Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2018

Open Access 01-12-2018 | Research article

Evaluation of the antioxidant and endothelial protective effects of Lysimachia christinae Hance (Jin Qian Cao) extract fractions

Authors: Ning-hua Wu, Zhi-qiang Ke, Shan Wu, Xiao-song Yang, Qing-jie Chen, Sheng-tang Huang, Chao Liu

Published in: BMC Complementary Medicine and Therapies | Issue 1/2018

Login to get access

Abstract

Background

Lysimachia christinae Hance is a traditional Chinese medicine with diuretic, detumescent, and detoxifying effects. Our aimed to optimize the extraction protocol to maximize the yield of flavonoids from Lysimachia christinae Hance, and evaluate the pharmacological activities of four fractions, namely, petroleum ether (PE), ethyl acetate (EA), n-butanol (NB), and aqueous (AQ) fractions, of the ethanolic extract of Lysimachia christinae Hance.

Methods

The flavonoid monomers in the crude extract were characterized via high performance liquid chromatography (HPLC), were used as markers for extract quality control and standardization. The total flavonoid, total phenolic, and total polysaccharide contents of each fraction were determined by spectrophotometry. Further, the in vitro free radical (diphenylpicrylhydrazyl, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid), superoxide, and hydroxyl radicals) scavenging activities, and antioxidant capacity in endothelial cells were evaluated for each fraction.

Results

After optimizing the extraction protocol to maximize the total flavonoid yield from L. christinae Hance, the NB fractions had the highest total flavonoid (39.4 ± 4.55 mg RE/g), total phenolic (41.1 ± 3.07 mg GAE/g) and total polysaccharide (168.1 ± 7.07 mg GE/g); In addition, the NB fraction of the ethanolic extract of L. christinae Hance reveal the strongest radical-scavenging activity, antioxidant activity and protective effects against H2O2-induced injury in HUVECs.

