Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2019

Open Access 01-12-2019 | Alzheimer's Disease | Research article

Neuroprotective effects of berberine in animal models of Alzheimer’s disease: a systematic review of pre-clinical studies

Authors: Ning-Ning Yuan, Cui-Zan Cai, Ming-Yue Wu, Huan-Xing Su, Min Li, Jia-Hong Lu

Published in: BMC Complementary Medicine and Therapies | Issue 1/2019

Login to get access

Abstract

Background

Berberine is an isoquinoline alkaloid extracted from various Berberis species which is widely used in East Asia for a wide range of symptoms. Recently, neuroprotective effects of berberine in Alzheimer’s disease (AD) animal models are being extensively reported. So far, no clinical trial has been carried out on the neuroprotective effects of berberine. However, a review of the experimental data is needed before choosing berberine as a candidate drug for clinical experiments. We conducted a systematic review on AD rodent models to analyze the drug effects with minimal selection bias.

Methods

Five online literature databases were searched to find publications reporting studies of the effect of berberine treatment on animal models of AD. Up to March 2018, 15 papers were identified to describe the efficacy of berberine.

Results

The included 15 articles met our inclusion criteria with different quality ranging from 3 to 5. We analyzed data extracted from full texts with regard to pharmacological effects and potential anti-Alzheimer’s properties. Our analysis revealed that in multiple memory defects animal models, berberine showed significant memory-improving activities with multiple mechanisms, such as anti-inflammation, anti-oxidative stress, cholinesterase (ChE) inhibition and anti-amyloid effects.

