Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2018

Open Access 01-12-2018 | Research article

Yiqihuoxue decoction protects against post-myocardial infarction injury via activation of cardiomyocytes PGC-1α expression

Authors: Fanghe Li, Shuwen Guo, Chunguo Wang, Xiaolou Huang, Hui Wang, Xiaobo Tan, Qian Cai, Jiani Wu, Yuqin Zhang, Xi Chen, Wangou Lin, Binyue Zhang

Published in: BMC Complementary Medicine and Therapies | Issue 1/2018

Login to get access

Abstract

Background

Mitochondrial dysfunction has been implicated in the pathogenesis of ischemic heart disease, exacerbating cardiomyocytes injury in myocardial infarction (MI). Peroxisome proliferator-activated receptor gamma co-activator (PGC-1α) has been recognized as the key regulator of mitochondrial biogenesis and energy metabolism. Yiqihuoxue decoction (YQHX), a Traditional Chinese Medicine (TCM) prescription, can prevent and treat ischemic heart disease. However, the mechanisms of YQHX on PGC-1α expression in the ischemic heart have remained unclear.

Methods

Myocardial ischemia rat model and ischemia/hypoxia injury model in the cardiomyocytes were used to minic human cardiovascular disease. Rats were randomly assigned into 4 groups: Sham, Model, YQHX (8.2 g/kg) and Trimetazidine (10 mg/kg) group. 28 days after MI, cardiac functions and morphology were detected by echocardiography and HE staining, respectively. In vitro, the effects of YQHX on H9c2 cell viability, LDH and ROS were detected, respectively. PGC-1α relevant proteins were evaluated by Western blotting.

Results

In vivo, echocardiography and HE staining results showed that YQHX improved cardiac functions and modified pathological changes. YQHX enhanced PGC-1α expression and improved the mitochondrial ultrastructure and functions in rats MI model for 4 weeks. Further, we explored its potential mechanisms in cardiomyocytes. In vitro, YQHX significantly enhanced cell viability and reduced LDH release and ROS production induced by hypoxia in cardiomyocytes. Interestingly, exposure of cardiomyocytes to hypoxic conditions for 12 h induced the downregulation of PGC-1α expression, but the expression levels nearly returned to the normal state after hypoxia for 24 h. YQHX significantly enhanced PGC-1α expression between 12 h and 24 h induced by hypoxia through a mechanism associated with the activation of AMPK phosphorylation in H9c2 cells. In addition, YQHX upregulated the expression of Tfam and NRF-1, while NRF-1 expression was completely blocked by an AMPK inhibitor. YQHX largely restored the mitochondrial morphology and increased mitochondrial membrane potential in hypoxia-induced injury. Furthermore, the UHPLC-LTQ-Orbitrap-MSn analysis found that there were 87 chemical constituents in YQHX.

