Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2019

Open Access 01-12-2019 | Research article

In vitro evaluation of the α-glucosidase inhibitory potential of methanolic extracts of traditionally used antidiabetic plants

Authors: Astha Bhatia, Balbir Singh, Rohit Arora, Saroj Arora

Published in: BMC Complementary Medicine and Therapies | Issue 1/2019

Login to get access

Abstract

Background

Different plant parts of Roylea cinerea (D. Don) Baill. (Lamiaceae), Clematis grata Wall. (Ranunculaceae), Cornus capitata Wall. (Cornaceae) are traditionally used in the management of diabetes and various other diseases.

Method

The air-dried plant parts from different plants were coarsely powdered and macerated in methanol to obtain their crude extracts. The crude extracts were evaluated for their α-glucosidase inhibitory activity. On the basis of results obtained, the methanolic crude extract of Cornus capitata Wall. was further sequentially fractionated in hexane, diethyl ether, ethyl acetate, n-butanol. Fractions obtained were also evaluated for their α-glucosidase inhibitory potential. The kinetic study was performed using Lineweaver Burk plot to evaluate the type of inhibition. Furthermore, in silico analysis was also carried with active sites of the enzyme (PDB ID: 3WY1) using Autodock4.

Results

Among all the plant extracts, Cornus capitata extract showed maximum inhibitory activity. Therefore its methanolic extract was further fractionated with the help of different solvents and the maximum activity was shown by the ethyl acetate fraction (IC50 50 μg/mL). Kinetic analysis indicated that Vmax and Km were increased indicating a competitive type of inhibition. In docking studies, among different constituents known in this plant, betulinic acid showed minimum binding energy (− 10.21 kcal/mol). The kinetic and docking studies have strengthened the observation made in the present study regarding the α-glucosidase inhibitory activity of Cornus capitata.

