative stress, hyperlipidemia, inflammation, and apoptosis during myocardial infarction by inhibiting the NF-kappaB signaling pathway. Int J Biol Macromol. 2017;97:544–51.PubMedCrossRef
39.
go back to reference Abas R, Othman F, Thent ZC. Protective effect of Momordica charantia fruit extract on hyperglycaemia-induced cardiac fibrosis. Oxidative Med Cell Longev. 2014;2014:429060.CrossRef Abas R, Othman F, Thent ZC. Protective effect of Momordica charantia fruit extract on hyperglycaemia-induced cardiac fibrosis. Oxidative Med Cell Longev. 2014;2014:429060.CrossRef
40.
go back to reference Barrow P. Revision of the ICH guideline on detection of toxicity to reproduction for medicinal products: SWOT analysis. Reprod Toxicol. 2016;64:57–63.PubMedCrossRef Barrow P. Revision of the ICH guideline on detection of toxicity to reproduction for medicinal products: SWOT analysis. Reprod Toxicol. 2016;64:57–63.PubMedCrossRef
41.
go back to reference Bass R, Ulbrich B, Hildebrandt AG, Weissinger J, Doi O, Baeder C, Fumero S, Harada Y, Lehmann H, Manson J, et al. Draft guideline on detection of toxicity to reproduction for medicinal products. Adverse Drug React T. 1991;10(3):127–41. Bass R, Ulbrich B, Hildebrandt AG, Weissinger J, Doi O, Baeder C, Fumero S, Harada Y, Lehmann H, Manson J, et al. Draft guideline on detection of toxicity to reproduction for medicinal products. Adverse Drug React T. 1991;10(3):127–41.
42.
go back to reference Pina B, Navarro L, Barata C, Raldua D, Martinez R, Casado M. Omics in zebrafish Teratogenesis. Methods Mol Biol. 2018;1797:421–41.PubMedCrossRef Pina B, Navarro L, Barata C, Raldua D, Martinez R, Casado M. Omics in zebrafish Teratogenesis. Methods Mol Biol. 2018;1797:421–41.PubMedCrossRef
43.
go back to reference Nishimura Y, Inoue A, Sasagawa S, Koiwa J, Kawaguchi K, Kawase R, Maruyama T, Kim S, Tanaka T. Using zebrafish in systems toxicology for developmental toxicity testing. Congenit Anom. 2016;56(1):18–27.CrossRef Nishimura Y, Inoue A, Sasagawa S, Koiwa J, Kawaguchi K, Kawase R, Maruyama T, Kim S, Tanaka T. Using zebrafish in systems toxicology for developmental toxicity testing. Congenit Anom. 2016;56(1):18–27.CrossRef
44.
go back to reference Kanungo J, Cuevas E, Ali SF, Paule MG. Zebrafish model in drug safety assessment. Curr Pharm Des. 2014;20(34):5416–29.PubMedCrossRef Kanungo J, Cuevas E, Ali SF, Paule MG. Zebrafish model in drug safety assessment. Curr Pharm Des. 2014;20(34):5416–29.PubMedCrossRef
45.
go back to reference Gibert Y, Trengove MC, Ward AC. Zebrafish as a genetic model in pre-clinical drug testing and screening. Curr Med Chem. 2013;20(19):2458–66.PubMedCrossRef Gibert Y, Trengove MC, Ward AC. Zebrafish as a genetic model in pre-clinical drug testing and screening. Curr Med Chem. 2013;20(19):2458–66.PubMedCrossRef
46.
go back to reference Teraoka H, Dong W, Hiraga T. Zebrafish as a novel experimental model for developmental toxicology. Congenit Anom. 2003;43(2):123–32.CrossRef Teraoka H, Dong W, Hiraga T. Zebrafish as a novel experimental model for developmental toxicology. Congenit Anom. 2003;43(2):123–32.CrossRef
47.
