Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2019

Open Access 01-12-2019 | Research article

Curcumin as a permeability enhancer enhanced the antihyperlipidemic activity of dietary green tea extract

Authors: Ashlesha P. Pandit, Shreyas R. Joshi, Preeti S. Dalal, Vinita C. Patole

Published in: BMC Complementary Medicine and Therapies | Issue 1/2019

Login to get access

Abstract

Background

Green tea has polyphenols like flavonoids and catechins; mainly epigallocatechin-3-gallate (EGCG), epicatechin gallate (ECG), epigallocatechin (EGC) and epicatechin (EC), out of which EGCG is of higher abundance. EGCG has shown preventive role in hypercholesterolemia. However, due to low oral bioavailability, a need arises to improve its membrane permeability and transporter-mediated intestinal efflux. Therefore, an attempt was made to enhance permeability and bioavailability of EGCG using curcumin to treat hyperlipidemia. Further, it was formulated in herbal tea bags to achieve patient compliance.

Methods

EGCG extracted from green tea leaves was confirmed by High Performance Thin Layer Chromatography. Green tea extract (GTE), curcumin and their mixtures were subjected to Fourier Transform Infra-Red spectroscopy and Differential Scanning Calorimetry for compatibility studies. Powder formulation was prepared comprising GTE, curcumin, sucralose and cardamom.

Results

Ex-vivo study was performed on everted goat intestine, analyzed by HPLC and demonstrated highest permeation of GTE:curcumin (220:50) (53.15%) than GTE (20.57%). Antihyperlipidemic activity was performed in rats for 15 days. Blood sample analysis of rats of test groups (formulation and GTE solution) fed on high fat diet showed (mg/dl):cholesterol 80 and 90, triglycerides 73.25 and 85.5, HDL 50.75 and 46, LDL 43.9 and 46, VLDL 14.65 and 17.1 respectively with significant lipid regulating effect.