Conclusions

These results suggest that the protective effect of YQHX on cardiomyocytes against hypoxia-induced injury may be attributed to activation of PGC-1α and maintenance of mitochondrial functions through a mechanism involving the activation of AMPK phosphorylation.
Appendix
Available only for authorised users
Literature
1.
go back to reference Makarewich CA, Zhang HY, Davis J, et al. Transient receptor potential channels contribute to pathological structural and functional remodeling after myocardial infarction. Circ Res. 2014;115:567–80.CrossRef Makarewich CA, Zhang HY, Davis J, et al. Transient receptor potential channels contribute to pathological structural and functional remodeling after myocardial infarction. Circ Res. 2014;115:567–80.CrossRef
2.
go back to reference Choi D, Hwang KC, Lee KY, et al. Ischemic heart diseases: current treatments and future. J Control Release. 2009;140:194–202.CrossRef Choi D, Hwang KC, Lee KY, et al. Ischemic heart diseases: current treatments and future. J Control Release. 2009;140:194–202.CrossRef
3.
go back to reference GBD 2016 Causes of Death Collaborators. Global, regional, and national age-sex specific mortality for 264 causes of death, 1980–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet. 2017;390:1151–210.CrossRef GBD 2016 Causes of Death Collaborators. Global, regional, and national age-sex specific mortality for 264 causes of death, 1980–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet. 2017;390:1151–210.CrossRef
4.
go back to reference Chandrasekhar J, Mehran R. The ideal anticoagulation strategy in ST-elevation myocardial infarction. Prog Cardiovasc Dis. 2015;58:247–59.CrossRef Chandrasekhar J, Mehran R. The ideal anticoagulation strategy in ST-elevation myocardial infarction. Prog Cardiovasc Dis. 2015;58:247–59.CrossRef
5.
go back to reference Pei HF, Hou JN, Wei FP, et al. Melatonin attenuates Postmyocardial infarction injury via increasing Tom70 expression. J Pineal Res. 2017;62:1.CrossRef Pei HF, Hou JN, Wei FP, et al. Melatonin attenuates Postmyocardial infarction injury via increasing Tom70 expression. J Pineal Res. 2017;62:1.CrossRef
6.
go back to reference Ong SB, Hall AR, Hausenloy DJ. Mitochondrial dynamics in cardiovascular health and disease. Antioxid Redox Signal. 2013;19:400–14.CrossRef Ong SB, Hall AR, Hausenloy DJ. Mitochondrial dynamics in cardiovascular health and disease. Antioxid Redox Signal. 2013;19:400–14.CrossRef
7.
go back to reference Pei H, Yang Y, Zhao H, Li X, Yang D, Li D. The role of mitochondrial functional proteins in ROS production in ischemic heart diseases. Oxidative Med Cell Longev. 2016;2016:5470457.CrossRef Pei H, Yang Y, Zhao H, Li X, Yang D, Li D. The role of mitochondrial functional proteins in ROS production in ischemic heart diseases. Oxidative Med Cell Longev. 2016;2016:5470457.CrossRef
8.
go back to reference Di Lisa F, Menabò R, Canton M, Barile M, Bernardi P. Opening of the mitochondrial permeability transition pore causes depletion of mitochondrial and cytosolic NAD+ and is a causative event in the death of myocytes in Postischemic reperfusion of the heart. J Biol Chem. 2001;276:2571–5.CrossRef Di Lisa F, Menabò R, Canton M, Barile M, Bernardi P. Opening of the mitochondrial permeability transition pore causes depletion of mitochondrial and cytosolic NAD+ and is a causative event in the death of myocytes in Postischemic reperfusion of the heart. J Biol Chem. 2001;276:2571–5.CrossRef
9.
go back to reference Scarpulla RC. Metabolic control of mitochondrial biogenesis through the PGC-1 family regulatory network. Biochim Biophys Acta. 1813;2011:1269–78. Scarpulla RC. Metabolic control of mitochondrial biogenesis through the PGC-1 family regulatory network. Biochim Biophys Acta. 1813;2011:1269–78.
10.
go back to reference Karunakaran D, Thrush AB, Nguyen MA, et al. Macrophage mitochondrial energy status regulates cholesterol efflux and is enhanced by anti-miR33 in atherosclerosis. Circ Res. 2015;117:266–78.CrossRef Karunakaran D, Thrush AB, Nguyen MA, et al. Macrophage mitochondrial energy status regulates cholesterol efflux and is enhanced by anti-miR33 in atherosclerosis. Circ Res. 2015;117:266–78.CrossRef
