Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2018

Open Access 01-12-2018 | Research article

Endoplasmic reticulum stress induced by an ethanol extract of Coicis semen in Chang liver cells

Authors: Hwa Yeon Kim, Ha Na Song, Munkhtugs Davaatseren, Hyun Joo Chang, Hyang Sook Chun

Published in: BMC Complementary Medicine and Therapies | Issue 1/2018

Login to get access

Abstract

Background

It is well known that endoplasmic reticulum (ER) stress plays a huge role in development of metabolic diseases. Specially, ER stress-induced cellular dysfunction has a significant involvement in the pathogenesis of human chronic disorders.
This study was designed to study to assess whether an ethanol extract of Coicis Semen (CSE) and coixol induces the ER stress in Chang liver cells.

Methods

Coicis Semen was mixed with 95% ethanol at a ratio of 1:10 (w/v) and freeze dried. Chang liver cells were seeded to 96-well plates and treated with or without CSE (100, 200, 300, 500, or 1000 μg/mL) or coixol (100, 200, 300, 500, 750, or 1000 μg/mL). cell viability was analyzed with MTT assay. Effects of CSE and coixol on expression of the genes for ER stress markers were determined with qRT-PCR and the expression of the protein levels of ER stress markers were determined with western blotting.

Results

The concentration causing 50% inhibition (IC50) for CSE and coixol was 250 and 350 μg/mL, respectively. The CSE and coixol increased the gene expression of BiP and CHOP in a dose-dependent manner. Furthermore, CSE and coixol dose-dependently increased the the expression of XBP1.