Conclusion

Curcumin enhanced permeability of EGCG. Therefore, P-glycoprotein pump inside intestine can be potential mechanism to enhance permeability of EGCG. Thus, EGCG-curcumin herbal tea bag is promising nutraceutical to treat hyperlipidemia in day-to-day life achieving patient compliance.
Literature
1.
go back to reference Tuhin RH, Begum MM, Rahman MS, Karim R, Begum T, Ahmed SU, Mostofa R, Hossain A, Abdel-Daim MM, Begum R. Wound healing effect of Euphorbia hirta Linn. (Euphorbiaceae) in alloxan induced diabetic rats. BMC Complement Altern Med. 2017;17:423.CrossRef Tuhin RH, Begum MM, Rahman MS, Karim R, Begum T, Ahmed SU, Mostofa R, Hossain A, Abdel-Daim MM, Begum R. Wound healing effect of Euphorbia hirta Linn. (Euphorbiaceae) in alloxan induced diabetic rats. BMC Complement Altern Med. 2017;17:423.CrossRef
2.
go back to reference Pandey KB, Rizvi SI. Plant polyphenols as dietary antioxidants in human health and disease. Oxidative Med Cell Longev. 2009;2(5):270–8.CrossRef Pandey KB, Rizvi SI. Plant polyphenols as dietary antioxidants in human health and disease. Oxidative Med Cell Longev. 2009;2(5):270–8.CrossRef
3.
go back to reference Wolfram S, Raederstorff D, Preller M, Wang Y, Teixeira SR, Riegger C, Weber P. Epigallocatechingallate supplementation alleviates diabetes in rodents. J Nutr. 2006;136:2512–8.CrossRef Wolfram S, Raederstorff D, Preller M, Wang Y, Teixeira SR, Riegger C, Weber P. Epigallocatechingallate supplementation alleviates diabetes in rodents. J Nutr. 2006;136:2512–8.CrossRef
5.
go back to reference Ramadan G, Nadia M, El-BeihAbd El-Ghffar EA. Modulatory effects of black vs. green tea aqueous extract on hyperglycaemia, hyperlipidaemia and liver dysfunction in diabetic and obese rat models. Brit J Nutr. 2009;102:1611–9.CrossRef Ramadan G, Nadia M, El-BeihAbd El-Ghffar EA. Modulatory effects of black vs. green tea aqueous extract on hyperglycaemia, hyperlipidaemia and liver dysfunction in diabetic and obese rat models. Brit J Nutr. 2009;102:1611–9.CrossRef
6.
go back to reference Mohan H. Textbook of pathology. Fourth ed. New Delhi: Jaypee Publications; 2000. p. 802–11. Mohan H. Textbook of pathology. Fourth ed. New Delhi: Jaypee Publications; 2000. p. 802–11.
7.
go back to reference Roghani M, Baluchnejadmojarad T. Hypoglycemic and hypolipidemic effect and antioxidant activity of chronic epigallocatechin-gallate in streptozotocin-diabetic rats. Pathophysiology. 2010;17:55–9.CrossRef Roghani M, Baluchnejadmojarad T. Hypoglycemic and hypolipidemic effect and antioxidant activity of chronic epigallocatechin-gallate in streptozotocin-diabetic rats. Pathophysiology. 2010;17:55–9.CrossRef
8.
go back to reference Al-Sayed E, Abdel-Daim MM. Analgesic and anti-inflammatory activities of epicatechin gallate from Bauhinia hookeri. Drug Dev. Res. 2018;79:157-64.CrossRef Al-Sayed E, Abdel-Daim MM. Analgesic and anti-inflammatory activities of epicatechin gallate from Bauhinia hookeri. Drug Dev. Res. 2018;79:157-64.CrossRef
9.
go back to reference Al-Sayed E, Abdel-Daim MM, Kilany OE, Karonen M, Sinkkonen J. Ren Fail. 2015;37(7):1198–207.CrossRef Al-Sayed E, Abdel-Daim MM, Kilany OE, Karonen M, Sinkkonen J. Ren Fail. 2015;37(7):1198–207.CrossRef
10.
go back to reference Steinmann J, Buer J, Pietschmann T, Steinmann E. Anti-infective properties of epigallocatechin-3-gallate (EGCG), a component of green tea. Br J Pharmacol. 2013;168:1059–73.CrossRef Steinmann J, Buer J, Pietschmann T, Steinmann E. Anti-infective properties of epigallocatechin-3-gallate (EGCG), a component of green tea. Br J Pharmacol. 2013;168:1059–73.CrossRef
11.
go back to reference Derliz M, Hunstein W. Epigallocatechin-3-gallate (EGCG) for clinical trials: more pitfalls than promises? Int J Mol Sci. 2011;12:5592–603.CrossRef Derliz M, Hunstein W. Epigallocatechin-3-gallate (EGCG) for clinical trials: more pitfalls than promises? Int J Mol Sci. 2011;12:5592–603.CrossRef
12.
go back to reference Zaveri NT. Green tea and its polyphenolic catechins: medicinal uses in cancer and noncancer applications. Life Sci. 2006;78:2073–83.CrossRef Zaveri NT. Green tea and its polyphenolic catechins: medicinal uses in cancer and noncancer applications. Life Sci. 2006;78:2073–83.CrossRef
13.
go back to reference Koo SI, Noh SK. Green tea as inhibitor of the intestinal absorption of lipids: potential mechanism for its lipid-lowering effect. J NutrBiochem. 2007;18:179–83. Koo SI, Noh SK. Green tea as inhibitor of the intestinal absorption of lipids: potential mechanism for its lipid-lowering effect. J NutrBiochem. 2007;18:179–83.
