Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2018

Open Access 01-12-2018 | Research article

Extract of Paecilomyces hepiali mycelia induces lipolysis through PKA-mediated phosphorylation of hormone-sensitive lipase and ERK-mediated downregulation of perilipin in 3T3-L1 adipocytes

Authors: Mei Ge, Rui Guo, Hai-xia Lou, Wen Zhang

Published in: BMC Complementary Medicine and Therapies | Issue 1/2018

Login to get access

Abstract

Background

Cordyceps sinensis has been used for centuries in China as one of the most valued herbal medicine and tonic food. Paecilomyces hepiali, a fungal strain isolated from natural C. sinensis, has been used widely as a substitute of C. sinensis in medicine and health food. P. hepiali has been reported to have various pharmaceutical benefits, including triglyceride-lowing activity. However, its effects on triglyceride metabolism in adipocytes remain unknown. The purpose of the present study was to evaluate the effect of P. hepiali mycelia on adipocyte lipolysis and to clarify the underlying mechanisms.

Methods

The fully differentiated 3T3-L1 adipocytes were treated with methanol extract of Paecilomyces hepiali mycelia (PHME). Contents of glycerol released into the culture medium and intracellular triglyceride were measured as indices of lipolysis using glycerol assay kit and Oil red O staining, respectively. Then, effects of PHME on the main lipases or kinases involved in lipolysis regulation were investigated. Protein expression of adipose triglyceride lipase (ATGL) and perilipin, as well as phosphorylation of hormone-sensitive lipase (HSL), AMP-activated protein kinase (AMPK), and mitogen-activated protein kinases (MAPKs) were determined by western blotting. Moreover, nucleosides, important constituents of PHME, were analyzed using high performance liquid chromatography (HPLC).

Results

Treatment with PHME led to a significant increase in glycerol release thereby reduced intracellular triglyceride accumulation in fully differentiated adipocytes. PHME upregulated protein kinase (PK) A-mediated phosphorylation of HSL at serine residues of 563 and 660. Meanwhile, PHME treatment also upregulated phosphorylation of extracellular signal-regulated kinase (ERK), and downregulated the protein level of perilipin. Pretreatment with the PKA inhibitor, H89, blunted the PHME-induced lipolysis and the phosphorylation of HSL (Ser 563 and 660). Moreover, pretreatment with ERK inhibitor, PD98059, weakened the PHME-caused glycerol release and downregulation of perilipin expression. HPLC analysis indicated there were adenosine, cordycepin, uridine and vernine in PHME.