Conclusions

CSE or coixol may have cytotoxic effect to Chang liver cells and, may induce ER stress and stimulate the UPR via activation of the PERK and IRE1 pathways in normal liver cells.
Appendix
Available only for authorised users
Literature
1.
go back to reference Ozacan L, Tabas I. Role of endoplasmic reticulum stress in metabolic disease and other disorders. Annu Rev Med. 2012;63:317–28.CrossRef Ozacan L, Tabas I. Role of endoplasmic reticulum stress in metabolic disease and other disorders. Annu Rev Med. 2012;63:317–28.CrossRef
2.
go back to reference So AY-L, de la Fuente E, Walter P, Shuman M, Bernales S. The unfolded protein response during prostate cancer development. Cancer Metastasis Rev. 2009;28:219–23.CrossRefPubMed So AY-L, de la Fuente E, Walter P, Shuman M, Bernales S. The unfolded protein response during prostate cancer development. Cancer Metastasis Rev. 2009;28:219–23.CrossRefPubMed
3.
go back to reference Kim MK, KGl P. Endoplasmic reticulum stress and diabetes. Endocrinol Metab. 2008;23:1–8. Kim MK, KGl P. Endoplasmic reticulum stress and diabetes. Endocrinol Metab. 2008;23:1–8.
4.
go back to reference Chambers JE, Marciniak SJ. Cellular mechanisms of endoplasmic reticulum stress signaling in health and disease. 2. Protein misfolding and ER stress. Am J Phys. 2014;307:C657–70.CrossRef Chambers JE, Marciniak SJ. Cellular mechanisms of endoplasmic reticulum stress signaling in health and disease. 2. Protein misfolding and ER stress. Am J Phys. 2014;307:C657–70.CrossRef
5.
go back to reference Ye J, Rawson RB, Komuro R, Chen X, Dave UP, et al. ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. Mol Cell. 2000;6:1355–64.CrossRefPubMed Ye J, Rawson RB, Komuro R, Chen X, Dave UP, et al. ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. Mol Cell. 2000;6:1355–64.CrossRefPubMed
6.
go back to reference Cho SI, Kim HW, Kim JS. Effect of Coicis semen extract on streptozotocin-induced diabetic nephropathy rats. Kor J Herbology. 2006;21:75–81. Cho SI, Kim HW, Kim JS. Effect of Coicis semen extract on streptozotocin-induced diabetic nephropathy rats. Kor J Herbology. 2006;21:75–81.
7.
go back to reference Lee YJ, Sohn YJ, Lee ES, Park JS, Kim SK. Effects of Coicis semen on the hyperlipidemia in rat. Kor. J. Herbology. 2004;19:129–36. Lee YJ, Sohn YJ, Lee ES, Park JS, Kim SK. Effects of Coicis semen on the hyperlipidemia in rat. Kor. J. Herbology. 2004;19:129–36.
8.
go back to reference Yun HJ, Lee YJ, Kang MS, Baek JH. Inhibitory effect of Coicis semen extract (CSE) on pro-inflammatory mediatory. J Korean Oriental Pediatrics. 2009;23:159–71. Yun HJ, Lee YJ, Kang MS, Baek JH. Inhibitory effect of Coicis semen extract (CSE) on pro-inflammatory mediatory. J Korean Oriental Pediatrics. 2009;23:159–71.
9.
go back to reference Hung WC, Chang HC. Methanolic extract of adlay seed suppresses COX-2 expression of human lung cancer cells via inhibition of gene transcription. J Agric Food Chem. 2003;51:7333–7.CrossRefPubMed Hung WC, Chang HC. Methanolic extract of adlay seed suppresses COX-2 expression of human lung cancer cells via inhibition of gene transcription. J Agric Food Chem. 2003;51:7333–7.CrossRefPubMed
10.
go back to reference Lu X, Liu W, Wu J, Li M, Wang J, et al. A polysaccharide fraction of adlay seed (Coixlachryma-jobi L.) induces apoptosis in human non-small cell lung cancer A549 cells. Biochem Biophys Res Commun. 2013;430:846–51.CrossRefPubMed Lu X, Liu W, Wu J, Li M, Wang J, et al. A polysaccharide fraction of adlay seed (Coixlachryma-jobi L.) induces apoptosis in human non-small cell lung cancer A549 cells. Biochem Biophys Res Commun. 2013;430:846–51.CrossRefPubMed
11.
go back to reference Lipman AG. The Federal ban on ephedrine dietary supplements. J Pain Palliat Care Pharmacother. 2004;18:1–4. Lipman AG. The Federal ban on ephedrine dietary supplements. J Pain Palliat Care Pharmacother. 2004;18:1–4.
12.
go back to reference Debelle FD, Nortier JL, Prez EGD, Garbar CH, Vienne AR, et al. Aristolochic acids induce chronic renal failure with interstitial fibrosis in salt-depleted rats. J Am Soc Nephrol. 2002;13:431–6.PubMed Debelle FD, Nortier JL, Prez EGD, Garbar CH, Vienne AR, et al. Aristolochic acids induce chronic renal failure with interstitial fibrosis in salt-depleted rats. J Am Soc Nephrol. 2002;13:431–6.PubMed
13.