11.
go back to reference Kang D, Hamasaki N. Mitochondrial transcription factor a in the maintenance of mitochondrial DNA: overview of its multiple roles. Ann N Y Acad Sci. 2005;1042:101–8.CrossRef Kang D, Hamasaki N. Mitochondrial transcription factor a in the maintenance of mitochondrial DNA: overview of its multiple roles. Ann N Y Acad Sci. 2005;1042:101–8.CrossRef
12.
go back to reference Gundewar S, Calvert JW, Jha S, et al. Activation of AMP-activated protein kinase by metformin improves left ventricular function and survival in heart failure. Circ Res. 2009;104:403–11.CrossRef Gundewar S, Calvert JW, Jha S, et al. Activation of AMP-activated protein kinase by metformin improves left ventricular function and survival in heart failure. Circ Res. 2009;104:403–11.CrossRef
13.
go back to reference Aatsinki SM, Buler M, Salomaki H, et al. Metformin induces PGC-1alpha expression and selectively affects hepatic PGC-1alpha functions. Br J Pharmacol. 2014;171:2351–63.CrossRef Aatsinki SM, Buler M, Salomaki H, et al. Metformin induces PGC-1alpha expression and selectively affects hepatic PGC-1alpha functions. Br J Pharmacol. 2014;171:2351–63.CrossRef
14.
go back to reference Ye JX, Wang SS, Ge M, et al. Suppression of endothelial PGC-1alpha is associated with hypoxia-induced endothelial dysfunction and provides a new therapeutic target in pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol. 2016;310:L1233–42.CrossRef Ye JX, Wang SS, Ge M, et al. Suppression of endothelial PGC-1alpha is associated with hypoxia-induced endothelial dysfunction and provides a new therapeutic target in pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol. 2016;310:L1233–42.CrossRef
15.
go back to reference Lin HQ, Gong AG, Wang HY, et al. Tsim Danggui Buxue tang (Astragali Radix and Angelicae Sinensis Radix) for menopausal symptoms: a review. J Ethnopharmacol. 2017;199:205–10.CrossRef Lin HQ, Gong AG, Wang HY, et al. Tsim Danggui Buxue tang (Astragali Radix and Angelicae Sinensis Radix) for menopausal symptoms: a review. J Ethnopharmacol. 2017;199:205–10.CrossRef
16.
go back to reference Hu G, P Yang, Y Zeng, et al. Danggui Buxue decoction promotes angiogenesis by up-regulation of VEGFR1/2 expressions and down-regulation of sVEGFR1/2 expression in myocardial infarction rat. J. Chin. Med. Assoc. 2018; 81, 37–46.CrossRef Hu G, P Yang, Y Zeng, et al. Danggui Buxue decoction promotes angiogenesis by up-regulation of VEGFR1/2 expressions and down-regulation of sVEGFR1/2 expression in myocardial infarction rat. J. Chin. Med. Assoc. 2018; 81, 37–46.CrossRef
17.
go back to reference Mak DHF, Chiu PY, Dong TTX, et al. Dang-Gui Buxue tang produces a more potent cardioprotective effect than its component herb extracts and enhances glutathione status in rat heart mitochondria and erythrocytes. Phytother Res. 2006;20(7):561–7.CrossRef Mak DHF, Chiu PY, Dong TTX, et al. Dang-Gui Buxue tang produces a more potent cardioprotective effect than its component herb extracts and enhances glutathione status in rat heart mitochondria and erythrocytes. Phytother Res. 2006;20(7):561–7.CrossRef
18.
go back to reference Guo SW, Yang PC, Zheng CL. Clinical research on the treatment of CHD myocardial ischemia-induced syndrome of qi-deficiency and blood stasis with TCM Yiqihuoxue herbs combined with conventional western medicine. Chin J Inform Traditional Chin Med. 2012;19(9):15–7. Guo SW, Yang PC, Zheng CL. Clinical research on the treatment of CHD myocardial ischemia-induced syndrome of qi-deficiency and blood stasis with TCM Yiqihuoxue herbs combined with conventional western medicine. Chin J Inform Traditional Chin Med. 2012;19(9):15–7.
19.
go back to reference Zheng CL, Yang PC, Zhang L, et al. Angiogenesis and expression of vascular endothelial growth factor and endostatin protein in myocardial infarction rat model. Bangladesh J Pharmacol. 2016;11:S1–7.CrossRef Zheng CL, Yang PC, Zhang L, et al. Angiogenesis and expression of vascular endothelial growth factor and endostatin protein in myocardial infarction rat model. Bangladesh J Pharmacol. 2016;11:S1–7.CrossRef
20.