Conclusions

Our results showed that PHME significantly induced lipolysis in 3T3-L1 adipocytes, which is mainly mediated by activation of HSL through PKA pathway and by downregulation of perilipin through activation of ERK pathway.
Appendix
Available only for authorised users
Literature
1.
go back to reference Huang LF, Liang YZ, Guo FQ, Zhou ZF, Cheng BM. Simultaneous separation and determination of active components in Cordyceps sinensis and Cordyceps militarris by LC/ESI-MS. J Pharm Biomed Anal. 2003;33:1155–62.CrossRefPubMed Huang LF, Liang YZ, Guo FQ, Zhou ZF, Cheng BM. Simultaneous separation and determination of active components in Cordyceps sinensis and Cordyceps militarris by LC/ESI-MS. J Pharm Biomed Anal. 2003;33:1155–62.CrossRefPubMed
2.
go back to reference Li SP, Yang FQ, Tsim KW. Quality control of Cordyceps sinensis, a valued traditional Chinese medicine. J Pharm Biomed Anal. 2006;41:1571–84.CrossRefPubMed Li SP, Yang FQ, Tsim KW. Quality control of Cordyceps sinensis, a valued traditional Chinese medicine. J Pharm Biomed Anal. 2006;41:1571–84.CrossRefPubMed
4.
go back to reference Bok JW, Lermer L, Chilton J, Klingeman HG, Towers GH. Antitumor sterols from the mycelia of Cordyceps sinensis. Phytochemistry. 1999;51:891–8.CrossRefPubMed Bok JW, Lermer L, Chilton J, Klingeman HG, Towers GH. Antitumor sterols from the mycelia of Cordyceps sinensis. Phytochemistry. 1999;51:891–8.CrossRefPubMed
5.
go back to reference Kuo YC, Tsai WJ, Wang JY, Chang SC, Lin CY, Shiao MS. Regulation of bronchoalveolar lavage fluids cell function by the immunomodulatory agents from Cordyceps sinensis. Life Sci. 2001;68:1067–82.CrossRefPubMed Kuo YC, Tsai WJ, Wang JY, Chang SC, Lin CY, Shiao MS. Regulation of bronchoalveolar lavage fluids cell function by the immunomodulatory agents from Cordyceps sinensis. Life Sci. 2001;68:1067–82.CrossRefPubMed
6.
go back to reference Lo HC, Hsieh C, Lin FY, Hsu TH. A systematic review of the mysterious caterpillar fungus Ophiocordyceps sinensis in dong-ChongXiaCao (冬蟲夏草 Dōng Chóng Xià Cǎo) and related bioactive ingredients. J Tradit Complement Med. 2013;3:16–32.CrossRefPubMedPubMedCentral Lo HC, Hsieh C, Lin FY, Hsu TH. A systematic review of the mysterious caterpillar fungus Ophiocordyceps sinensis in dong-ChongXiaCao (冬蟲夏草 Dōng Chóng Xià Cǎo) and related bioactive ingredients. J Tradit Complement Med. 2013;3:16–32.CrossRefPubMedPubMedCentral
7.
go back to reference Zhang G, Huang Y, Bian Y, Wong JH, Ng TB, Wang H. Hypoglycemic activity of the fungi Cordyceps militaris, Cordyceps sinensis, Tricholoma mongolicum, and Omphalia lapidescens in streptozotocin-induced diabetic rats. Appl Microbiol Biotechnol. 2006;72:1152–6.CrossRefPubMed Zhang G, Huang Y, Bian Y, Wong JH, Ng TB, Wang H. Hypoglycemic activity of the fungi Cordyceps militaris, Cordyceps sinensis, Tricholoma mongolicum, and Omphalia lapidescens in streptozotocin-induced diabetic rats. Appl Microbiol Biotechnol. 2006;72:1152–6.CrossRefPubMed
8.
go back to reference Zhao J, Xie J, Wang LY, Li SP. Advanced development in chemical analysis of Cordyceps. J Pharm Biomed Anal. 2014;87:271–89.CrossRefPubMed Zhao J, Xie J, Wang LY, Li SP. Advanced development in chemical analysis of Cordyceps. J Pharm Biomed Anal. 2014;87:271–89.CrossRefPubMed
9.
go back to reference Zhu JS, Gao L, Li XH, Yao YS, Zhao JQ, Zhou YJ, et al. Maturational alteration of oppositely orientated rDNA and differential proliferation of GC- and AT-biased genotypes of Ophiocordyceps sinensis and Paecilomyces hepiali in natural Cordyceps sinensis. Am J Biomed Sci. 2010;2:217–38.CrossRef Zhu JS, Gao L, Li XH, Yao YS, Zhao JQ, Zhou YJ, et al. Maturational alteration of oppositely orientated rDNA and differential proliferation of GC- and AT-biased genotypes of Ophiocordyceps sinensis and Paecilomyces hepiali in natural Cordyceps sinensis. Am J Biomed Sci. 2010;2:217–38.CrossRef
10.
go back to reference Wu Z, Zhang M, Xie M, Dai Z, Wang X, Hu B, et al. Extraction, characterization and antioxidant activity of mycelial polysaccharides from Paecilomyces hepiali HN1. Carbohydr Polym. 2016;137:541–8.CrossRefPubMed Wu Z, Zhang M, Xie M, Dai Z, Wang X, Hu B, et al. Extraction, characterization and antioxidant activity of mycelial polysaccharides from Paecilomyces hepiali HN1. Carbohydr Polym. 2016;137:541–8.CrossRefPubMed
