Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2018

Open Access 01-12-2018 | Research article

Herbal formula Xinshuitong capsule exerts its cardioprotective effects via mitochondria in the hypoxia-reoxygenated human cardiomyocytes

Authors: Chunjiang Tan, Jianwei Zeng, Yanbin Wu, Jiahui Zhang, Wenlie Chen

Published in: BMC Complementary Medicine and Therapies | Issue 1/2018

Login to get access

Abstract

Background

The collapse of mitochondrial membrane potential (ΔΨm) resulted in the cell apoptosis and heart failure. Xinshuitong Capsule (XST) could ameliorate left ventricular ejection fraction (LVEF), New York Heart Association (NYHA) classes and the quality of life in patients with chronic heart failure in our clinical study, however, its cardioprotective mechanisms remain unclear.

Methods

Primary human cardiomyocytes were subjected to hypoxia-reoxygenation and treated with XST200, 400 and 600 μg/ml. The model group was free of XST and the control group was cultured in normal conditions. Cell viability, ΔΨm, the activity of mitochondrial respiratory chain complexes, ATPase activity, reactive oxygen species (ROS) and apoptosis cells were determined in all the groups.

Results

The cell viability in the XST-treated groups was significantly higher than that in the model group (P < 0.05). Coupled with the restoration of the ΔΨm, the number of polarized cells increased dose dependently in the XST-treated groups. XST also restored the lost activities of mitochondrial respiratory chain complexes I-IV induced by the oxidative stress. The total of mitochondrial ATPase activity was significantly elevated at XST400 and 600 μg/ml compared to the model group (P < 0.05). The levels of mitochondrial ROS and the number of apoptosis cells declined in the XST-treated groups compared to those in the model group (P < 0.05).