Conclusions

Among the four fractions of L. christinae Hance, the NB fraction showed the most potent antioxidant and endothelial protective effects, which may be attributed to its high flavonoid, phenolic contents and optimal portfolio of different active ingredients of NB fractions of the ethanolic extract of L. christinae Hance. This study might improve our understanding of the pharmacological activities of L. christinae Hance, thereby facilitating its use in disease prevention and treatment.
Literature
1.
go back to reference Deng J, Ren M, Dai X, Qu D, Yang M, Zhang T, Jiang B. Lysimachia christinae Hance regresses preestablished cholesterol gallstone in mice. J Ethnopharmacol. 2015;166:102–8.CrossRefPubMed Deng J, Ren M, Dai X, Qu D, Yang M, Zhang T, Jiang B. Lysimachia christinae Hance regresses preestablished cholesterol gallstone in mice. J Ethnopharmacol. 2015;166:102–8.CrossRefPubMed
2.
go back to reference Yang X, Wang BC, Zhang X, Liu WQ, Qian JZ, Li W, Deng J, Singh GK, Su H. Evaluation of Lysimachia christinae Hance extracts as anticholecystitis and cholagogic agents in animals. J Ethnopharmacol. 2011;137(1):57–63.CrossRefPubMed Yang X, Wang BC, Zhang X, Liu WQ, Qian JZ, Li W, Deng J, Singh GK, Su H. Evaluation of Lysimachia christinae Hance extracts as anticholecystitis and cholagogic agents in animals. J Ethnopharmacol. 2011;137(1):57–63.CrossRefPubMed
3.
go back to reference Wang J, Zhang Y, Zhang Y, Cui Y, Liu J, Zhang B. Protective effect of Lysimachia christinae against acute alcohol-induced liver injury in mice. Bioscience Trends. 2012;6(2):89–97.PubMed Wang J, Zhang Y, Zhang Y, Cui Y, Liu J, Zhang B. Protective effect of Lysimachia christinae against acute alcohol-induced liver injury in mice. Bioscience Trends. 2012;6(2):89–97.PubMed
4.
go back to reference Li HY, Hao ZB, Wang XL, Huang L, Li JP. Antioxidant activities of extracts and fractions from Lysimachia foenum-graecum Hance. Bioresour Technol. 2009;100(2):970–4.CrossRefPubMed Li HY, Hao ZB, Wang XL, Huang L, Li JP. Antioxidant activities of extracts and fractions from Lysimachia foenum-graecum Hance. Bioresour Technol. 2009;100(2):970–4.CrossRefPubMed
5.
go back to reference Del Rio D, Rodriguez-Mateos A, Spencer JP, Tognolini M, Borges G, Crozier A: Dietary (poly)phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid Redox Signal 2013, 18(14):1818–1892. Del Rio D, Rodriguez-Mateos A, Spencer JP, Tognolini M, Borges G, Crozier A: Dietary (poly)phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid Redox Signal 2013, 18(14):1818–1892.
6.
go back to reference Conti V, Izzo V, Corbi G, Russomanno G, Manzo V, De Lise F, Di Donato A, Filippelli A. Antioxidant supplementation in the treatment of aging-associated diseases. Front Pharmacology. 2016;7:24.CrossRef Conti V, Izzo V, Corbi G, Russomanno G, Manzo V, De Lise F, Di Donato A, Filippelli A. Antioxidant supplementation in the treatment of aging-associated diseases. Front Pharmacology. 2016;7:24.CrossRef
7.
go back to reference Bijak M, Saluk J, Szelenberger R, Nowak P. Popular naturally occurring antioxidants as potential anticoagulant drugs. Chem Biol Interact. 2016;257:35–45.CrossRefPubMed Bijak M, Saluk J, Szelenberger R, Nowak P. Popular naturally occurring antioxidants as potential anticoagulant drugs. Chem Biol Interact. 2016;257:35–45.CrossRefPubMed
8.
go back to reference Kasote DM, Katyare SS, Hegde MV, Bae H. Significance of antioxidant potential of plants and its relevance to therapeutic applications. Int J Biol Sci. 2015;11(8):982–91.CrossRefPubMedCentralPubMed Kasote DM, Katyare SS, Hegde MV, Bae H. Significance of antioxidant potential of plants and its relevance to therapeutic applications. Int J Biol Sci. 2015;11(8):982–91.CrossRefPubMedCentralPubMed
9.
go back to reference Scholz EP, Zitron E, Katus HA, Karle CA. Cardiovascular ion channels as a molecular target of flavonoids. Cardiovasc Ther. 2010;28(4):e46–52.CrossRefPubMed Scholz EP, Zitron E, Katus HA, Karle CA. Cardiovascular ion channels as a molecular target of flavonoids. Cardiovasc Ther. 2010;28(4):e46–52.CrossRefPubMed
10.
go back to reference Lee JO, Chang K, Kim CY, Jung SH, Lee SW, Oak MH. Lysimachia clethroides extract promote vascular relaxation via endothelium-dependent mechanism. J Cardiovasc Pharmacol. 2010;55(5):481–8.PubMed Lee JO, Chang K, Kim CY, Jung SH, Lee SW, Oak MH. Lysimachia clethroides extract promote vascular relaxation via endothelium-dependent mechanism. J Cardiovasc Pharmacol. 2010;55(5):481–8.PubMed
11.