go back to reference Zhang L, Chenglong Zheng, Min Jiang, et al. Effect of Yiqi Huoxue decoction on the metabolomics of acute myocardial infarction rats. J Traditional Chin Med Sci. 2017; 06, 001. Zhang L, Chenglong Zheng, Min Jiang, et al. Effect of Yiqi Huoxue decoction on the metabolomics of acute myocardial infarction rats. J Traditional Chin Med Sci. 2017; 06, 001.
21.
go back to reference Wu J G, X Chen, S W Guo, et al. Effect of Yiqihuoxue prescription on myocardial energy metabolism after myocardial infarction via cross talk of liver kinase B1-dependent Notchl and adenosine 5′-monophosphate-activated protein kinase. J Tradit Chin Med 2017; 37, 378–386. Wu J G, X Chen, S W Guo, et al. Effect of Yiqihuoxue prescription on myocardial energy metabolism after myocardial infarction via cross talk of liver kinase B1-dependent Notchl and adenosine 5′-monophosphate-activated protein kinase. J Tradit Chin Med 2017; 37, 378–386.
22.
go back to reference Wu Jiangong, Guo Shuwen, Chen Xi, et al. YiqiHuoxue prescription can prevent and treat post-MI myocardial remodeling through promoting the expression of AMPK signal pathway. J Traditional Chin Med Sci 2017; 4(3), 235–244.CrossRef Wu Jiangong, Guo Shuwen, Chen Xi, et al. YiqiHuoxue prescription can prevent and treat post-MI myocardial remodeling through promoting the expression of AMPK signal pathway. J Traditional Chin Med Sci 2017; 4(3), 235–244.CrossRef
23.
go back to reference Arumugam S, Sreedhar R, Thandavarayan RA, et al. Targeting fatty acid metabolism in heart failure: is it a suitable therapeutic approach? Drug Discov Today. 2016;21:1003–8.CrossRef Arumugam S, Sreedhar R, Thandavarayan RA, et al. Targeting fatty acid metabolism in heart failure: is it a suitable therapeutic approach? Drug Discov Today. 2016;21:1003–8.CrossRef
24.
go back to reference Murphy E, Ardehali H, Balaban RS, et al. Mitochondrial function, biology, and role in disease: a scientific statement from the American Heart Association. Circ. Res. 2016;118:1960–91.CrossRef Murphy E, Ardehali H, Balaban RS, et al. Mitochondrial function, biology, and role in disease: a scientific statement from the American Heart Association. Circ. Res. 2016;118:1960–91.CrossRef
25.
go back to reference Murphy E, Steenbergen C. Preconditioning: the mitochondrial connection. Annu Rev Physiol. 2007;69:51–67.CrossRef Murphy E, Steenbergen C. Preconditioning: the mitochondrial connection. Annu Rev Physiol. 2007;69:51–67.CrossRef
26.
go back to reference Li F, Guo S, Hu J, et al. Comparison on pharmacodynamics effects between different extracts of Yiqihuoxue on H9c2 myocardial cells injury induced by hypoxia. Guiding J Traditional Chin Med Pharm. 2018;24(3):29–32.CrossRef Li F, Guo S, Hu J, et al. Comparison on pharmacodynamics effects between different extracts of Yiqihuoxue on H9c2 myocardial cells injury induced by hypoxia. Guiding J Traditional Chin Med Pharm. 2018;24(3):29–32.CrossRef
27.
go back to reference Ramjiawan A, Bagchi RA, Blant A, et al. Roles of histone deacetylation and AMP kinase in regulation of cardiomyocyte PGC-1alpha gene expression in hypoxia. Am J Physiol Cell Physiol. 2013;304:C1064–72.CrossRef Ramjiawan A, Bagchi RA, Blant A, et al. Roles of histone deacetylation and AMP kinase in regulation of cardiomyocyte PGC-1alpha gene expression in hypoxia. Am J Physiol Cell Physiol. 2013;304:C1064–72.CrossRef
28.
go back to reference Zhu L, Wang Q, Zhang L, et al. Hypoxia induces PGC-1alpha expression and mitochondrial biogenesis in the myocardium of TOF patients. Cell Res. 2010;20:676–87.CrossRef Zhu L, Wang Q, Zhang L, et al. Hypoxia induces PGC-1alpha expression and mitochondrial biogenesis in the myocardium of TOF patients. Cell Res. 2010;20:676–87.CrossRef
29.
go back to reference Chiang MC, Nicol CJ, Cheng YC, et al. Rosiglitazone activation of PPARgamma-dependent pathways is neuroprotective in human neural stem cells against amyloid-beta-induced mitochondrial dysfunction and oxidative stress. Neurobiol Aging. 2016;40:181–90.CrossRef Chiang MC, Nicol CJ, Cheng YC, et al. Rosiglitazone activation of PPARgamma-dependent pathways is neuroprotective in human neural stem cells against amyloid-beta-induced mitochondrial dysfunction and oxidative stress. Neurobiol Aging. 2016;40:181–90.CrossRef