Conclusion

AD is likely to be a complex disease driven by multiple factors. Yet, many therapeutic strategies based on lowering β-amyloid have failed in clinical trials. This suggest that the threapy should not base on a single cause of Alzheimer’s disease but rather a number of different pathways that lead to the disease. Overall we think that berberine can be a promising multipotent agent to combat Alzheimer’s disease.
Literature
1.
go back to reference Krantic S. Editorial (thematic issue: from current diagnostic tools and therapeutics for Alzheimer's disease towards earlier diagnostic markers and treatment targets). Curr Alzheimer Res. 2017;14:2–5.CrossRef Krantic S. Editorial (thematic issue: from current diagnostic tools and therapeutics for Alzheimer's disease towards earlier diagnostic markers and treatment targets). Curr Alzheimer Res. 2017;14:2–5.CrossRef
2.
go back to reference Association As. 2017 Alzheimer's disease facts and figures. Alzheimers Dement. 2017;13:325–73.CrossRef Association As. 2017 Alzheimer's disease facts and figures. Alzheimers Dement. 2017;13:325–73.CrossRef
3.
go back to reference Hardy J, Allsop D. Amyloid deposition as the central event in the aetiology of Alzheimer's disease. Trends Pharmacol Sci. 1991;12:383–8.CrossRef Hardy J, Allsop D. Amyloid deposition as the central event in the aetiology of Alzheimer's disease. Trends Pharmacol Sci. 1991;12:383–8.CrossRef
4.
go back to reference Mudher A, Lovestone S. Alzheimer's disease–do tauists and baptists finally shake hands? Trends Neurosci. 2002;25:22–6.CrossRef Mudher A, Lovestone S. Alzheimer's disease–do tauists and baptists finally shake hands? Trends Neurosci. 2002;25:22–6.CrossRef
5.
go back to reference Su B, Wang X, Nunomura A, Moreira PI, Lee H-g, Perry G, Smith MA, Zhu X. Oxidative stress signaling in Alzheimer's disease. Curr Alzheimer Res. 2008;5:525–32.CrossRef Su B, Wang X, Nunomura A, Moreira PI, Lee H-g, Perry G, Smith MA, Zhu X. Oxidative stress signaling in Alzheimer's disease. Curr Alzheimer Res. 2008;5:525–32.CrossRef
6.
go back to reference Greig NH, Mattson MP, Perry T, Chan SL, Giordano T, Sambamurti K, Rogers JT, Ovadia H, Lahiri DK. New therapeutic strategies and drug candidates for neurodegenerative diseases: p53 and TNF-α inhibitors, and GLP-1 receptor agonists. Ann N Y Acad Sci. 2004;1035:290–315.CrossRef Greig NH, Mattson MP, Perry T, Chan SL, Giordano T, Sambamurti K, Rogers JT, Ovadia H, Lahiri DK. New therapeutic strategies and drug candidates for neurodegenerative diseases: p53 and TNF-α inhibitors, and GLP-1 receptor agonists. Ann N Y Acad Sci. 2004;1035:290–315.CrossRef
7.
go back to reference Terry AV, Buccafusco J. The cholinergic hypothesis of age and Alzheimer's disease-related cognitive deficits: recent challenges and their implications for novel drug development. J Pharmacol Exp Ther. 2003;306:821–7.CrossRef Terry AV, Buccafusco J. The cholinergic hypothesis of age and Alzheimer's disease-related cognitive deficits: recent challenges and their implications for novel drug development. J Pharmacol Exp Ther. 2003;306:821–7.CrossRef
8.
go back to reference Mirska I, Kedzia H, Kowalewski Z, Kedzia W. The effect of berberine sulfate on healthy mice infected with Candida albicans. Arch Immunol Ther Exp. 1972;20:921–9. Mirska I, Kedzia H, Kowalewski Z, Kedzia W. The effect of berberine sulfate on healthy mice infected with Candida albicans. Arch Immunol Ther Exp. 1972;20:921–9.
9.
go back to reference Yamamoto K, Takase H, Abe K, Saito Y, Suzuki A. Pharmacological studies on antidiarrheal effects of a preparation containing berberine and geranii herba. Nihon yakurigaku zasshi Folia pharmacologica Japonica. 1993;101:169–75.CrossRef Yamamoto K, Takase H, Abe K, Saito Y, Suzuki A. Pharmacological studies on antidiarrheal effects of a preparation containing berberine and geranii herba. Nihon yakurigaku zasshi Folia pharmacologica Japonica. 1993;101:169–75.CrossRef