go back to reference Nishimura Y, Murakami S, Ashikawa Y, Sasagawa S, Umemoto N, Shimada Y, Tanaka T. Zebrafish as a systems toxicology model for developmental neurotoxicity testing. Congenit Anom. 2015;55(1):1–16.CrossRef Nishimura Y, Murakami S, Ashikawa Y, Sasagawa S, Umemoto N, Shimada Y, Tanaka T. Zebrafish as a systems toxicology model for developmental neurotoxicity testing. Congenit Anom. 2015;55(1):1–16.CrossRef
48.
go back to reference Ota S, Kawahara A. Zebrafish: a model vertebrate suitable for the analysis of human genetic disorders. Congenit Anom. 2014;54(1):8–11.CrossRef Ota S, Kawahara A. Zebrafish: a model vertebrate suitable for the analysis of human genetic disorders. Congenit Anom. 2014;54(1):8–11.CrossRef
49.
go back to reference Arenzana FJ, Carvan MJ 3rd, Aijon J, Sanchez-Gonzalez R, Arevalo R, Porteros A. Teratogenic effects of ethanol exposure on zebrafish visual system development. Neurotoxicol Teratol. 2006;28(3):342–8.PubMedCrossRef Arenzana FJ, Carvan MJ 3rd, Aijon J, Sanchez-Gonzalez R, Arevalo R, Porteros A. Teratogenic effects of ethanol exposure on zebrafish visual system development. Neurotoxicol Teratol. 2006;28(3):342–8.PubMedCrossRef
50.
go back to reference Hidayathulla S, Shahat AA, Ahamad SR, Al Moqbil AAN, Alsaid MS, Divakar DD. GC/MS analysis and characterization of 2-Hexadecen-1-ol and beta sitosterol from Schimpera arabica extract for its bioactive potential as antioxidant and antimicrobial. J Appl Microbiol. 2018;124(5):1082–91.PubMedCrossRef Hidayathulla S, Shahat AA, Ahamad SR, Al Moqbil AAN, Alsaid MS, Divakar DD. GC/MS analysis and characterization of 2-Hexadecen-1-ol and beta sitosterol from Schimpera arabica extract for its bioactive potential as antioxidant and antimicrobial. J Appl Microbiol. 2018;124(5):1082–91.PubMedCrossRef
51.
go back to reference Shanker K, Naradala J, Mohan GK, Kumar GS, Pravallika PL. A sub-acute oral toxicity analysis and comparative in vivo anti-diabetic activity of zinc oxide, cerium oxide, silver nanoparticles, and Momordica charantia in streptozotocin-induced diabetic Wistar rats. RSC Adv. 2017;7(59):37158–67.CrossRef Shanker K, Naradala J, Mohan GK, Kumar GS, Pravallika PL. A sub-acute oral toxicity analysis and comparative in vivo anti-diabetic activity of zinc oxide, cerium oxide, silver nanoparticles, and Momordica charantia in streptozotocin-induced diabetic Wistar rats. RSC Adv. 2017;7(59):37158–67.CrossRef
53.
go back to reference Xu X, Shan B, Liao CH, Xie JH, Wen PW, Shi JY. Anti-diabetic properties of Momordica charantia L. polysaccharide in alloxan-induced diabetic mice. Int J Biol Macromol. 2015;81:538–43.PubMedCrossRef Xu X, Shan B, Liao CH, Xie JH, Wen PW, Shi JY. Anti-diabetic properties of Momordica charantia L. polysaccharide in alloxan-induced diabetic mice. Int J Biol Macromol. 2015;81:538–43.PubMedCrossRef
54.
go back to reference Karan SK, Mondal A, Mishra SK, Pal D, Rout KK. Antidiabetic effect of Streblus asper in streptozotocin-induced diabetic rats. Pharm Biol. 2013;51(3):369–75.PubMedCrossRef Karan SK, Mondal A, Mishra SK, Pal D, Rout KK. Antidiabetic effect of Streblus asper in streptozotocin-induced diabetic rats. Pharm Biol. 2013;51(3):369–75.PubMedCrossRef
55.
go back to reference Zahra K, Malik MA, Mughal MS, Arshad M, Sohail MI. Hepatoprotective role of extracts of Momordica Charantia L. in acetaminophen-induced toxicity in rabbits. J Anim Plant Sci. 2012;22(2):273–7. Zahra K, Malik MA, Mughal MS, Arshad M, Sohail MI. Hepatoprotective role of extracts of Momordica Charantia L. in acetaminophen-induced toxicity in rabbits. J Anim Plant Sci. 2012;22(2):273–7.