go back to reference Balachandran P, Wei F, Lin RC, Khan IA, Pasco DS. Structure activity relationships of aristolochic acid analogues: toxicity in cultured renal epithelial cells. Kidney Int. 2005;67:1797–805.CrossRefPubMed Balachandran P, Wei F, Lin RC, Khan IA, Pasco DS. Structure activity relationships of aristolochic acid analogues: toxicity in cultured renal epithelial cells. Kidney Int. 2005;67:1797–805.CrossRefPubMed
14.
go back to reference Chen CH, Dickman KG, Moriya M, Zavadil J, Sidorenko VS, et al. Aristolochic acid-associated urothelial cancer in Taiwan. Proc Natl Acad Sci U S A. 2012;109:8241–6.CrossRefPubMedPubMedCentral Chen CH, Dickman KG, Moriya M, Zavadil J, Sidorenko VS, et al. Aristolochic acid-associated urothelial cancer in Taiwan. Proc Natl Acad Sci U S A. 2012;109:8241–6.CrossRefPubMedPubMedCentral
15.
go back to reference Hsia SM, Chiang W, Kuo YH, Wang PS. Downregulation of progesterone biosynthesis in rat granulosa cells by adlay (Coix lachrymal-jobi L. var. mayuen Stapf.) bran extracts. Int J Impot Res. 2006;18:264–73.CrossRefPubMed Hsia SM, Chiang W, Kuo YH, Wang PS. Downregulation of progesterone biosynthesis in rat granulosa cells by adlay (Coix lachrymal-jobi L. var. mayuen Stapf.) bran extracts. Int J Impot Res. 2006;18:264–73.CrossRefPubMed
16.
go back to reference Tzeng HP, Chiang W, Ueng TH, Liu SH. The abortifacient effects from the seeds of Coixlachryma-jobi L. var. ma-yuen Stapf. J Toxicol Environ Health Part A. 2005;68:1557–65.CrossRefPubMed Tzeng HP, Chiang W, Ueng TH, Liu SH. The abortifacient effects from the seeds of Coixlachryma-jobi L. var. ma-yuen Stapf. J Toxicol Environ Health Part A. 2005;68:1557–65.CrossRefPubMed
17.
go back to reference Choi EH, Park JH, Kim MK, Chun HS. Alleviation of doxorubicin-induced toxicities by anthocyanin-rich bilberry (Vaccinium myrtillus L.) extract in rats and mice. Biofactors. 2010;36:319–27.CrossRefPubMed Choi EH, Park JH, Kim MK, Chun HS. Alleviation of doxorubicin-induced toxicities by anthocyanin-rich bilberry (Vaccinium myrtillus L.) extract in rats and mice. Biofactors. 2010;36:319–27.CrossRefPubMed
18.
go back to reference Lu Y, Zhang BY, Jia ZX, Wu WJ, Lu ZQ. Hepatocellular carcinoma HepG2 cell apoptosis and caspase-8 and Bcl-2 expression induced by injectable seed extract of Coixlacryma-jobi. Hepatobiliary Pancreat Dis Int. 2011;10:303–7.CrossRefPubMed Lu Y, Zhang BY, Jia ZX, Wu WJ, Lu ZQ. Hepatocellular carcinoma HepG2 cell apoptosis and caspase-8 and Bcl-2 expression induced by injectable seed extract of Coixlacryma-jobi. Hepatobiliary Pancreat Dis Int. 2011;10:303–7.CrossRefPubMed
19.
go back to reference Cha YJ, Lee SY. Cytotoxicity and multidrug-resistance reversing activity of extracts from gamma-irradiated Coixlacryma-jobi L. var. ma-yuen Stapf seed. J Korean Soc Food Sci Nutr. 2005;34:613–8.CrossRef Cha YJ, Lee SY. Cytotoxicity and multidrug-resistance reversing activity of extracts from gamma-irradiated Coixlacryma-jobi L. var. ma-yuen Stapf seed. J Korean Soc Food Sci Nutr. 2005;34:613–8.CrossRef
20.
go back to reference Cong-yan L, Yan C, Ding Q, Jing Z. Comparative study on the correlation between the content and in vitro anti-lung cancer activity of the active constituents in different origin semen Coicis. Chinese Approaches Difficult Diseases. 2015;2:35–44. Cong-yan L, Yan C, Ding Q, Jing Z. Comparative study on the correlation between the content and in vitro anti-lung cancer activity of the active constituents in different origin semen Coicis. Chinese Approaches Difficult Diseases. 2015;2:35–44.
21.
go back to reference Manosroi A, Sainakham M, Chankhampan C, Abe M, Manosroi W, et al. Potent in vitro anti-proliferative, apoptotic and anti-oxidative activities of semi-purified Job’s tears (Coixlachryma-jobi Linn.) extracts from different preparation methods on 5 human cancer cell lines. J Ethnopharmacol. 2016; In press Manosroi A, Sainakham M, Chankhampan C, Abe M, Manosroi W, et al. Potent in vitro anti-proliferative, apoptotic and anti-oxidative activities of semi-purified Job’s tears (Coixlachryma-jobi Linn.) extracts from different preparation methods on 5 human cancer cell lines. J Ethnopharmacol. 2016; In press
22.
23.
go back to reference Oyadomari S, Mori M. Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ. 2004;11:381–9.CrossRefPubMed Oyadomari S, Mori M. Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ. 2004;11:381–9.CrossRefPubMed
24.