10.
go back to reference Ou M. Chinese–English manual of common used in traditional Chinese medicine. Hong Kong: Guangdong Science and Technology Publishing House. In: Joint Publishing (HK); 1999. Ou M. Chinese–English manual of common used in traditional Chinese medicine. Hong Kong: Guangdong Science and Technology Publishing House. In: Joint Publishing (HK); 1999.
11.
go back to reference Imanshahidi M, Hosseinzadeh H. Pharmacological and therapeutic effects of Berberis vulgaris and its active constituent, berberine. Phytother Res. 2008;22:999–1012.CrossRef Imanshahidi M, Hosseinzadeh H. Pharmacological and therapeutic effects of Berberis vulgaris and its active constituent, berberine. Phytother Res. 2008;22:999–1012.CrossRef
12.
go back to reference Kuo C-L, Chi C-W, Liu T-Y. The anti-inflammatory potential of berberine in vitro and in vivo. Cancer Lett. 2004;203:127–37.CrossRef Kuo C-L, Chi C-W, Liu T-Y. The anti-inflammatory potential of berberine in vitro and in vivo. Cancer Lett. 2004;203:127–37.CrossRef
13.
go back to reference Shanbhag S, KULKARNI HJ, Gaitonde B. Pharmacological actions of berberine on the central nervous system. Jpn J Pharmacol. 1970;20:482–7.CrossRef Shanbhag S, KULKARNI HJ, Gaitonde B. Pharmacological actions of berberine on the central nervous system. Jpn J Pharmacol. 1970;20:482–7.CrossRef
14.
go back to reference Yu G, Li Y, Tian Q, Liu R, Wang Q, Wang J-Z, Wang X. Berberine attenuates calyculin A-induced cytotoxicity and tau hyperphosphorylation in HEK293 cells. J Alzheimers Dis. 2011;24:525–35.CrossRef Yu G, Li Y, Tian Q, Liu R, Wang Q, Wang J-Z, Wang X. Berberine attenuates calyculin A-induced cytotoxicity and tau hyperphosphorylation in HEK293 cells. J Alzheimers Dis. 2011;24:525–35.CrossRef
15.
go back to reference Durairajan SSK, Liu L-F, Lu J-H, Chen L-L, Yuan Q, Chung SK, Huang L, Li X-S, Huang J-D, Li M. Berberine ameliorates β-amyloid pathology, gliosis, and cognitive impairment in an Alzheimer's disease transgenic mouse model. Neurobiol Aging. 2012;33:2903–19.CrossRef Durairajan SSK, Liu L-F, Lu J-H, Chen L-L, Yuan Q, Chung SK, Huang L, Li X-S, Huang J-D, Li M. Berberine ameliorates β-amyloid pathology, gliosis, and cognitive impairment in an Alzheimer's disease transgenic mouse model. Neurobiol Aging. 2012;33:2903–19.CrossRef
16.
go back to reference Ji H-F, Shen L. Molecular basis of inhibitory activities of berberine against pathogenic enzymes in Alzheimer's disease. Sci World J. 2012;2012. Ji H-F, Shen L. Molecular basis of inhibitory activities of berberine against pathogenic enzymes in Alzheimer's disease. Sci World J. 2012;2012.
17.
go back to reference He W, Wang C, Chen Y, He Y, Cai Z. Berberine attenuates cognitive impairment and ameliorates tau hyperphosphorylation by limiting the self-perpetuating pathogenic cycle between NF-κB signaling, oxidative stress and neuroinflammation. Pharmacol Rep. 2017;69:1341–8.CrossRef He W, Wang C, Chen Y, He Y, Cai Z. Berberine attenuates cognitive impairment and ameliorates tau hyperphosphorylation by limiting the self-perpetuating pathogenic cycle between NF-κB signaling, oxidative stress and neuroinflammation. Pharmacol Rep. 2017;69:1341–8.CrossRef
18.
go back to reference Chen Q, Mo R, Wu N, Zou X, Shi C, Gong J, Li J, Fang K, Wang D, Yang D. Berberine ameliorates diabetes-associated cognitive decline through modulation of aberrant inflammation response and insulin signaling pathway in DM rats. Front Pharmacol. 2017;8:334.CrossRef Chen Q, Mo R, Wu N, Zou X, Shi C, Gong J, Li J, Fang K, Wang D, Yang D. Berberine ameliorates diabetes-associated cognitive decline through modulation of aberrant inflammation response and insulin signaling pathway in DM rats. Front Pharmacol. 2017;8:334.CrossRef
19.
