Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2019

Open Access 01-12-2019 | Cefoxitin | Research article

Combined antibacterial effect of essential oils from three most commonly used Ethiopian traditional medicinal plants on multidrug resistant bacteria

Authors: Eshetu Gadisa, Gebru Weldearegay, Kassu Desta, Getahun Tsegaye, Sityehu Hailu, Kefiyelewu Jote, Abera Takele

Published in: BMC Complementary Medicine and Therapies | Issue 1/2019

Login to get access

Abstract

Background

An alarm increase the rate of emerging and re-emerging of multidrug resistant bacteria have been caused great public health concern in the worldwide. They have been resisting for most or majority of currently available and affordable antibiotics and imposed socioeconomic catastrophe at global scale. As a result, there is utmost important to discover new or modify currently available antibiotics. The aim of this study was to evaluate combined antibacterial effect of essential oils obtained from Blepharis cuspidata, Boswellia ogadensis and Thymus schimper against multidrug resistance (MDR) Escherichia coli, Klebsiella pneumoniae and Methicillin resistant S. aureus.

Methods

Essential oil (EO) was extracted from the aerial part of B. cuspidata, B.ogadensis and T. schimper by steam distillation and stored in brown bottles at 4 °C. There were mixed in 1:1 ratio and adsorbed to disc and placed on MHA and measured their minimum inhibitory zone seeded with E. coli, K. pneumoniae and MRAS after 18-24 H. minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were measured by broth micro-dilution method. The interaction between EOs was determined by fractional inhibitory concentration index.

Results

The antibacterial potential of mixed oil depends on the doses and type of the EOs and bacteria species. The combined EOs of B.cuspidata and T.schimperi had inhibition zone (39 mm), its MIC and MBC value was 0.39 μl/ml against MRSA. It had inhibition zone (28-35 mm), MIC value 0.39–6.25 μl/ml and MBC (0.78–12.5 μl/ml) against MDR E. coli and K. pneumoniae. Whereas, combined effects of B. cuspidata and B. ogadensis had MIC values ranges from 0.78–6.25 μl/ml for E.coli and K. pneumoniae and 1.56 μl/ml for MRSA. There was strong synergistic effect between the combination of B.cuspidata and T.schimperi. This study revealed that gram negative bacteria were slightly less susceptible than gram positive.