14.
go back to reference Singh DK, Banerjee S, Porter TD. Green and black tea extracts inhibit HMG-CoA reductase and activate AMP-kinase to decrease cholesterol synthesis in hepatoma cell. J Nutr Biochem. 2009;20:816–22.CrossRef Singh DK, Banerjee S, Porter TD. Green and black tea extracts inhibit HMG-CoA reductase and activate AMP-kinase to decrease cholesterol synthesis in hepatoma cell. J Nutr Biochem. 2009;20:816–22.CrossRef
15.
go back to reference Klinski E, Semov A, Yan X, Alakhov V, Muyzhnek E, Kiselev V. Block copolymer based composition of epigallocatechin-3-gallate with improved oral bioavailability as a way to increase its therapeutic activity. J NanomedicineBiotherapeuticDiscov. 2013;3:1–5. Klinski E, Semov A, Yan X, Alakhov V, Muyzhnek E, Kiselev V. Block copolymer based composition of epigallocatechin-3-gallate with improved oral bioavailability as a way to increase its therapeutic activity. J NanomedicineBiotherapeuticDiscov. 2013;3:1–5.
16.
go back to reference Kanwar J, Taskeen M, Mohammad I, Huo C, Chan TH, Dou QP. Recent advances on tea polyphenols. Front Biosci. 2012;4:111–31.CrossRef Kanwar J, Taskeen M, Mohammad I, Huo C, Chan TH, Dou QP. Recent advances on tea polyphenols. Front Biosci. 2012;4:111–31.CrossRef
17.
go back to reference Abdel-Daim MM, Abdou RH. Protective effects of diallyl sulfide and curcumin separately against thallium-induced toxicity in rats. Cell J. 2015;17(2):379–88.PubMedPubMedCentral Abdel-Daim MM, Abdou RH. Protective effects of diallyl sulfide and curcumin separately against thallium-induced toxicity in rats. Cell J. 2015;17(2):379–88.PubMedPubMedCentral
18.
go back to reference Ajazuddin AA, Qureshi A, Kumari L, Vaishnav P, Sharma M, Saraf S, Saraf S. Role of herbal bioactives as a potential bioavailability enhancer for active pharmaceutical ingredients. Fitoterapia. 2014;97:1–14.CrossRef Ajazuddin AA, Qureshi A, Kumari L, Vaishnav P, Sharma M, Saraf S, Saraf S. Role of herbal bioactives as a potential bioavailability enhancer for active pharmaceutical ingredients. Fitoterapia. 2014;97:1–14.CrossRef
19.
go back to reference Li M, Cui J, Ngadi MO, Ying M. Absorption mechanism of whey-protein-delivered curcumin using Caco-2 cell monolayers. Food Chem. 2015;180:48–54.CrossRef Li M, Cui J, Ngadi MO, Ying M. Absorption mechanism of whey-protein-delivered curcumin using Caco-2 cell monolayers. Food Chem. 2015;180:48–54.CrossRef
20.
go back to reference Lambert DJ, Hong J, Kim HD, Mishin MV, Yang SC. Piperine enhances the bioavailability of the tea polyphenol-epigallocatechin-3-gallate in mice. J Nutr. 2004;134:1948–52.CrossRef Lambert DJ, Hong J, Kim HD, Mishin MV, Yang SC. Piperine enhances the bioavailability of the tea polyphenol-epigallocatechin-3-gallate in mice. J Nutr. 2004;134:1948–52.CrossRef
21.
go back to reference Dube A, Joseph A, Nicolazzo LI. Chitosan nanoparticles enhance the intestinal absorption of the green tea catechins (+) - catechin and (−) - epigallocatechingallate. Eur J Pharm Sci. 2010;4:219–25.CrossRef Dube A, Joseph A, Nicolazzo LI. Chitosan nanoparticles enhance the intestinal absorption of the green tea catechins (+) - catechin and (−) - epigallocatechingallate. Eur J Pharm Sci. 2010;4:219–25.CrossRef
22.
go back to reference Onoue S, Ochi M, Yamada S. Development of (−)-epigallocatechin-3-gallate (EGCG)-loaded enteric microparticles with intestinal mucoadhesive property. Int J Pharm. 2011;410:111–3.CrossRef Onoue S, Ochi M, Yamada S. Development of (−)-epigallocatechin-3-gallate (EGCG)-loaded enteric microparticles with intestinal mucoadhesive property. Int J Pharm. 2011;410:111–3.CrossRef
23.
go back to reference Bazinet L, Labb’e D, Tremblay A. Production of green tea EGC- and EGCG-enriched fractions by a two-step extraction procedure. Sep Purif Technol. 2007;56:53–6.CrossRef Bazinet L, Labb’e D, Tremblay A. Production of green tea EGC- and EGCG-enriched fractions by a two-step extraction procedure. Sep Purif Technol. 2007;56:53–6.CrossRef
24.
go back to reference Elias M, Antony B. Quantitative determination of epigallocatechingallate present in green tea extract by HPTLC. Ind J Pharm Sci. 2001;63:419-20. Elias M, Antony B. Quantitative determination of epigallocatechingallate present in green tea extract by HPTLC. Ind J Pharm Sci. 2001;63:419-20.