go back to reference Huang M, Jiang X, Liang Y, Liu Q, Chen S, Guo Y. Berberine improves cognitive impairment by promoting autophagic clearance and inhibiting production of β-amyloid in APP/tau/PS1 mouse model of Alzheimer's disease. Exp Gerontol. 2017;91:25–33.CrossRef Huang M, Jiang X, Liang Y, Liu Q, Chen S, Guo Y. Berberine improves cognitive impairment by promoting autophagic clearance and inhibiting production of β-amyloid in APP/tau/PS1 mouse model of Alzheimer's disease. Exp Gerontol. 2017;91:25–33.CrossRef
20.
go back to reference de Oliveira JS, Abdalla FH, Dornelles GL, Adefegha SA, Palma TV, Signor C, da Silva BJ, Baldissarelli J, Lenz LS, Magni LP. Berberine protects against memory impairment and anxiogenic-like behavior in rats submitted to sporadic Alzheimer’s-like dementia: involvement of acetylcholinesterase and cell death. Neurotoxicology. 2016;57:241–50.CrossRef de Oliveira JS, Abdalla FH, Dornelles GL, Adefegha SA, Palma TV, Signor C, da Silva BJ, Baldissarelli J, Lenz LS, Magni LP. Berberine protects against memory impairment and anxiogenic-like behavior in rats submitted to sporadic Alzheimer’s-like dementia: involvement of acetylcholinesterase and cell death. Neurotoxicology. 2016;57:241–50.CrossRef
21.
go back to reference Patil S, Tawari S, Mundhada D, Nadeem S. Protective effect of berberine, an isoquinoline alkaloid ameliorates ethanol-induced oxidative stress and memory dysfunction in rats. Pharmacol Biochem Behav. 2015;136:13–20.CrossRef Patil S, Tawari S, Mundhada D, Nadeem S. Protective effect of berberine, an isoquinoline alkaloid ameliorates ethanol-induced oxidative stress and memory dysfunction in rats. Pharmacol Biochem Behav. 2015;136:13–20.CrossRef
22.
go back to reference Haghani M, Shabani M, Tondar M. The therapeutic potential of berberine against the altered intrinsic properties of the CA1 neurons induced by Aβ neurotoxicity. Eur J Pharmacol. 2015;758:82–8.CrossRef Haghani M, Shabani M, Tondar M. The therapeutic potential of berberine against the altered intrinsic properties of the CA1 neurons induced by Aβ neurotoxicity. Eur J Pharmacol. 2015;758:82–8.CrossRef
23.
go back to reference Zhan P-Y, Peng C-X, Zhang L-H. Berberine rescues D-galactose-induced synaptic/memory impairment by regulating the levels of arc. Pharmacol Biochem Behav. 2014;117:47–51.CrossRef Zhan P-Y, Peng C-X, Zhang L-H. Berberine rescues D-galactose-induced synaptic/memory impairment by regulating the levels of arc. Pharmacol Biochem Behav. 2014;117:47–51.CrossRef
24.
go back to reference Gao F, Gao Y, Liu Y-F, Wang L, Li Y-J. Berberine exerts an anticonvulsant effect and ameliorates memory impairment and oxidative stress in a pilocarpine-induced epilepsy model in the rat. Neuropsychiatr Dis Treat. 2014;10:2139.CrossRef Gao F, Gao Y, Liu Y-F, Wang L, Li Y-J. Berberine exerts an anticonvulsant effect and ameliorates memory impairment and oxidative stress in a pilocarpine-induced epilepsy model in the rat. Neuropsychiatr Dis Treat. 2014;10:2139.CrossRef
25.
go back to reference Kalalian-Moghaddam H, Baluchnejadmojarad T, Roghani M, Goshadrou F, Ronaghi A. Hippocampal synaptic plasticity restoration and anti-apoptotic effect underlie berberine improvement of learning and memory in streptozotocin-diabetic rats. Eur J Pharmacol. 2013;698:259–66.CrossRef Kalalian-Moghaddam H, Baluchnejadmojarad T, Roghani M, Goshadrou F, Ronaghi A. Hippocampal synaptic plasticity restoration and anti-apoptotic effect underlie berberine improvement of learning and memory in streptozotocin-diabetic rats. Eur J Pharmacol. 2013;698:259–66.CrossRef
26.
go back to reference Lee B, Sur B, Shim I, Lee H, Hahm D-H. Phellodendron amurense and its major alkaloid compound, berberine ameliorates scopolamine-induced neuronal impairment and memory dysfunction in rats. Korean J Physiol Pha. 2012;16:79–89.CrossRef Lee B, Sur B, Shim I, Lee H, Hahm D-H. Phellodendron amurense and its major alkaloid compound, berberine ameliorates scopolamine-induced neuronal impairment and memory dysfunction in rats. Korean J Physiol Pha. 2012;16:79–89.CrossRef