Conclusion

The study provided partial evidence for pharmacological basis regarding clinical applications of Cornus capitata in the treatment of diabetes suggesting it to be a suitable candidate for the treatment of postprandial hyperglycemia.
Appendix
Available only for authorised users
Literature
1.
go back to reference Joshi SR, Standl E, Tong N, Shah P, Kalra S, Rathod R. Therapeutic potential of α-glucosidase inhibitors in type 2 diabetes mellitus: an evidence-based review. Expert Opin Pharmacother. 2015;16(13):1959–81.CrossRef Joshi SR, Standl E, Tong N, Shah P, Kalra S, Rathod R. Therapeutic potential of α-glucosidase inhibitors in type 2 diabetes mellitus: an evidence-based review. Expert Opin Pharmacother. 2015;16(13):1959–81.CrossRef
2.
go back to reference AG HB. Pharmacology of α-glucosidase inhibition. Eur J Clin Investig. 1994;S3:3–10. AG HB. Pharmacology of α-glucosidase inhibition. Eur J Clin Investig. 1994;S3:3–10.
3.
go back to reference Van de Laar FA, Lucassen PL, Akkermans RP, Van de Lisdonk EH, De Grauw WJ. Alpha-glucosidase inhibitors for people with impaired glucose tolerance or impaired fasting blood glucose. Cochrane Libr. 2006;4:CD005061-CD005061. Van de Laar FA, Lucassen PL, Akkermans RP, Van de Lisdonk EH, De Grauw WJ. Alpha-glucosidase inhibitors for people with impaired glucose tolerance or impaired fasting blood glucose. Cochrane Libr. 2006;4:CD005061-CD005061.
4.
go back to reference DiNicolantonio JJ, Bhutani J, O'Keefe JH. Acarbose: safe and effective for lowering postprandial hyperglycaemia and improving cardiovascular outcomes. Open heart. 2015;2(1):e000327.CrossRef DiNicolantonio JJ, Bhutani J, O'Keefe JH. Acarbose: safe and effective for lowering postprandial hyperglycaemia and improving cardiovascular outcomes. Open heart. 2015;2(1):e000327.CrossRef
5.
go back to reference Kapoor LD. Handbook of Ayurvedic medicinal plants: herbal reference library. Newyork: Routledge; 2017.CrossRef Kapoor LD. Handbook of Ayurvedic medicinal plants: herbal reference library. Newyork: Routledge; 2017.CrossRef
6.
go back to reference Bhakuni RS, Shukla YN, Thakur RS. Constituents of Cornus capitata. J Nat Prod. 1986;49(4):714.CrossRef Bhakuni RS, Shukla YN, Thakur RS. Constituents of Cornus capitata. J Nat Prod. 1986;49(4):714.CrossRef
7.
go back to reference Bhakuni RS, Shukla YN, Thakur RS. Triterpenoids from Cornus capitata. Phytochemistry. 1987;26(9):2607–10.CrossRef Bhakuni RS, Shukla YN, Thakur RS. Triterpenoids from Cornus capitata. Phytochemistry. 1987;26(9):2607–10.CrossRef
8.
go back to reference Pant S, Samant SS. Ethnobotanical observations in the Mornaula reserve forest of Komoun, west Himalaya. India Ethnobot Leaflets. 2010;2010(2):8. Pant S, Samant SS. Ethnobotanical observations in the Mornaula reserve forest of Komoun, west Himalaya. India Ethnobot Leaflets. 2010;2010(2):8.
9.
go back to reference Sidhu MC, Thakur S. Documentation of antidiabetic medicinal plants in district Mandi of Himachal Pradesh (India). Int J PharmaTech Res. 2015;8:164–9. Sidhu MC, Thakur S. Documentation of antidiabetic medicinal plants in district Mandi of Himachal Pradesh (India). Int J PharmaTech Res. 2015;8:164–9.
10.
go back to reference Amjad MS. Ethnobotanical profiling and floristic diversity of Bana Valley, Kotli (Azad Jammu and Kashmir), Pakistan. Asian Pac J Trop Biomed. 2015;5(4):292–9.CrossRef Amjad MS. Ethnobotanical profiling and floristic diversity of Bana Valley, Kotli (Azad Jammu and Kashmir), Pakistan. Asian Pac J Trop Biomed. 2015;5(4):292–9.CrossRef
11.