25.
go back to reference Reich E, Schibli A, Widmer V, Jorns R, Wolfram E, DeBatt A. HPTLC methods for identification of green tea and green tea extract. J Liq Chrom Related Tech. 2006;29:2141–51.CrossRef Reich E, Schibli A, Widmer V, Jorns R, Wolfram E, DeBatt A. HPTLC methods for identification of green tea and green tea extract. J Liq Chrom Related Tech. 2006;29:2141–51.CrossRef
26.
go back to reference Pandit AP, Tekade AR, Devkar TB, Divase GT, Rodde MS. An apparatus for conducting ex vivo studies on tissues. 2012. Indian Patent; 2363/MUM/2012. Pandit AP, Tekade AR, Devkar TB, Divase GT, Rodde MS. An apparatus for conducting ex vivo studies on tissues. 2012. Indian Patent; 2363/MUM/2012.
27.
go back to reference Dixit P, Jain DK, Dumbwani J. Standardization of an ex vivo method for determination of intestinal permeability of drugs using everted rat intestine apparatus. J Pharmacol Toxicol Methods. 2012;65:13–7.CrossRef Dixit P, Jain DK, Dumbwani J. Standardization of an ex vivo method for determination of intestinal permeability of drugs using everted rat intestine apparatus. J Pharmacol Toxicol Methods. 2012;65:13–7.CrossRef
28.
go back to reference Fangueiro JF, Parra A, Silva AM, Egea MA, Souto EB, Garcia ML, Calpena AC. Validation of a high performance liquid chromatography method for the stabilization of epigallocatechingallate. Int J Pharm. 2014;475:181–90.CrossRef Fangueiro JF, Parra A, Silva AM, Egea MA, Souto EB, Garcia ML, Calpena AC. Validation of a high performance liquid chromatography method for the stabilization of epigallocatechingallate. Int J Pharm. 2014;475:181–90.CrossRef
29.
go back to reference Karaca T, Bayıroglu F, Cemek M, Comba B, Ayaz A, Karaboga I. Effects of green tea extract and lactobacillus casein strain shirota on levels of serum minerals, cholesterol, triglycerides, glucose and lactate in rats fed on high-carbohydrate and high-lipid diets. J Med Sci. 2013;3:1–7. Karaca T, Bayıroglu F, Cemek M, Comba B, Ayaz A, Karaboga I. Effects of green tea extract and lactobacillus casein strain shirota on levels of serum minerals, cholesterol, triglycerides, glucose and lactate in rats fed on high-carbohydrate and high-lipid diets. J Med Sci. 2013;3:1–7.
30.
go back to reference Thirumalai T, Tamilselvan N, David E. Hypolipidemic activity of Piper betel in high fat diet induced hyperlipidaemic rat. J Acute Dis. 2014;3:131-5.CrossRef Thirumalai T, Tamilselvan N, David E. Hypolipidemic activity of Piper betel in high fat diet induced hyperlipidaemic rat. J Acute Dis. 2014;3:131-5.CrossRef
31.
go back to reference Lee SM, Kim CW, Kim JK, Shin HJ, Baik JH. GCG-rich tea catechins are effective in lowering cholesterol and triglyceride concentrations in hyperlipidemic rats. Lipids. 2008;43:419–29.CrossRef Lee SM, Kim CW, Kim JK, Shin HJ, Baik JH. GCG-rich tea catechins are effective in lowering cholesterol and triglyceride concentrations in hyperlipidemic rats. Lipids. 2008;43:419–29.CrossRef
32.
go back to reference Peng Y, Wu Y, Li Y. Development of tea extracts and chitosan composite films for active packaging materials. Int J Bio Macromol. 2013;59:282–9.CrossRef Peng Y, Wu Y, Li Y. Development of tea extracts and chitosan composite films for active packaging materials. Int J Bio Macromol. 2013;59:282–9.CrossRef
34.
go back to reference Raederstorff DG, Schlachter MF, Elste V, Weber P. Effect of EGCG on lipid absorption and plasma lipid levels in rats. J Nutr Biochem. 2003;14:326–32.CrossRef Raederstorff DG, Schlachter MF, Elste V, Weber P. Effect of EGCG on lipid absorption and plasma lipid levels in rats. J Nutr Biochem. 2003;14:326–32.CrossRef
35.
go back to reference Koo SI, Noh SK. Green tea as inhibitor of the intestinal absorption of lipids: potential mechanism for its lipid-lowering effect. J Nutr Biochem. 2007;18:179–83.CrossRef Koo SI, Noh SK. Green tea as inhibitor of the intestinal absorption of lipids: potential mechanism for its lipid-lowering effect. J Nutr Biochem. 2007;18:179–83.CrossRef
Metadata
Title
Curcumin as a permeability enhancer enhanced the antihyperlipidemic activity of dietary green tea extract
Authors
Ashlesha P. Pandit
Shreyas R. Joshi
Preeti S. Dalal
Vinita C. Patole
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2019
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-019-2545-1

Other articles of this Issue 1/2019

BMC Complementary Medicine and Therapies 1/2019 Go to the issue