27.
go back to reference Bhutada P, Mundhada Y, Bansod K, Tawari S, Patil S, Dixit P, Umathe S, Mundhada D. Protection of cholinergic and antioxidant system contributes to the effect of berberine ameliorating memory dysfunction in rat model of streptozotocin-induced diabetes. Behav Brain Res. 2011;220:30–41.CrossRef Bhutada P, Mundhada Y, Bansod K, Tawari S, Patil S, Dixit P, Umathe S, Mundhada D. Protection of cholinergic and antioxidant system contributes to the effect of berberine ameliorating memory dysfunction in rat model of streptozotocin-induced diabetes. Behav Brain Res. 2011;220:30–41.CrossRef
28.
go back to reference Lim JS, Kim H, Choi Y, Kwon H, Shin KS, Joung I, Shin M, Kwon YK. Neuroprotective effects of berberine in neurodegeneration model rats induced by ibotenic acid. Anim Cells Syst. 2008;12:203–9.CrossRef Lim JS, Kim H, Choi Y, Kwon H, Shin KS, Joung I, Shin M, Kwon YK. Neuroprotective effects of berberine in neurodegeneration model rats induced by ibotenic acid. Anim Cells Syst. 2008;12:203–9.CrossRef
29.
go back to reference Zhu F, Qian C. Berberine chloride can ameliorate the spatial memory impairment and increase the expression of interleukin-1beta and inducible nitric oxide synthase in the rat model of Alzheimer's disease. BMC Neurosci. 2006;7:78.CrossRef Zhu F, Qian C. Berberine chloride can ameliorate the spatial memory impairment and increase the expression of interleukin-1beta and inducible nitric oxide synthase in the rat model of Alzheimer's disease. BMC Neurosci. 2006;7:78.CrossRef
30.
go back to reference Peng W-H, Hsieh M-T, Wu C-R. Effect of long-term administration of berberine on scopolamine-induced amnesia in rats. Jpn J Pharmacol. 1997;74:261–6.CrossRef Peng W-H, Hsieh M-T, Wu C-R. Effect of long-term administration of berberine on scopolamine-induced amnesia in rats. Jpn J Pharmacol. 1997;74:261–6.CrossRef
31.
go back to reference Schulz KF, Altman DG, Moher D. CONSORT 2010 statement: updated guidelines for reporting parallel group randomised trials. BMC Med. 2010;8:18.CrossRef Schulz KF, Altman DG, Moher D. CONSORT 2010 statement: updated guidelines for reporting parallel group randomised trials. BMC Med. 2010;8:18.CrossRef
32.
go back to reference Silverman RB, Holladay MW. The organic chemistry of drug design and drug action: academic press; 2014. Silverman RB, Holladay MW. The organic chemistry of drug design and drug action: academic press; 2014.
33.
go back to reference Rogers J, Webster S, Lue L-F, Brachova L, Civin WH, Emmerling M, Shivers B, Walker D, McGeer P. Inflammation and Alzheimer's disease pathogenesis. Neurobiol Aging. 1996;17:681–6.CrossRef Rogers J, Webster S, Lue L-F, Brachova L, Civin WH, Emmerling M, Shivers B, Walker D, McGeer P. Inflammation and Alzheimer's disease pathogenesis. Neurobiol Aging. 1996;17:681–6.CrossRef
34.
go back to reference Sarna LK, Wu N, Hwang S-Y, Siow YL, O K. Berberine inhibits NADPH oxidase mediated superoxide anion production in macrophages. Can J Physiol Pharmacol 2010; 88: 369–378. Sarna LK, Wu N, Hwang S-Y, Siow YL, O K. Berberine inhibits NADPH oxidase mediated superoxide anion production in macrophages. Can J Physiol Pharmacol 2010; 88: 369–378.
35.
go back to reference Christen Y. Oxidative stress and Alzheimer disease. Am J Clin Nutr. 2000;71:621S–9S.CrossRef Christen Y. Oxidative stress and Alzheimer disease. Am J Clin Nutr. 2000;71:621S–9S.CrossRef
36.
go back to reference Markesbery WR. The role of oxidative stress in Alzheimer disease. ARCH Neurol-Chicago. 1999;56:1449–52.CrossRef Markesbery WR. The role of oxidative stress in Alzheimer disease. ARCH Neurol-Chicago. 1999;56:1449–52.CrossRef
37.