Conclusions

XST, via restoration of ΔΨm and the mitochondrial respiratory chain complexes I-IV activities, and suppression of mitochondrial ROS generation and the apoptosis cells, maintained the integrity of the mitochondrial membrane to exert its cardioprotective effects in the hypoxia-reoxygenated human cardiomyocytes.
Literature
1.
go back to reference Weiss JN, Korge P, Honda HM, Ping P. Role of the mitochondrial permeability transition in myocardial disease. Circ Res. 2003;93:292–301.CrossRefPubMed Weiss JN, Korge P, Honda HM, Ping P. Role of the mitochondrial permeability transition in myocardial disease. Circ Res. 2003;93:292–301.CrossRefPubMed
3.
go back to reference Duchen MR, McGuinness O, Brown LA, Crompton M. On the involvement of a cyclosporin a sensitive mitochondrial pore in types are beyond the experimental reach of this study. A myocardial reperfusion injuryCardiovasc Res. 1993;27:1790–4. Duchen MR, McGuinness O, Brown LA, Crompton M. On the involvement of a cyclosporin a sensitive mitochondrial pore in types are beyond the experimental reach of this study. A myocardial reperfusion injuryCardiovasc Res. 1993;27:1790–4.
4.
5.
go back to reference Ide T, Tsutsui H, Kinugawa S, Utsumi H, Kang D, Hattori N, Uchida K, Arimura KI, Egashira K, Takeshita A. Mitochondrial electron transport complex I is a potential source of oxygen free radicals in the failing myocardium. Circ Res. 1999;85:357–63.CrossRefPubMed Ide T, Tsutsui H, Kinugawa S, Utsumi H, Kang D, Hattori N, Uchida K, Arimura KI, Egashira K, Takeshita A. Mitochondrial electron transport complex I is a potential source of oxygen free radicals in the failing myocardium. Circ Res. 1999;85:357–63.CrossRefPubMed
7.
go back to reference Kwon SH, Pimentel DR, Remondino A, Sawyer DB, Colucci WS. H2O2 regulates regulates cardiac myocyte phenotype via concentration dependent activation of distinct kinase pathways. J Mol Cell Cardiol. 2003;35:615–21.CrossRefPubMed Kwon SH, Pimentel DR, Remondino A, Sawyer DB, Colucci WS. H2O2 regulates regulates cardiac myocyte phenotype via concentration dependent activation of distinct kinase pathways. J Mol Cell Cardiol. 2003;35:615–21.CrossRefPubMed
8.
go back to reference Li JM, Gall NP, Grieve DJ, Chen M, Shah AM. Activation of NADPH oxidase during progression of cardiac hypertrophy to failure. Hypertension. 2002;40:477–84.CrossRefPubMed Li JM, Gall NP, Grieve DJ, Chen M, Shah AM. Activation of NADPH oxidase during progression of cardiac hypertrophy to failure. Hypertension. 2002;40:477–84.CrossRefPubMed
9.
go back to reference Li PC, Yang YC, Hwang GY, Kao LS, Lin CY. Inhibition of reverse-mode sodium-calcium exchanger activity and apoptosis by Levosimendan in human cardiomyocyte progenitor cell-derived cardiomyocytes after anoxia and reoxygenation. PLoS One. 2014;9:e85909.CrossRefPubMedPubMedCentral Li PC, Yang YC, Hwang GY, Kao LS, Lin CY. Inhibition of reverse-mode sodium-calcium exchanger activity and apoptosis by Levosimendan in human cardiomyocyte progenitor cell-derived cardiomyocytes after anoxia and reoxygenation. PLoS One. 2014;9:e85909.CrossRefPubMedPubMedCentral
10.
go back to reference Tan CJ, Chen WL, Lin JM, Lin RH, Tan LF. Clinical research of Xinshuitong capsule on chronic heart failure in patients with diuretic resistance. Chin Arch Tradit Chin Med. 2011;29:837–9. Tan CJ, Chen WL, Lin JM, Lin RH, Tan LF. Clinical research of Xinshuitong capsule on chronic heart failure in patients with diuretic resistance. Chin Arch Tradit Chin Med. 2011;29:837–9.
11.
go back to reference Tan CJ, Wu YB, Chen WL, Lin RH. Xinshuitong capsule ameliorates hypertrophy of cardiomyocytes via aquaporin pathway in the ischemia-reperfusion rat hearts. Int J Cardiol. 2011;152:S54.CrossRef Tan CJ, Wu YB, Chen WL, Lin RH. Xinshuitong capsule ameliorates hypertrophy of cardiomyocytes via aquaporin pathway in the ischemia-reperfusion rat hearts. Int J Cardiol. 2011;152:S54.CrossRef
12.
go back to reference Xu L, Deng Y, Feng L, Li D, Chen X, Ma C, Liu X, Yin J, Yang M, Teng F, Wu W, Guan S, Jiang B, Guo D. Cardio-protection of salvianolic acid B through inhibition of apoptosis network. PLoS One. 2011;6:e24036.CrossRefPubMedPubMedCentral Xu L, Deng Y, Feng L, Li D, Chen X, Ma C, Liu X, Yin J, Yang M, Teng F, Wu W, Guan S, Jiang B, Guo D. Cardio-protection of salvianolic acid B through inhibition of apoptosis network. PLoS One. 2011;6:e24036.CrossRefPubMedPubMedCentral
13.
go back to reference Kavazis AN, Talbert EE, Smuder AJ, Hudson MB, Nelson WB, Powers SK. Mechanical ventilation induces diaphragmatic mitochondrial dysfunction and increased oxidant production. Free Radic Biol Med. 2009;46:842–50.CrossRefPubMedPubMedCentral Kavazis AN, Talbert EE, Smuder AJ, Hudson MB, Nelson WB, Powers SK. Mechanical ventilation induces diaphragmatic mitochondrial dysfunction and increased oxidant production. Free Radic Biol Med. 2009;46:842–50.CrossRefPubMedPubMedCentral
14.
go back to reference Alexander T. Assembly of the mitochondrial membrane system. I. Characterization of some enzymes of the inner membrane of yeast mitochondria. J Biol Chem. 1969;244:5020–6. Alexander T. Assembly of the mitochondrial membrane system. I. Characterization of some enzymes of the inner membrane of yeast mitochondria. J Biol Chem. 1969;244:5020–6.
15.
go back to reference Fiske CH, Subbarow Y. The colorimetric determination of phosphorus. J Biol Chem. 1925;66:375–400. Fiske CH, Subbarow Y. The colorimetric determination of phosphorus. J Biol Chem. 1925;66:375–400.
16.