go back to reference Abbasi AM, Khan MA, Ahmad M, Zafar M, Jahan S, Sultana S. Ethnopharmacological application of medicinal plants to cure skin diseases and in folk cosmetics among the tribal communities of North-West Frontier Province, Pakistan. J Ethnopharmacol. 2010;128(2):322–35.CrossRef Abbasi AM, Khan MA, Ahmad M, Zafar M, Jahan S, Sultana S. Ethnopharmacological application of medicinal plants to cure skin diseases and in folk cosmetics among the tribal communities of North-West Frontier Province, Pakistan. J Ethnopharmacol. 2010;128(2):322–35.CrossRef
12.
go back to reference Sati OP, Uniyal SK, Bahuguna S, Kikuchi T. Clematoside-S, a triterpenoid saponin from the roots of Clematis grata. Phytochemistry. 1990;29(11):3676–8.CrossRef Sati OP, Uniyal SK, Bahuguna S, Kikuchi T. Clematoside-S, a triterpenoid saponin from the roots of Clematis grata. Phytochemistry. 1990;29(11):3676–8.CrossRef
13.
go back to reference Rawat R, Vashistha DP. Roylea cinerea (D. Don) Baillon: a traditional curative of diabetes, its cultivation prospects in Srinagar Valley of Uttarakhand. Int J Adv Pharm Biol Chem. 2013;2(2):372–5. Rawat R, Vashistha DP. Roylea cinerea (D. Don) Baillon: a traditional curative of diabetes, its cultivation prospects in Srinagar Valley of Uttarakhand. Int J Adv Pharm Biol Chem. 2013;2(2):372–5.
14.
go back to reference Kumari KL, Abeysinghe DC, Dharmadasa RM. Distribution of phytochemicals and bioactivity in different parts and leaf positions of Stevia Rebaudiana (Bertoni) Bertoni-a non-caloric, natural sweetener. World. 2016;4(6):162–5. Kumari KL, Abeysinghe DC, Dharmadasa RM. Distribution of phytochemicals and bioactivity in different parts and leaf positions of Stevia Rebaudiana (Bertoni) Bertoni-a non-caloric, natural sweetener. World. 2016;4(6):162–5.
15.
go back to reference Khan S, Khan T, Shah AJ. Total phenolic and flavonoid contents and antihypertensive effect of the crude extract and fractions of Calamintha vulgaris. Phytomedicine. 2018;47:174–83.CrossRef Khan S, Khan T, Shah AJ. Total phenolic and flavonoid contents and antihypertensive effect of the crude extract and fractions of Calamintha vulgaris. Phytomedicine. 2018;47:174–83.CrossRef
16.
go back to reference Nureye D, Assefa S, Nedi T, Engidawork E. In vivo antimalarial activity of the 80 Methanolic root bark extract and solvent fractions of Gardenia ternifolia Schumach. & Thonn.(Rubiaceae) against Plasmodium berghei. Evid Based Complement Alternat Med. 2018;2018. Nureye D, Assefa S, Nedi T, Engidawork E. In vivo antimalarial activity of the 80 Methanolic root bark extract and solvent fractions of Gardenia ternifolia Schumach. & Thonn.(Rubiaceae) against Plasmodium berghei. Evid Based Complement Alternat Med. 2018;2018.
17.
go back to reference Pistia-Brueggeman G, Hollingsworth RI. A preparation and screening strategy for glycosidase inhibitors. Tetrahedron. 2001;57(42):8773–8.CrossRef Pistia-Brueggeman G, Hollingsworth RI. A preparation and screening strategy for glycosidase inhibitors. Tetrahedron. 2001;57(42):8773–8.CrossRef
18.
go back to reference Murugan R, Parimelazhagan T. Comparative evaluation of different extraction methods for antioxidant and anti-inflammatory properties from Osbeckia parvifolia Arn.–an in vitro approach. JKSUS. 2014;26(4):267–75. Murugan R, Parimelazhagan T. Comparative evaluation of different extraction methods for antioxidant and anti-inflammatory properties from Osbeckia parvifolia Arn.–an in vitro approach. JKSUS. 2014;26(4):267–75.
19.
go back to reference Sultana B, Anwar F, Przybylski R. Antioxidant activity of phenolic components present in barks of Azadirachta indica, Terminalia arjuna, Acacia nilotica, and Eugenia jambolana lam. Trees. Food Chem. 2007;104(3):1106–14.CrossRef Sultana B, Anwar F, Przybylski R. Antioxidant activity of phenolic components present in barks of Azadirachta indica, Terminalia arjuna, Acacia nilotica, and Eugenia jambolana lam. Trees. Food Chem. 2007;104(3):1106–14.CrossRef
20.