30.
go back to reference Chung MM, Chen YL, Pei D, et al. The neuroprotective role of metformin in advanced glycation end product treated human neural stem cells is AMPK-dependent. Biochim Biophys Acta. 1852;2015:720–31. Chung MM, Chen YL, Pei D, et al. The neuroprotective role of metformin in advanced glycation end product treated human neural stem cells is AMPK-dependent. Biochim Biophys Acta. 1852;2015:720–31.
31.
go back to reference Xiao W, Goswami PC. Down-regulation of peroxisome proliferator activated receptor gamma coactivator 1alpha induces oxidative stress and toxicity of 1-(4-Chlorophenyl)-benzo-2,5-quinone in HaCaT human keratinocytes. Toxicol in Vitro. 2015;29:1332–8.CrossRef Xiao W, Goswami PC. Down-regulation of peroxisome proliferator activated receptor gamma coactivator 1alpha induces oxidative stress and toxicity of 1-(4-Chlorophenyl)-benzo-2,5-quinone in HaCaT human keratinocytes. Toxicol in Vitro. 2015;29:1332–8.CrossRef
32.
go back to reference Handschin C, Spiegelman BM. Peroxisome proliferator-activated receptor gamma coactivator 1 coactivators, energy hemeostasis, and metabolism. Endocr Rev. 2006;27:728–35.CrossRef Handschin C, Spiegelman BM. Peroxisome proliferator-activated receptor gamma coactivator 1 coactivators, energy hemeostasis, and metabolism. Endocr Rev. 2006;27:728–35.CrossRef
33.
go back to reference Gamboa JL, Andrade FH. Mitochondrial content and distribution changes specific to mouse diaphragm after chronic normobaric hypoxia. Am J Physiol Regul Integr Comp Physiol. 2010;298:R575–83.CrossRef Gamboa JL, Andrade FH. Mitochondrial content and distribution changes specific to mouse diaphragm after chronic normobaric hypoxia. Am J Physiol Regul Integr Comp Physiol. 2010;298:R575–83.CrossRef
34.
go back to reference Liu Y, Ma Z, Zhao C, et al. HIF-1alpha and HIF-2alpha are critically involved in hypoxia-induced lipid accumulation in hepatocytes through reducing PGC-1alpha-mediated fatty acid beta-oxidation. Toxicol Lett. 2014;226:117–23.CrossRef Liu Y, Ma Z, Zhao C, et al. HIF-1alpha and HIF-2alpha are critically involved in hypoxia-induced lipid accumulation in hepatocytes through reducing PGC-1alpha-mediated fatty acid beta-oxidation. Toxicol Lett. 2014;226:117–23.CrossRef
35.
go back to reference Puigserver P, Spiegelman BM. Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha): transcriptional coactivator and metabolic regulator. Endocr Rev. 2003;24:78–90.CrossRef Puigserver P, Spiegelman BM. Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha): transcriptional coactivator and metabolic regulator. Endocr Rev. 2003;24:78–90.CrossRef
36.
go back to reference Dong Z, Zhao P, Xu M, et al. Astragaloside IV alleviates heart failure via activating PPARalpha to switch glycolysis to fatty acid beta-oxidation. Sci Rep. 2017;7(1):2691.CrossRef Dong Z, Zhao P, Xu M, et al. Astragaloside IV alleviates heart failure via activating PPARalpha to switch glycolysis to fatty acid beta-oxidation. Sci Rep. 2017;7(1):2691.CrossRef
37.
go back to reference Zhang S, Tang F, Yang Y, et al. Astragaloside IV protects against isoproterenol-induced cardiac hypertrophy by regulating NF-kappaB/PGC-1alpha signaling mediated energy biosynthesis. PLoS One. 2015;10:e0118759.CrossRef Zhang S, Tang F, Yang Y, et al. Astragaloside IV protects against isoproterenol-induced cardiac hypertrophy by regulating NF-kappaB/PGC-1alpha signaling mediated energy biosynthesis. PLoS One. 2015;10:e0118759.CrossRef
38.
go back to reference Junqing G, Tao C, Huigen J, et al. Effect of calycosin on left ventricular ejection fraction and angiogenesis in rat models with myocardial infarction. J Tradit Chin Med. 2015;35(2):160–7.CrossRef Junqing G, Tao C, Huigen J, et al. Effect of calycosin on left ventricular ejection fraction and angiogenesis in rat models with myocardial infarction. J Tradit Chin Med. 2015;35(2):160–7.CrossRef
39.
go back to reference Mancuso C, Santangelo R. Ferulic acid: pharmacological and toxicological aspects. Food Chem Toxicol. 2014;65:185–95.CrossRef Mancuso C, Santangelo R. Ferulic acid: pharmacological and toxicological aspects. Food Chem Toxicol. 2014;65:185–95.CrossRef