Conclusions

This in vitro study of combined EOs has significant antibacterial effect than using each of them and even it was more potent antibacterial effect on MDR as compare to modern antibiotics. Hence, it can be applied to a pharmaceutical composition as modulator or adjuvant or precursor for synthesis of new antibiotic in future activities.
Literature
1.
go back to reference Fotinos N, Convert M, Piffaretti JC, Gurny R, Lange N. Effects on gram negative and gram positive bacteria mediated by 5-aminolevulinic acid and 5aminolevulinic acid derivatives. J Antimicrob Chemother. 2008;52:1366–73.CrossRef Fotinos N, Convert M, Piffaretti JC, Gurny R, Lange N. Effects on gram negative and gram positive bacteria mediated by 5-aminolevulinic acid and 5aminolevulinic acid derivatives. J Antimicrob Chemother. 2008;52:1366–73.CrossRef
2.
go back to reference Shumaia P, Abdul K, Shuaib R, Ekramul H. Antibacterial, antifungal and insecticidal activities of the n-hexane and ethyl-acetate fractions of methanolic extract of the leaves of Calotropis gigantea. JPP. 2014;2(5):47–51. Shumaia P, Abdul K, Shuaib R, Ekramul H. Antibacterial, antifungal and insecticidal activities of the n-hexane and ethyl-acetate fractions of methanolic extract of the leaves of Calotropis gigantea. JPP. 2014;2(5):47–51.
3.
go back to reference Ellington MJ, Ganner M, Warner M, Cookson BD, Kearns AM. Polyclonal multiply antibiotic resistant methicillin resistant S. aureus with Panton valentine leucocidin in England. J Antimicrob Chemother. 2010;65:46–50.CrossRef Ellington MJ, Ganner M, Warner M, Cookson BD, Kearns AM. Polyclonal multiply antibiotic resistant methicillin resistant S. aureus with Panton valentine leucocidin in England. J Antimicrob Chemother. 2010;65:46–50.CrossRef
4.
go back to reference Chuah EL, Zakaria ZA, Suhaili Z, Abu Bakar S, Desa M. Antimicrobial activities of plant extracts against methicillin-susceptible and methicillin-resistant Staphylococcus aureus. JMR. 2014;4(1):6–13. Chuah EL, Zakaria ZA, Suhaili Z, Abu Bakar S, Desa M. Antimicrobial activities of plant extracts against methicillin-susceptible and methicillin-resistant Staphylococcus aureus. JMR. 2014;4(1):6–13.
5.
go back to reference Virender S, Munish J, Jyoti G, Pawan K. Antibacterial effect of medicinal plants against extended spectrum beta lactamase producing bacteria causing urinary tract infection. Int J Drug. 2012;2(3):263–7. Virender S, Munish J, Jyoti G, Pawan K. Antibacterial effect of medicinal plants against extended spectrum beta lactamase producing bacteria causing urinary tract infection. Int J Drug. 2012;2(3):263–7.
6.
go back to reference Strateva T, Yordanov D. P.aeruginosa a phenomenon of bacterial resistance. J Med Microbiol. 2009;58:1133–48.CrossRef Strateva T, Yordanov D. P.aeruginosa a phenomenon of bacterial resistance. J Med Microbiol. 2009;58:1133–48.CrossRef
7.
go back to reference Pitout D. Multi-resistant Enterobacteriaceae: new threat of an old problem. Expert Rev Anti-Infect Ther. 2008;6:657–69.CrossRef Pitout D. Multi-resistant Enterobacteriaceae: new threat of an old problem. Expert Rev Anti-Infect Ther. 2008;6:657–69.CrossRef
8.
go back to reference Vila J, Mart S, Sanchez-Cespedes J. Porins efflux pumps and multidrug resistant in Acinetobacter baumanii. J Antimicrob Chemother. 2007;59:1210–5.CrossRef Vila J, Mart S, Sanchez-Cespedes J. Porins efflux pumps and multidrug resistant in Acinetobacter baumanii. J Antimicrob Chemother. 2007;59:1210–5.CrossRef
9.
go back to reference Parthik P, Patel NM, Patel PM. WHO guidelines on quality control of herbal medicines. IJRAP. 2011;2(4):1148–54. Parthik P, Patel NM, Patel PM. WHO guidelines on quality control of herbal medicines. IJRAP. 2011;2(4):1148–54.
10.
go back to reference Rahmani M. Chemical diversity of Malaysian flora: potential source of rich therapeutic chemical; 2003. Rahmani M. Chemical diversity of Malaysian flora: potential source of rich therapeutic chemical; 2003.
11.
go back to reference Crouch NR, Douwes E, Wolfson M, Smith GF, Edwards TJ. South Africa's bio-prospecting, access and benefit-sharing legislation: current realities, future complications, and a proposed alternative. SAJS. 2008;104(9):355–66. Crouch NR, Douwes E, Wolfson M, Smith GF, Edwards TJ. South Africa's bio-prospecting, access and benefit-sharing legislation: current realities, future complications, and a proposed alternative. SAJS. 2008;104(9):355–66.
12.
go back to reference Kesatebrhan H. Antimicrobial effect& phytochemical screening of crude extracts of medicinal plants grown in eastern Ethiopia. Int J Pharm BioSci. 2013;4(4):326–33. Kesatebrhan H. Antimicrobial effect& phytochemical screening of crude extracts of medicinal plants grown in eastern Ethiopia. Int J Pharm BioSci. 2013;4(4):326–33.
13.
go back to reference Mahammad AM. Selected medicinal plants of Chittegong. Hill tracts. Bangladesh: IUCN, Progressive printer Pvt; 2011. Mahammad AM. Selected medicinal plants of Chittegong. Hill tracts. Bangladesh: IUCN, Progressive printer Pvt; 2011.
14.
go back to reference Bobbarala V. A Search for antimicrobial agents. Croatia, In Tech; 2012. Bobbarala V. A Search for antimicrobial agents. Croatia, In Tech; 2012.
15.
go back to reference Antunes SA, Robazza W, Schittler L, Gomes G. Synergistic properties of Curcuma longa essential oil against pathogenic bacteria. Cienc Tecnol Aliment Campinas. 2012;32(3):525–30.CrossRef Antunes SA, Robazza W, Schittler L, Gomes G. Synergistic properties of Curcuma longa essential oil against pathogenic bacteria. Cienc Tecnol Aliment Campinas. 2012;32(3):525–30.CrossRef
16.