go back to reference Nair SS, Kavrekar V, Mishra A. In vitro studies on alpha amylase and alpha glucosidase inhibitory activities of selected plant extracts. Euro J Exp Bio. 2013;3(1):128–32. Nair SS, Kavrekar V, Mishra A. In vitro studies on alpha amylase and alpha glucosidase inhibitory activities of selected plant extracts. Euro J Exp Bio. 2013;3(1):128–32.
21.
go back to reference Sobreira F, Hernandes LS, Vetore-Neto A, Díaz IE, Santana FC, Mancini-Filho J, Bacchi EM. Gastroprotective activity of the hydroethanolic extract and ethyl acetate fraction from Kalanchoe pinnata (lam.) Pers. Braz J Pharm Sci. 2017;53(1). Sobreira F, Hernandes LS, Vetore-Neto A, Díaz IE, Santana FC, Mancini-Filho J, Bacchi EM. Gastroprotective activity of the hydroethanolic extract and ethyl acetate fraction from Kalanchoe pinnata (lam.) Pers. Braz J Pharm Sci. 2017;53(1).
22.
go back to reference He K, Song S, Zou Z, Feng M, Wang D, Wang Y, Li X, Ye X. The hypoglycemic and synergistic effect of Loganin, Morroniside, and Ursolic acid isolated from the fruits of Cornus officinalis. Phytother Res. 2016;30(2):283–91.CrossRef He K, Song S, Zou Z, Feng M, Wang D, Wang Y, Li X, Ye X. The hypoglycemic and synergistic effect of Loganin, Morroniside, and Ursolic acid isolated from the fruits of Cornus officinalis. Phytother Res. 2016;30(2):283–91.CrossRef
23.
go back to reference He LH. Comparative study for α-glucosidase inhibitory effects of total iridoid glycosides in the crude products and the wine-processed products from Cornus officinalis. Yakugaku Zasshi. 2011;131(12):1801–5.CrossRef He LH. Comparative study for α-glucosidase inhibitory effects of total iridoid glycosides in the crude products and the wine-processed products from Cornus officinalis. Yakugaku Zasshi. 2011;131(12):1801–5.CrossRef
24.
go back to reference JX W, Wu XH, Li CQ, NF C, WY K. Study on inhibitive effect of extracts from Cornus officinalis on α-glucosidase [J]. Chinese J Exper Trad Med Form. 2011;5:024. JX W, Wu XH, Li CQ, NF C, WY K. Study on inhibitive effect of extracts from Cornus officinalis on α-glucosidase [J]. Chinese J Exper Trad Med Form. 2011;5:024.
25.
go back to reference Jayaprakasam B, Olson LK, Schutzki RE, Tai MH, Nair MG. Amelioration of obesity and glucose intolerance in high-fat-fed C57BL/6 mice by anthocyanins and ursolic acid in cornelian cherry (Cornus mas). J Agric Food Chem. 2006;54(1):243–8.CrossRef Jayaprakasam B, Olson LK, Schutzki RE, Tai MH, Nair MG. Amelioration of obesity and glucose intolerance in high-fat-fed C57BL/6 mice by anthocyanins and ursolic acid in cornelian cherry (Cornus mas). J Agric Food Chem. 2006;54(1):243–8.CrossRef
26.
go back to reference Chiba S. Molecular mechanism in α-glucosidase and glucoamylase. Biosci Biotechnol Biochem. 1997;61(8):1233–9.CrossRef Chiba S. Molecular mechanism in α-glucosidase and glucoamylase. Biosci Biotechnol Biochem. 1997;61(8):1233–9.CrossRef
27.
go back to reference Khatun MH, Nesa ML, Islam R, Ripa FA, Kadir S. Antidiabetic and antidiarrheal effects of the methanolic extract of Phyllanthus reticulatus leaves in mice. Asian Pac J Reprod. 2014;3(2):121–7.CrossRef Khatun MH, Nesa ML, Islam R, Ripa FA, Kadir S. Antidiabetic and antidiarrheal effects of the methanolic extract of Phyllanthus reticulatus leaves in mice. Asian Pac J Reprod. 2014;3(2):121–7.CrossRef
28.
go back to reference Alqahtani A, Hamid K, Kam A, Wong KH, Abdelhak Z, Razmovski-Naumovski V, Chan K, Li KM, Groundwater PW, Li GQ. The pentacyclic triterpenoids in herbal medicines and their pharmacological activities in diabetes and diabetic complications. Curr Med Chem. 2013;20(7):908–31.PubMed Alqahtani A, Hamid K, Kam A, Wong KH, Abdelhak Z, Razmovski-Naumovski V, Chan K, Li KM, Groundwater PW, Li GQ. The pentacyclic triterpenoids in herbal medicines and their pharmacological activities in diabetes and diabetic complications. Curr Med Chem. 2013;20(7):908–31.PubMed