go back to reference Asaduzzaman M, Uddin MJ, Kader MA, Alam AH, Rahman AA, Rashid M, Kato K, Tanaka T, Takeda M, Sadik G. In vitro acetylcholinesterase inhibitory activity and the antioxidant properties of Aegle marmelos leaf extract: implications for the treatment of Alzheimer's disease. Psychogeriatrics. 2014;14(1):1–10.CrossRefPubMed Asaduzzaman M, Uddin MJ, Kader MA, Alam AH, Rahman AA, Rashid M, Kato K, Tanaka T, Takeda M, Sadik G. In vitro acetylcholinesterase inhibitory activity and the antioxidant properties of Aegle marmelos leaf extract: implications for the treatment of Alzheimer's disease. Psychogeriatrics. 2014;14(1):1–10.CrossRefPubMed
12.
go back to reference Laghari AH, Memon S, Nelofar A, Khan KM, Yasmin A. Determination of free phenolic acids and antioxidant activity of methanolic extracts obtained from fruits and leaves of Chenopodium album. Food Chem. 2011;126(4):1850–5.CrossRefPubMed Laghari AH, Memon S, Nelofar A, Khan KM, Yasmin A. Determination of free phenolic acids and antioxidant activity of methanolic extracts obtained from fruits and leaves of Chenopodium album. Food Chem. 2011;126(4):1850–5.CrossRefPubMed
13.
go back to reference Machova E, Bystricky S. Antioxidant capacities of mannans and glucans are related to their susceptibility of free radical degradation. Int J Biol Macromol. 2013;61:308–11.CrossRefPubMed Machova E, Bystricky S. Antioxidant capacities of mannans and glucans are related to their susceptibility of free radical degradation. Int J Biol Macromol. 2013;61:308–11.CrossRefPubMed
14.
go back to reference Aktumsek A, Zengin G, Guler GO, Cakmak YS, Duran A. Antioxidant potentials and anticholinesterase activities of methanolic and aqueous extracts of three endemic Centaurea L. species. Food Chem Toxicol. 2013;55:290–6.CrossRefPubMed Aktumsek A, Zengin G, Guler GO, Cakmak YS, Duran A. Antioxidant potentials and anticholinesterase activities of methanolic and aqueous extracts of three endemic Centaurea L. species. Food Chem Toxicol. 2013;55:290–6.CrossRefPubMed
15.
go back to reference Fukumoto LR, Mazza G. Assessing antioxidant and prooxidant activities of phenolic compounds. J Agric Food Chem. 2000;48(8):3597–604.CrossRefPubMed Fukumoto LR, Mazza G. Assessing antioxidant and prooxidant activities of phenolic compounds. J Agric Food Chem. 2000;48(8):3597–604.CrossRefPubMed
16.
go back to reference Munzel T, Daiber A, Steven S, Tran LP, Ullmann E, Kossmann S, Schmidt FP, Oelze M, Xia N, Li H, et al. Effects of noise on vascular function, oxidative stress, and inflammation: mechanistic insight from studies in mice. Eur Heart J. 2017;38(37):2838–49.CrossRefPubMedCentralPubMed Munzel T, Daiber A, Steven S, Tran LP, Ullmann E, Kossmann S, Schmidt FP, Oelze M, Xia N, Li H, et al. Effects of noise on vascular function, oxidative stress, and inflammation: mechanistic insight from studies in mice. Eur Heart J. 2017;38(37):2838–49.CrossRefPubMedCentralPubMed
17.
go back to reference Sakihama Y, Cohen MF, Grace SC, Yamasaki H. Plant phenolic antioxidant and prooxidant activities: phenolics-induced oxidative damage mediated by metals in plants. Toxicology. 2002;177(1):67–80.CrossRefPubMed Sakihama Y, Cohen MF, Grace SC, Yamasaki H. Plant phenolic antioxidant and prooxidant activities: phenolics-induced oxidative damage mediated by metals in plants. Toxicology. 2002;177(1):67–80.CrossRefPubMed
18.
go back to reference Catarino MD, Alves-Silva JM, Pereira OR, Cardoso SM. Antioxidant capacities of flavones and benefits in oxidative-stress related diseases. Curr Top Med Chem. 2015;15(2):105–19.CrossRefPubMed Catarino MD, Alves-Silva JM, Pereira OR, Cardoso SM. Antioxidant capacities of flavones and benefits in oxidative-stress related diseases. Curr Top Med Chem. 2015;15(2):105–19.CrossRefPubMed
19.
go back to reference Ji L, Wu J, Gao W, Wei J, Yang J, Guo C. Antioxidant capacity of different fractions of vegetables and correlation with the contents of ascorbic acid, phenolics, and flavonoids. J Food Sci. 2011;76(9):C1257–61.CrossRefPubMed Ji L, Wu J, Gao W, Wei J, Yang J, Guo C. Antioxidant capacity of different fractions of vegetables and correlation with the contents of ascorbic acid, phenolics, and flavonoids. J Food Sci. 2011;76(9):C1257–61.CrossRefPubMed
20.
go back to reference Yen FL, Wu TH, Lin LT, Cham TM, Lin CC. Concordance between antioxidant activities and flavonol contents in different extracts and fractions of Cuscuta chinensis. Food Chem. 2008;108(2):455–62.CrossRefPubMed Yen FL, Wu TH, Lin LT, Cham TM, Lin CC. Concordance between antioxidant activities and flavonol contents in different extracts and fractions of Cuscuta chinensis. Food Chem. 2008;108(2):455–62.CrossRefPubMed
Metadata
Title
Evaluation of the antioxidant and endothelial protective effects of Lysimachia christinae Hance (Jin Qian Cao) extract fractions
Authors
Ning-hua Wu
Zhi-qiang Ke
Shan Wu
Xiao-song Yang
Qing-jie Chen
Sheng-tang Huang
Chao Liu
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2018
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-018-2157-1

Other articles of this Issue 1/2018

BMC Complementary Medicine and Therapies 1/2018 Go to the issue