40.
go back to reference Li L, Pan CS, Yan L, et al. Ginsenoside Rg1 ameliorates rat myocardial ischemia-reperfusion injury by modulating energy metabolism pathways. Front Physiol. 2018;9:78.CrossRef Li L, Pan CS, Yan L, et al. Ginsenoside Rg1 ameliorates rat myocardial ischemia-reperfusion injury by modulating energy metabolism pathways. Front Physiol. 2018;9:78.CrossRef
41.
go back to reference Zheng Q, Bao XY, Zhu PC, et al. Ginsenoside Rb1 for myocardial ischemia/reperfusion injury: preclinical evidence and possible mechanisms. Oxidative Med Cell Longev. 2017;2017:6313625. Zheng Q, Bao XY, Zhu PC, et al. Ginsenoside Rb1 for myocardial ischemia/reperfusion injury: preclinical evidence and possible mechanisms. Oxidative Med Cell Longev. 2017;2017:6313625.
42.
go back to reference Zhang LP, Jiang YC, Yu XF, et al. Ginsenoside Rg3 improves cardiac function after myocardial ischemia/reperfusion via attenuating apoptosis and inflammation. Evid Based Complement Alternat Med. 2016;2016:6967853.PubMedPubMedCentral Zhang LP, Jiang YC, Yu XF, et al. Ginsenoside Rg3 improves cardiac function after myocardial ischemia/reperfusion via attenuating apoptosis and inflammation. Evid Based Complement Alternat Med. 2016;2016:6967853.PubMedPubMedCentral
43.
go back to reference Yang YL, Li J, Liu K, et al. Ginsenoside Rg5 increases cardiomyocyte resistance to ischemic injury through regulation of mitochondrial hexokinase-II and dynamin-related protein 1. Cell Death Dis. 2017;8(2):e2625.CrossRef Yang YL, Li J, Liu K, et al. Ginsenoside Rg5 increases cardiomyocyte resistance to ischemic injury through regulation of mitochondrial hexokinase-II and dynamin-related protein 1. Cell Death Dis. 2017;8(2):e2625.CrossRef
44.
go back to reference Zeng X, Li J, Li Z. Ginsenoside Rd mitigates myocardial ischemia-reperfusion injury via Nrf2/HO-1 signaling pathway. Int J Clin Exp Med. 2015;8(8):14497–504.PubMedPubMedCentral Zeng X, Li J, Li Z. Ginsenoside Rd mitigates myocardial ischemia-reperfusion injury via Nrf2/HO-1 signaling pathway. Int J Clin Exp Med. 2015;8(8):14497–504.PubMedPubMedCentral
45.
go back to reference Lim KH, Lim DJ, Kim JH. Ginsenoside-re ameliorates ischemia and reperfusion injury in the heart: a hemodynamics approach. Journal of ginseng research. 2013;37(3):283–92.CrossRef Lim KH, Lim DJ, Kim JH. Ginsenoside-re ameliorates ischemia and reperfusion injury in the heart: a hemodynamics approach. Journal of ginseng research. 2013;37(3):283–92.CrossRef
46.
go back to reference Mu QQ, Fang X, Li XK, et al. Ginsenoside Rb1 promotes browning through regulation of PPAR gamma in 3T3-L1 adipocytes. Biochem Biophys Res Commun. 2015;466(3):530–5.CrossRef Mu QQ, Fang X, Li XK, et al. Ginsenoside Rb1 promotes browning through regulation of PPAR gamma in 3T3-L1 adipocytes. Biochem Biophys Res Commun. 2015;466(3):530–5.CrossRef
47.
go back to reference Liu JL, Zhang DW, Gao SH. Ginsenoside Rb1 promotes browning through regulation of PPAR gamma in 3T3-L1 adipocytes. Biochem Biophys Res Commun. 2015;466:530–5.CrossRef Liu JL, Zhang DW, Gao SH. Ginsenoside Rb1 promotes browning through regulation of PPAR gamma in 3T3-L1 adipocytes. Biochem Biophys Res Commun. 2015;466:530–5.CrossRef
48.
go back to reference Sun M, Huang C, Wang C, et al. Ginsenoside Rg3 improves cardiac mitochondrial population quality: mimetic exercise training. Biochem Biophys Res Commun. 2013;441:169–74.CrossRef Sun M, Huang C, Wang C, et al. Ginsenoside Rg3 improves cardiac mitochondrial population quality: mimetic exercise training. Biochem Biophys Res Commun. 2013;441:169–74.CrossRef
Metadata
Title
Yiqihuoxue decoction protects against post-myocardial infarction injury via activation of cardiomyocytes PGC-1α expression
Authors
Fanghe Li
Shuwen Guo
Chunguo Wang
Xiaolou Huang
Hui Wang
Xiaobo Tan
Qian Cai
Jiani Wu
Yuqin Zhang
Xi Chen
Wangou Lin
Binyue Zhang
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2018
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-018-2319-1

Other articles of this Issue 1/2018

BMC Complementary Medicine and Therapies 1/2018 Go to the issue