29.
go back to reference Kumar S, Narwal S, Kumar V, Prakash O. α-Glucosidase inhibitors from plants: a natural approach to treat diabetes. Pharmacogn Rev. 2011;5(9):19.CrossRef Kumar S, Narwal S, Kumar V, Prakash O. α-Glucosidase inhibitors from plants: a natural approach to treat diabetes. Pharmacogn Rev. 2011;5(9):19.CrossRef
30.
go back to reference Uddin G, Rauf A, Al-Othman AM, Collina S, Arfan M, Ali G, Khan I. Pistagremic acid, a glucosidase inhibitor from Pistacia integerrima. Fitoterapia. 2012;83(8):1648–52.CrossRef Uddin G, Rauf A, Al-Othman AM, Collina S, Arfan M, Ali G, Khan I. Pistagremic acid, a glucosidase inhibitor from Pistacia integerrima. Fitoterapia. 2012;83(8):1648–52.CrossRef
31.
go back to reference Mbaze LM, Poumale HM, Wansi JD, Lado JA, Khan SN, Iqbal MC, Ngadjui BT, Laatsch H. α-Glucosidase inhibitory pentacyclic triterpenes from the stem bark of Fagara tessmannii (Rutaceae). Phytochemistry. 2007;68(5):591–5.CrossRef Mbaze LM, Poumale HM, Wansi JD, Lado JA, Khan SN, Iqbal MC, Ngadjui BT, Laatsch H. α-Glucosidase inhibitory pentacyclic triterpenes from the stem bark of Fagara tessmannii (Rutaceae). Phytochemistry. 2007;68(5):591–5.CrossRef
32.
go back to reference Zhang BW, Xing Y, Wen C, Yu XX, Sun WL, Xiu ZL, Dong YS. Pentacyclic triterpenes as α-glucosidase and α-amylase inhibitors: structure-activity relationships and the synergism with acarbose. Bioorganic Med Chem lett. 2017;27(22):5065–70.CrossRef Zhang BW, Xing Y, Wen C, Yu XX, Sun WL, Xiu ZL, Dong YS. Pentacyclic triterpenes as α-glucosidase and α-amylase inhibitors: structure-activity relationships and the synergism with acarbose. Bioorganic Med Chem lett. 2017;27(22):5065–70.CrossRef
33.
go back to reference Matsuda H, Li Y, Murakami T, Matsumura N, Yamahara J, Yoshikawa M. Antidiabetic principles of natural medicines. III. Structure-related inhibitory activity and action mode of oleanolic acid glycosides on hypoglycemic activity. Chem Pharm Bull. 1998;46(9):1399–403.CrossRef Matsuda H, Li Y, Murakami T, Matsumura N, Yamahara J, Yoshikawa M. Antidiabetic principles of natural medicines. III. Structure-related inhibitory activity and action mode of oleanolic acid glycosides on hypoglycemic activity. Chem Pharm Bull. 1998;46(9):1399–403.CrossRef
34.
go back to reference Yoshikawa M, Matsuda H, Harada E, Murakami T, Wariishi N, Yamahara J, Murakami N. Elatoside E, a new hypoglycemic principle from the root cortex of Aralia elata seem.: structure-related hypoglycemic activity of oleanolic acid glycosides. Chem Pharm Bull. 1994;42(6):1354–6.CrossRef Yoshikawa M, Matsuda H, Harada E, Murakami T, Wariishi N, Yamahara J, Murakami N. Elatoside E, a new hypoglycemic principle from the root cortex of Aralia elata seem.: structure-related hypoglycemic activity of oleanolic acid glycosides. Chem Pharm Bull. 1994;42(6):1354–6.CrossRef
35.
go back to reference Xu J, Nie X, Hong Y, Jiang Y, Wu G, Yin X, Wang C, Wang X. Synthesis of water soluble glycosides of pentacyclic dihydroxytriterpene carboxylic acids as inhibitors of α-glucosidase. Carbohydr Res. 2016;424:42–53.CrossRef Xu J, Nie X, Hong Y, Jiang Y, Wu G, Yin X, Wang C, Wang X. Synthesis of water soluble glycosides of pentacyclic dihydroxytriterpene carboxylic acids as inhibitors of α-glucosidase. Carbohydr Res. 2016;424:42–53.CrossRef
Metadata
Title
In vitro evaluation of the α-glucosidase inhibitory potential of methanolic extracts of traditionally used antidiabetic plants
Authors
Astha Bhatia
Balbir Singh
Rohit Arora
Saroj Arora
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2019
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-019-2482-z

Other articles of this Issue 1/2019

BMC Complementary Medicine and Therapies 1/2019 Go to the issue