go back to reference Rybicki EP, Chikwamba R, Koch M, Rhodes JI, Groenewald JH. Plant made therapeutics: an emerging platform in South Africa. AJB. 2012;30(2):449–59. Rybicki EP, Chikwamba R, Koch M, Rhodes JI, Groenewald JH. Plant made therapeutics: an emerging platform in South Africa. AJB. 2012;30(2):449–59.
17.
go back to reference Birhan W, Giday M, Teklehaymanot T. The contribution of traditional healers’ clinics to public health care system in Addis Ababa, Ethiopia: a cross sectional study. J Ethnobio Ethnomed. 2011;10:39.CrossRef Birhan W, Giday M, Teklehaymanot T. The contribution of traditional healers’ clinics to public health care system in Addis Ababa, Ethiopia: a cross sectional study. J Ethnobio Ethnomed. 2011;10:39.CrossRef
18.
go back to reference Namraj D. Trends in Pharmacognosy: a modern science of natural medicines. J Her Med. 2013;3:123–31.CrossRef Namraj D. Trends in Pharmacognosy: a modern science of natural medicines. J Her Med. 2013;3:123–31.CrossRef
19.
go back to reference Ojo O, Anibijuwon I. Synergistic effect of plants extracts on bacteria. World Rural Observ. 2010;2(2):10–4. Ojo O, Anibijuwon I. Synergistic effect of plants extracts on bacteria. World Rural Observ. 2010;2(2):10–4.
20.
go back to reference Sasidharan S, Chen Y, Saravanan D, Sundram KM, Yoga LL. Extraction, isolation and characterization of bioactive compounds from plants’ extracts. Afr J Tradit Complement Altern Med. 2011;8(1):1–10.PubMed Sasidharan S, Chen Y, Saravanan D, Sundram KM, Yoga LL. Extraction, isolation and characterization of bioactive compounds from plants’ extracts. Afr J Tradit Complement Altern Med. 2011;8(1):1–10.PubMed
21.
go back to reference Yitbarek H, Tadesse E, Alehegne W, Takele S. In-vitro antimicrobial effect of selected Ethiopian medicinal plants against some bacteria of veterinary importance. JMPR. 2010;4(12):1230–4. Yitbarek H, Tadesse E, Alehegne W, Takele S. In-vitro antimicrobial effect of selected Ethiopian medicinal plants against some bacteria of veterinary importance. JMPR. 2010;4(12):1230–4.
22.
go back to reference Naveed R, Hussain I, Mahmood M, Akhtar M. In vitro and in vivo evaluation of antimicrobial activities of essential oils extracted from some indigenous spices. Pak Vet J. 2013;33(4):413–7. Naveed R, Hussain I, Mahmood M, Akhtar M. In vitro and in vivo evaluation of antimicrobial activities of essential oils extracted from some indigenous spices. Pak Vet J. 2013;33(4):413–7.
23.
go back to reference El-Kalek HH, Mohamed EA. Synergistic effect of certain medicinal plants and amoxicillin against some clinical isolates of MRSA. IJPA 2012; 3(3):387–398. El-Kalek HH, Mohamed EA. Synergistic effect of certain medicinal plants and amoxicillin against some clinical isolates of MRSA. IJPA 2012; 3(3):387–398.
24.
go back to reference Konate K, Mavoungo JF, Lepengue AN, Samseny A, Hilou A, et al. Antibacterial effect against beta lactamase producing, methicillin and ampicillin resistant Staphylococcus aureus: FICI determination. ACMA. 2012;11:18.PubMed Konate K, Mavoungo JF, Lepengue AN, Samseny A, Hilou A, et al. Antibacterial effect against beta lactamase producing, methicillin and ampicillin resistant Staphylococcus aureus: FICI determination. ACMA. 2012;11:18.PubMed
25.
go back to reference Yalemwork E, Wossenseged L, Nega B. Synergetic antimicrobial effects of mixtures of Ethiopian honeys and ginger powder extracts on resistant clinical bacteria isolates. JEBCAM. 2014;2014:8. Yalemwork E, Wossenseged L, Nega B. Synergetic antimicrobial effects of mixtures of Ethiopian honeys and ginger powder extracts on resistant clinical bacteria isolates. JEBCAM. 2014;2014:8.
26.
go back to reference CLSI. Performances for antimicrobial susceptibility testing: Twenty-first informational supplement-M 100-S21. Wayne, PA, USA: CLSI; 2011. CLSI. Performances for antimicrobial susceptibility testing: Twenty-first informational supplement-M 100-S21. Wayne, PA, USA: CLSI; 2011.
27.
go back to reference Wiegand I, Hilpert K, Hancock R. Agar and broth dilution method to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc. 2008;3(2):163–75.CrossRef Wiegand I, Hilpert K, Hancock R. Agar and broth dilution method to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc. 2008;3(2):163–75.CrossRef
28.
go back to reference Zhang X. Regulatory situation of herbal medicinal plants: A worldwide review. Geneva: WHO/TRM/98.1; 1998. Zhang X. Regulatory situation of herbal medicinal plants: A worldwide review. Geneva: WHO/TRM/98.1; 1998.
29.
go back to reference Haile Y, Delenasaw Y. Traditional medicinal plant knowledge and use by local healers in Sekoru District, Jimma zone, southwestern Ethiopia. J Ethnobio Ethnomed. 2007;3:24.CrossRef Haile Y, Delenasaw Y. Traditional medicinal plant knowledge and use by local healers in Sekoru District, Jimma zone, southwestern Ethiopia. J Ethnobio Ethnomed. 2007;3:24.CrossRef
30.
go back to reference Rahman MS, Anwar MN. Antimicrobial effect of crude extract obtained from the root of Plumbago zeylanica. Bangladesh J Microbiol. 2007;24(1):73–5.CrossRef Rahman MS, Anwar MN. Antimicrobial effect of crude extract obtained from the root of Plumbago zeylanica. Bangladesh J Microbiol. 2007;24(1):73–5.CrossRef
Metadata
Title
Combined antibacterial effect of essential oils from three most commonly used Ethiopian traditional medicinal plants on multidrug resistant bacteria
Authors
Eshetu Gadisa
Gebru Weldearegay
Kassu Desta
Getahun Tsegaye
Sityehu Hailu
Kefiyelewu Jote
Abera Takele
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2019
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-019-2429-4

Other articles of this Issue 1/2019

BMC Complementary Medicine and Therapies 1/2019 Go to the issue