11.
go back to reference Wang J, Li LZ, Liu YG, Teng LR, Lu JH, Xie J, et al. Investigations on the antifatigue and antihypoxic effects of Paecilomyces hepiali extract. Mol Med Rep. 2016;13:1861–8.CrossRefPubMed Wang J, Li LZ, Liu YG, Teng LR, Lu JH, Xie J, et al. Investigations on the antifatigue and antihypoxic effects of Paecilomyces hepiali extract. Mol Med Rep. 2016;13:1861–8.CrossRefPubMed
13.
go back to reference Wu Z, Lu J, Wang X, Hu B, Ye H, Fan J, et al. Optimization for production of exopolysaccharides with antitumor activity in vitro from Paecilomyces hepiali. Carbohydr Polym. 2014;99:226–34.CrossRefPubMed Wu Z, Lu J, Wang X, Hu B, Ye H, Fan J, et al. Optimization for production of exopolysaccharides with antitumor activity in vitro from Paecilomyces hepiali. Carbohydr Polym. 2014;99:226–34.CrossRefPubMed
14.
go back to reference Park SY, Jung SJ, Ha KC, Sin HS, Jang SH, Chae HJ, et al. Anti-inflammatory effects of Cordyceps mycelium (Paecilomyces hepiali, CBG-CS-2) in Raw264.7 murine macrophages. Orient Pharm Exp Med. 2015;15:7–12.CrossRefPubMed Park SY, Jung SJ, Ha KC, Sin HS, Jang SH, Chae HJ, et al. Anti-inflammatory effects of Cordyceps mycelium (Paecilomyces hepiali, CBG-CS-2) in Raw264.7 murine macrophages. Orient Pharm Exp Med. 2015;15:7–12.CrossRefPubMed
16.
go back to reference Holm C. Molecular mechanisms regulating hormone-sensitive lipase and lipolysis. Biochem Soc Trans. 2003;31:1120–4.CrossRefPubMed Holm C. Molecular mechanisms regulating hormone-sensitive lipase and lipolysis. Biochem Soc Trans. 2003;31:1120–4.CrossRefPubMed
17.
go back to reference El Husseny MW, Mamdouh M, Shaban S, Ibrahim Abushouk A, Zaki MM, Ahmed OM, et al. Adipokines: potential therapeutic targets for vascular dysfunction in type II diabetes mellitus and obesity. J Diabetes Res. 2017;2017:8095926.CrossRefPubMed El Husseny MW, Mamdouh M, Shaban S, Ibrahim Abushouk A, Zaki MM, Ahmed OM, et al. Adipokines: potential therapeutic targets for vascular dysfunction in type II diabetes mellitus and obesity. J Diabetes Res. 2017;2017:8095926.CrossRefPubMed
18.
19.
20.
go back to reference Jaworski K, Sarkadi-Nagy E, Duncan RE, Ahmadian M, Sul HS. Regulation of triglyceride metabolism. IV. Hormonal regulation of lipolysis in adipose tissue. Am J Physiol Gastrointest Liver Physiol. 2007;293:G1–4.CrossRefPubMedPubMedCentral Jaworski K, Sarkadi-Nagy E, Duncan RE, Ahmadian M, Sul HS. Regulation of triglyceride metabolism. IV. Hormonal regulation of lipolysis in adipose tissue. Am J Physiol Gastrointest Liver Physiol. 2007;293:G1–4.CrossRefPubMedPubMedCentral
22.
go back to reference Frühbeck G, Méndez-Giménez L, Fernández-Formoso JA, Fernández S, Rodríguez A. Regulation of adipocyte lipolysis. Nutr Res Rev. 2014;27:63–93.CrossRefPubMed Frühbeck G, Méndez-Giménez L, Fernández-Formoso JA, Fernández S, Rodríguez A. Regulation of adipocyte lipolysis. Nutr Res Rev. 2014;27:63–93.CrossRefPubMed
23.
go back to reference Lafontan M, Langin D. Lipolysis and lipid mobilization in human adipose tissue. Prog Lipid Res. 2009;48:275–97.CrossRefPubMed Lafontan M, Langin D. Lipolysis and lipid mobilization in human adipose tissue. Prog Lipid Res. 2009;48:275–97.CrossRefPubMed
24.
go back to reference Zechner R, Zimmermann R, Eichmann TO, Kohlwein SD, Haemmerle G, Lass A, et al. Fat signals-lipases and lipolysis in lipid metabolism and signaling. Cell Metab. 2012;15:279–91.CrossRefPubMedPubMedCentral Zechner R, Zimmermann R, Eichmann TO, Kohlwein SD, Haemmerle G, Lass A, et al. Fat signals-lipases and lipolysis in lipid metabolism and signaling. Cell Metab. 2012;15:279–91.CrossRefPubMedPubMedCentral
25.
go back to reference Arner P, Langin D. Lipolysis in lipid turnover, cancer cachexia, and obesity-induced insulin resistance. Trends Endocrinol Metab. 2014;25:255–62.CrossRefPubMed Arner P, Langin D. Lipolysis in lipid turnover, cancer cachexia, and obesity-induced insulin resistance. Trends Endocrinol Metab. 2014;25:255–62.CrossRefPubMed