56.
go back to reference Verissimo LF, Bacchi AD, Zaminelli T, de Paula GHO, Moreira EG. Herbs of interest to the Brazilian Federal Government: female reproductive and developmental toxicity studies. Rev Bras Farmacogn. 2011;21(6):1163–71.CrossRef Verissimo LF, Bacchi AD, Zaminelli T, de Paula GHO, Moreira EG. Herbs of interest to the Brazilian Federal Government: female reproductive and developmental toxicity studies. Rev Bras Farmacogn. 2011;21(6):1163–71.CrossRef
57.
go back to reference Uche-Nwachi EO, McEwen C. Teratogenic effect of the water extract of bitter gourd (Momordica charantia) on the Sprague Dawley rats. Afr J Tradit Complement Altern Med. 2009;7(1):24–33.PubMedPubMedCentral Uche-Nwachi EO, McEwen C. Teratogenic effect of the water extract of bitter gourd (Momordica charantia) on the Sprague Dawley rats. Afr J Tradit Complement Altern Med. 2009;7(1):24–33.PubMedPubMedCentral
58.
go back to reference Sheffield JS, Siegel D, Mirochnick M, Heine RP, Nguyen C, Bergman KL, Savic RM, Long J, Dooley KE, Nesin M. Designing drug trials: considerations for pregnant women. Clin Infect Dis. 2014;59(Suppl 7):S437–44.PubMedPubMedCentralCrossRef Sheffield JS, Siegel D, Mirochnick M, Heine RP, Nguyen C, Bergman KL, Savic RM, Long J, Dooley KE, Nesin M. Designing drug trials: considerations for pregnant women. Clin Infect Dis. 2014;59(Suppl 7):S437–44.PubMedPubMedCentralCrossRef
59.
go back to reference Sekar DS, Sivagnanam K, Subramanian S. Antidiabetic activity of Momordica charantia seeds on streptozotocin induced diabetic rats. Die Pharmazie. 2005;60(5):383–7.PubMed Sekar DS, Sivagnanam K, Subramanian S. Antidiabetic activity of Momordica charantia seeds on streptozotocin induced diabetic rats. Die Pharmazie. 2005;60(5):383–7.PubMed
60.
go back to reference Ahmad Z, Zamhuri KF, Yaacob A, Siong CH, Selvarajah M, Ismail A, Nazrul Hakim M. In vitro anti-diabetic activities and chemical analysis of polypeptide-k and oil isolated from seeds of Momordica charantia (bitter gourd). Molecules. 2012;17(8):9631–40.PubMedPubMedCentralCrossRef Ahmad Z, Zamhuri KF, Yaacob A, Siong CH, Selvarajah M, Ismail A, Nazrul Hakim M. In vitro anti-diabetic activities and chemical analysis of polypeptide-k and oil isolated from seeds of Momordica charantia (bitter gourd). Molecules. 2012;17(8):9631–40.PubMedPubMedCentralCrossRef
61.
go back to reference Teixido E, Piqué E, Boix N, Llobet J, Gomez J. Zebrafish as a model for developmental toxicity assessment; 2015. p. 65–83. Teixido E, Piqué E, Boix N, Llobet J, Gomez J. Zebrafish as a model for developmental toxicity assessment; 2015. p. 65–83.