go back to reference Yoshida H, Matsui T, Yamanoto A, Okada T, Mori K. XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell. 2001;107:881–91.CrossRefPubMed Yoshida H, Matsui T, Yamanoto A, Okada T, Mori K. XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell. 2001;107:881–91.CrossRefPubMed
25.
go back to reference Sood R, Porter AC, Ma K, Quilliam LA, Wek RC. Pancreatic eukaryotic initiation factor-2α kinase (PEK) homologues in humans, Drosophila melanogaster and Caenorhabditis elegans that mediate translational control in response to endoplasmic reticulum stress. J Biochem. 2000;346:281–93.CrossRef Sood R, Porter AC, Ma K, Quilliam LA, Wek RC. Pancreatic eukaryotic initiation factor-2α kinase (PEK) homologues in humans, Drosophila melanogaster and Caenorhabditis elegans that mediate translational control in response to endoplasmic reticulum stress. J Biochem. 2000;346:281–93.CrossRef
26.
go back to reference Cullinan SB, Diehl JA. Coordination of ER and oxidative stress signaling: the PERK/Nrf2 signaling pathway. Int J Biochem Cell Biol. 2016;38:317–32.CrossRef Cullinan SB, Diehl JA. Coordination of ER and oxidative stress signaling: the PERK/Nrf2 signaling pathway. Int J Biochem Cell Biol. 2016;38:317–32.CrossRef
27.
go back to reference Kubota K, Niinuma Y, Kaneko M, Okuma Y, Sugail M, et al. Suppressive effects of 4-phenylbutyrate on the aggregation of Pael receptors and endoplasmic reticulum stress. J Neurochem. 2006;97:1259–68.CrossRefPubMed Kubota K, Niinuma Y, Kaneko M, Okuma Y, Sugail M, et al. Suppressive effects of 4-phenylbutyrate on the aggregation of Pael receptors and endoplasmic reticulum stress. J Neurochem. 2006;97:1259–68.CrossRefPubMed
28.
go back to reference Haze K, Yoshida H, Yannagi H, Yura T, Mori K. Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol Biol Cell. 1999;10:3787–99.CrossRefPubMedPubMedCentral Haze K, Yoshida H, Yannagi H, Yura T, Mori K. Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol Biol Cell. 1999;10:3787–99.CrossRefPubMedPubMedCentral
29.
go back to reference Hong M, Luo S, Baumeister P, Huang J-M, Gogia RK, et al. Underglycosylation of ATF6 as a novel sensing mechanism for activation of the unfolded protein response. J Biol Chem. 2004;279:11354–63.CrossRefPubMed Hong M, Luo S, Baumeister P, Huang J-M, Gogia RK, et al. Underglycosylation of ATF6 as a novel sensing mechanism for activation of the unfolded protein response. J Biol Chem. 2004;279:11354–63.CrossRefPubMed
30.
go back to reference Li W, Ouyang Z, Zhang Q, Wang L, Shen Y, et al. SBF-1 exerts strong anticervical cancer effect through inducing endoplasmic reticulum stress-associated cell death via targeting sarco/endoplasmic reticulum Ca2+-ATPase 2. Cell Death Dis. 2014. https://doi.org/10.1038/cddis.2014.538. Li W, Ouyang Z, Zhang Q, Wang L, Shen Y, et al. SBF-1 exerts strong anticervical cancer effect through inducing endoplasmic reticulum stress-associated cell death via targeting sarco/endoplasmic reticulum Ca2+-ATPase 2. Cell Death Dis. 2014. https://​doi.​org/​10.​1038/​cddis.​2014.​538.
31.
go back to reference Galán M, Kassan M, Kadowitz PJ, Trebak M, Belmadani S, et al. Mechanism of endoplasmic reticulum stress-induced vascular endothelial dysfunction. Biochim Biophys Acta. 2014;1843:1063–75.CrossRefPubMedPubMedCentral Galán M, Kassan M, Kadowitz PJ, Trebak M, Belmadani S, et al. Mechanism of endoplasmic reticulum stress-induced vascular endothelial dysfunction. Biochim Biophys Acta. 2014;1843:1063–75.CrossRefPubMedPubMedCentral
32.
go back to reference Malo A, Krüger B, Göke B, Kubisch CH. 4-Phenylbutyric acid reduces endoplasmic reticulum stress, trypsin activation, and acinar cell apoptosis while increasing secretion in rat pancreatic acini. Pancreas. 2013;42:92–101.CrossRefPubMed Malo A, Krüger B, Göke B, Kubisch CH. 4-Phenylbutyric acid reduces endoplasmic reticulum stress, trypsin activation, and acinar cell apoptosis while increasing secretion in rat pancreatic acini. Pancreas. 2013;42:92–101.CrossRefPubMed
Metadata
Title
Endoplasmic reticulum stress induced by an ethanol extract of Coicis semen in Chang liver cells
Authors
Hwa Yeon Kim
Ha Na Song
Munkhtugs Davaatseren
Hyun Joo Chang
Hyang Sook Chun
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2018
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-018-2175-z

Other articles of this Issue 1/2018

BMC Complementary Medicine and Therapies 1/2018 Go to the issue