go back to reference Jung HA, Min B-S, Yokozawa T, Lee J-H, Kim YS, Choi JS. Anti-Alzheimer and antioxidant activities of Coptidis Rhizoma alkaloids. Biol Pharm Bull. 2009;32:1433–8.CrossRef Jung HA, Min B-S, Yokozawa T, Lee J-H, Kim YS, Choi JS. Anti-Alzheimer and antioxidant activities of Coptidis Rhizoma alkaloids. Biol Pharm Bull. 2009;32:1433–8.CrossRef
38.
go back to reference Yokozawa T, Ishida A, Cho EJ, Kim HY, Kashiwada Y, Ikeshiro Y. Coptidis Rhizoma: protective effects against peroxynitrite-induced oxidative damage and elucidation of its active components. J Pharm Pharmacol. 2004;56:547–56.CrossRef Yokozawa T, Ishida A, Cho EJ, Kim HY, Kashiwada Y, Ikeshiro Y. Coptidis Rhizoma: protective effects against peroxynitrite-induced oxidative damage and elucidation of its active components. J Pharm Pharmacol. 2004;56:547–56.CrossRef
39.
go back to reference Hsieh Y-S, Kuo W-H, Lin T-W, Chang H-R, Lin T-H, Chen P-N, Chu S-C. Protective effects of berberine against low-density lipoprotein (LDL) oxidation and oxidized LDL-induced cytotoxicity on endothelial cells. J Agric Food Chem. 2007;55:10437–45.CrossRef Hsieh Y-S, Kuo W-H, Lin T-W, Chang H-R, Lin T-H, Chen P-N, Chu S-C. Protective effects of berberine against low-density lipoprotein (LDL) oxidation and oxidized LDL-induced cytotoxicity on endothelial cells. J Agric Food Chem. 2007;55:10437–45.CrossRef
40.
go back to reference Drachman DA, Leavitt J. Human memory and the cholinergic system: a relationship to aging? Arch Neurol-Chicago. 1974;30:113–21.CrossRef Drachman DA, Leavitt J. Human memory and the cholinergic system: a relationship to aging? Arch Neurol-Chicago. 1974;30:113–21.CrossRef
41.
go back to reference Bowen D, Allen S, Benton J, Goodhardt M, Haan E, Palmer A, Sims N, Smith C, Spillane J, Esiri M. Biochemical assessment of serotonergic and cholinergic dysfunction and cerebral atrophy in Alzheimer's disease. JNeur. 1983;41:266–72.CrossRef Bowen D, Allen S, Benton J, Goodhardt M, Haan E, Palmer A, Sims N, Smith C, Spillane J, Esiri M. Biochemical assessment of serotonergic and cholinergic dysfunction and cerebral atrophy in Alzheimer's disease. JNeur. 1983;41:266–72.CrossRef
42.
go back to reference Bartus RT, Dean RL, Beer B, Lippa AS. The cholinergic hypothesis of geriatric memory dysfunction. Sci. 1982;217:408–14.CrossRef Bartus RT, Dean RL, Beer B, Lippa AS. The cholinergic hypothesis of geriatric memory dysfunction. Sci. 1982;217:408–14.CrossRef
43.
go back to reference Coyle JT, Price DL, Delong MR. Alzheimer's disease: a disorder of cortical cholinergic innervation. Sci. 1983;219:1184–90.CrossRef Coyle JT, Price DL, Delong MR. Alzheimer's disease: a disorder of cortical cholinergic innervation. Sci. 1983;219:1184–90.CrossRef
44.
go back to reference Cummings JL. Cholinesterase inhibitors: a new class of psychotropic compounds. Am J Psychiatry. 2000;157:4–15.CrossRef Cummings JL. Cholinesterase inhibitors: a new class of psychotropic compounds. Am J Psychiatry. 2000;157:4–15.CrossRef
45.
go back to reference Glenner GG, Wong CW. Alzheimer's disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. BBRC. 1984;120:885–90.PubMed Glenner GG, Wong CW. Alzheimer's disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. BBRC. 1984;120:885–90.PubMed
46.
go back to reference Cai X-D, Golde TE, Younkin SG. Release of excess amyloid beta protein from a mutant amyloid beta protein precursor. Sci. 1993;259:514–6.CrossRef Cai X-D, Golde TE, Younkin SG. Release of excess amyloid beta protein from a mutant amyloid beta protein precursor. Sci. 1993;259:514–6.CrossRef
Metadata
Title
Neuroprotective effects of berberine in animal models of Alzheimer’s disease: a systematic review of pre-clinical studies
Authors
Ning-Ning Yuan
Cui-Zan Cai
Ming-Yue Wu
Huan-Xing Su
Min Li
Jia-Hong Lu
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2019
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-019-2510-z

Other articles of this Issue 1/2019

BMC Complementary Medicine and Therapies 1/2019 Go to the issue