62.
go back to reference Sipes NS, Padilla S, Knudsen TB. Zebrafish-as an integrative model for twenty-first century toxicity testing. Birth Defects Res C. 2011;93(3):256–67.CrossRef Sipes NS, Padilla S, Knudsen TB. Zebrafish-as an integrative model for twenty-first century toxicity testing. Birth Defects Res C. 2011;93(3):256–67.CrossRef
63.
go back to reference Behl M, Hsieh JH, Shafer TJ, Mundy WR, Rice JR, Boyd WA, Freedman JH, Hunter ES, Jarema KA, Padilla S, et al. Use of alternative assays to identify and prioritize organophosphorus flame retardants for potential developmental and neurotoxicity. Neurotoxicol Teratol. 2015;52:181–93.PubMedCrossRef Behl M, Hsieh JH, Shafer TJ, Mundy WR, Rice JR, Boyd WA, Freedman JH, Hunter ES, Jarema KA, Padilla S, et al. Use of alternative assays to identify and prioritize organophosphorus flame retardants for potential developmental and neurotoxicity. Neurotoxicol Teratol. 2015;52:181–93.PubMedCrossRef
65.
go back to reference Pereira J, Camara JS. Effectiveness of different solid-phase microextraction fibres for differentiation of selected Madeira island fruits based on their volatile metabolite profile--identification of novel compounds. Talanta. 2011;83(3):899–906.PubMedCrossRef Pereira J, Camara JS. Effectiveness of different solid-phase microextraction fibres for differentiation of selected Madeira island fruits based on their volatile metabolite profile--identification of novel compounds. Talanta. 2011;83(3):899–906.PubMedCrossRef
66.
go back to reference Sena S, Rasmussen IR, Wende AR, McQueen AP, Theobald HA, Wilde N, Pereira RO, Litwin SE, Berger JP, Abel ED. Cardiac hypertrophy caused by peroxisome proliferator- activated receptor-gamma agonist treatment occurs independently of changes in myocardial insulin signaling. Endocrinology. 2007;148(12):6047–53.PubMedCrossRef Sena S, Rasmussen IR, Wende AR, McQueen AP, Theobald HA, Wilde N, Pereira RO, Litwin SE, Berger JP, Abel ED. Cardiac hypertrophy caused by peroxisome proliferator- activated receptor-gamma agonist treatment occurs independently of changes in myocardial insulin signaling. Endocrinology. 2007;148(12):6047–53.PubMedCrossRef
68.
go back to reference Stainier DY, Lee RK, Fishman MC. Cardiovascular development in the zebrafish. I. Myocardial fate map and heart tube formation. Development. 1993;119(1):31–40.PubMed Stainier DY, Lee RK, Fishman MC. Cardiovascular development in the zebrafish. I. Myocardial fate map and heart tube formation. Development. 1993;119(1):31–40.PubMed
70.
71.
go back to reference Westerfield M. Zebrafish book: a guide for the laboratory use of zebrafish (Danio rerio). 5th ed. Eugene: University of Oregon Press; 2007. Westerfield M. Zebrafish book: a guide for the laboratory use of zebrafish (Danio rerio). 5th ed. Eugene: University of Oregon Press; 2007.
72.
go back to reference Strahle U, Scholz S, Geisler R, Greiner P, Hollert H, Rastegar S, Schumacher A, Selderslaghs I, Weiss C, Witters H, et al. Zebrafish embryos as an alternative to animal experiments-a commentary on the definition of the onset of protected life stages in animal welfare regulations. Reprod Toxicol. 2012;33(2):128–32.PubMedCrossRef Strahle U, Scholz S, Geisler R, Greiner P, Hollert H, Rastegar S, Schumacher A, Selderslaghs I, Weiss C, Witters H, et al. Zebrafish embryos as an alternative to animal experiments-a commentary on the definition of the onset of protected life stages in animal welfare regulations. Reprod Toxicol. 2012;33(2):128–32.PubMedCrossRef
Metadata
Title
Bitter gourd (Momordica charantia) possess developmental toxicity as revealed by screening the seeds and fruit extracts in zebrafish embryos
Authors
Muhammad Farooq Khan
Nael Abutaha
Fahd A. Nasr
Ali S. Alqahtani
Omar M. Noman
Mohammad A. M. Wadaan
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2019
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-019-2599-0

Other articles of this Issue 1/2019

BMC Complementary Medicine and Therapies 1/2019 Go to the issue