26.
go back to reference Souza SC, Palmer HJ, Kang YH, Yamamoto MT, Muliro KV, Paulson KE, et al. TNF-alpha induction of lipolysis is mediated through activation of the extracellular signal related kinase pathway in 3T3-L1 adipocytes. J Cell Biochem. 2003;89:1077–86.CrossRefPubMed Souza SC, Palmer HJ, Kang YH, Yamamoto MT, Muliro KV, Paulson KE, et al. TNF-alpha induction of lipolysis is mediated through activation of the extracellular signal related kinase pathway in 3T3-L1 adipocytes. J Cell Biochem. 2003;89:1077–86.CrossRefPubMed
27.
go back to reference Maľucká LU, Harvanova J, Uhrinová A, Salayová A, Pavlík M, Rajtar M. Antioxidant activity and infrared spectroscopy analysis of alcoholic extracts obtained from Paecilomyces hepiali (ascomycetes). Int J Med Mushrooms. 2018;20:595–605.CrossRefPubMed Maľucká LU, Harvanova J, Uhrinová A, Salayová A, Pavlík M, Rajtar M. Antioxidant activity and infrared spectroscopy analysis of alcoholic extracts obtained from Paecilomyces hepiali (ascomycetes). Int J Med Mushrooms. 2018;20:595–605.CrossRefPubMed
28.
go back to reference Wang Q, Wang ST, Yang X, You PP, Zhang W. Myricetin suppresses differentiation of 3T3-L1 preadipocytes and enhances lipolysis in adipocytes. Nutr Res. 2015;35:317–27.CrossRefPubMed Wang Q, Wang ST, Yang X, You PP, Zhang W. Myricetin suppresses differentiation of 3T3-L1 preadipocytes and enhances lipolysis in adipocytes. Nutr Res. 2015;35:317–27.CrossRefPubMed
30.
go back to reference Cheng W, Zhang X, Song Q, Lu W, Wu T, Zhang Q, Li C. Determination and comparative analysis of 13 nucleosides and nucleobases in natural fruiting body of Ophiocordyceps sinensis and its substitutes. Mycology. 2017;8:318–26.CrossRefPubMedPubMedCentral Cheng W, Zhang X, Song Q, Lu W, Wu T, Zhang Q, Li C. Determination and comparative analysis of 13 nucleosides and nucleobases in natural fruiting body of Ophiocordyceps sinensis and its substitutes. Mycology. 2017;8:318–26.CrossRefPubMedPubMedCentral
31.
32.
go back to reference Greenberg AS, Shen WJ, Muliro K, Patel S, Souza SC, Roth RA, et al. Stimulation of lipolysis and hormone-sensitive lipase via the extracellular signal-regulated kinase pathway. J Biol Chem. 2001;276:45456–61.CrossRefPubMed Greenberg AS, Shen WJ, Muliro K, Patel S, Souza SC, Roth RA, et al. Stimulation of lipolysis and hormone-sensitive lipase via the extracellular signal-regulated kinase pathway. J Biol Chem. 2001;276:45456–61.CrossRefPubMed
33.
go back to reference Rydén M, Arvidsson E, Blomqvist L, Perbeck L, Dicker A, Arner P. Targets for TNF-α-induced lipolysis in human adipocytes. Biochem Biophys Res Commun. 2004;318:168–75.CrossRefPubMed Rydén M, Arvidsson E, Blomqvist L, Perbeck L, Dicker A, Arner P. Targets for TNF-α-induced lipolysis in human adipocytes. Biochem Biophys Res Commun. 2004;318:168–75.CrossRefPubMed
34.
go back to reference Tuli HS, Sandhu SS, Sharma AK. Pharmacological and therapeutic potential of Cordyceps with special reference to cordycepin. 3 Biotech. 2014;4:1–12.CrossRefPubMed Tuli HS, Sandhu SS, Sharma AK. Pharmacological and therapeutic potential of Cordyceps with special reference to cordycepin. 3 Biotech. 2014;4:1–12.CrossRefPubMed
35.
go back to reference Takahashi S, Tamai M, Nakajima S, Kato H, Johno H, Nakamura T, et al. Blockade of adipocyte differentiation by cordycepin. Br J Pharmacol. 2012;167:561–75.CrossRefPubMedPubMedCentral Takahashi S, Tamai M, Nakajima S, Kato H, Johno H, Nakamura T, et al. Blockade of adipocyte differentiation by cordycepin. Br J Pharmacol. 2012;167:561–75.CrossRefPubMedPubMedCentral
Metadata
Title
Extract of Paecilomyces hepiali mycelia induces lipolysis through PKA-mediated phosphorylation of hormone-sensitive lipase and ERK-mediated downregulation of perilipin in 3T3-L1 adipocytes
Authors
Mei Ge
Rui Guo
Hai-xia Lou
Wen Zhang
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2018
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-018-2389-0

Other articles of this Issue 1/2018

BMC Complementary Medicine and Therapies 1/2018 Go to the issue