go back to reference Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the folin phenol reagent. J Biol Chem. 1951;193:265–75.PubMed Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the folin phenol reagent. J Biol Chem. 1951;193:265–75.PubMed
17.
go back to reference Almeida A, Moncada S, Bolaños JP. Nitric oxide switches on glycolysis through the AMP protein kinase and 6-phosphofructo-2-kinase pathway. Nat Cell Biol. 2004;6:45–51.CrossRefPubMed Almeida A, Moncada S, Bolaños JP. Nitric oxide switches on glycolysis through the AMP protein kinase and 6-phosphofructo-2-kinase pathway. Nat Cell Biol. 2004;6:45–51.CrossRefPubMed
18.
go back to reference Korshunov SS, Skulachev VP, Starkov AA. High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett. 1997;416:15–8.CrossRefPubMed Korshunov SS, Skulachev VP, Starkov AA. High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett. 1997;416:15–8.CrossRefPubMed
19.
go back to reference Aluri HS, Simpson DC, Allegood JC, Hu Y, Szczepanek K, Gronert S, Chen Q, Lesnefsky EJ. Electron flow into cytochrome c coupled with reactive oxygen species from the electron transport chain converts cytochrome c to a cardiolipin peroxidase: role during ischemia-reperfusion. Biochim Biophys Acta. 2014;1840:9–18. Aluri HS, Simpson DC, Allegood JC, Hu Y, Szczepanek K, Gronert S, Chen Q, Lesnefsky EJ. Electron flow into cytochrome c coupled with reactive oxygen species from the electron transport chain converts cytochrome c to a cardiolipin peroxidase: role during ischemia-reperfusion. Biochim Biophys Acta. 2014;1840:9–18.
20.
go back to reference Lesnefsky EJ, Moghaddas S, Tandler B, Kerner J, Hoppel CL. Mitochondrial dys-function in cardiac disease: ischemia–reperfusion,aging,and heart failure. J Mol Cell Cardiol. 2001;33:1065–89.CrossRefPubMed Lesnefsky EJ, Moghaddas S, Tandler B, Kerner J, Hoppel CL. Mitochondrial dys-function in cardiac disease: ischemia–reperfusion,aging,and heart failure. J Mol Cell Cardiol. 2001;33:1065–89.CrossRefPubMed
21.
go back to reference Chen Q, Moghaddas S, Hoppel CL, Lesnefsky EJ. Reversible blockade of electron transport during ischemia protects mitochondria and decreases myocardial injury following reperfusion. J Pharmaco Exp Ther. 2006;319:1405–12.CrossRef Chen Q, Moghaddas S, Hoppel CL, Lesnefsky EJ. Reversible blockade of electron transport during ischemia protects mitochondria and decreases myocardial injury following reperfusion. J Pharmaco Exp Ther. 2006;319:1405–12.CrossRef
22.
go back to reference Liu Y, Fiskum G, Schubert D. Generation of reactive oxygen species by the mitochondrial electron transport chain. J Neurochemistry. 2002;80:780–7.CrossRef Liu Y, Fiskum G, Schubert D. Generation of reactive oxygen species by the mitochondrial electron transport chain. J Neurochemistry. 2002;80:780–7.CrossRef
23.
go back to reference Skulachev VP. Uncoupling: new approaches to an old problem of bioenergetics. Biochim Biophys Acta. 1998;1363:100–24.CrossRefPubMed Skulachev VP. Uncoupling: new approaches to an old problem of bioenergetics. Biochim Biophys Acta. 1998;1363:100–24.CrossRefPubMed
24.
go back to reference Brand MD, Buckingham JA, Esteves TC, Green K, Lambert AJ, Miwa S, Murphy MP, Pakay JL, Talbot DA, Echtay KS. Mitochondrial superoxide and aging: uncoupling-protein activity and superoxide production. Biochem Soc Symp. 2004;71:203–13.CrossRef Brand MD, Buckingham JA, Esteves TC, Green K, Lambert AJ, Miwa S, Murphy MP, Pakay JL, Talbot DA, Echtay KS. Mitochondrial superoxide and aging: uncoupling-protein activity and superoxide production. Biochem Soc Symp. 2004;71:203–13.CrossRef
25.
go back to reference Brookes PS. Mitochondrial H(+) leak and ROS generation: an odd couple. Free Radic Biol Med. 2005;38:12–23.CrossRefPubMed Brookes PS. Mitochondrial H(+) leak and ROS generation: an odd couple. Free Radic Biol Med. 2005;38:12–23.CrossRefPubMed
26.
go back to reference Korge P, Ping P, Weiss JN. Reactive oxygen species production in energized cardiac mitochondria during hypoxia/reoxygenation: modulation by nitric oxide. Circ Res. 2008;103:873–80.CrossRefPubMedPubMedCentral Korge P, Ping P, Weiss JN. Reactive oxygen species production in energized cardiac mitochondria during hypoxia/reoxygenation: modulation by nitric oxide. Circ Res. 2008;103:873–80.CrossRefPubMedPubMedCentral
27.
go back to reference Petrosillo G, Ruggiero F, Di Venosa N, Paradies G. Decreased complex III activity in mitochondria isolated from rat heart subjected to ischemia and reperfusion: role of reactive oxygen species and cardiolipin. FASEB J. 2003;17:714–6.CrossRefPubMed Petrosillo G, Ruggiero F, Di Venosa N, Paradies G. Decreased complex III activity in mitochondria isolated from rat heart subjected to ischemia and reperfusion: role of reactive oxygen species and cardiolipin. FASEB J. 2003;17:714–6.CrossRefPubMed
29.
go back to reference Rustin P, Chretien D, Bourgeron T, Gerard B, Rotig A, Saudubray JM, Munnich A. Biochemical and molecular investigations in respiratory chain deficiencies. Clin Chim Acta. 1994;228:35–51.CrossRefPubMed Rustin P, Chretien D, Bourgeron T, Gerard B, Rotig A, Saudubray JM, Munnich A. Biochemical and molecular investigations in respiratory chain deficiencies. Clin Chim Acta. 1994;228:35–51.CrossRefPubMed
30.
go back to reference Cadenas E, Davies KJ. Mitochondrial free radical generation, oxidative stress, and aging. Free Radic Biol Med. 2000;29:222–30.CrossRefPubMed Cadenas E, Davies KJ. Mitochondrial free radical generation, oxidative stress, and aging. Free Radic Biol Med. 2000;29:222–30.CrossRefPubMed
31.
go back to reference Vinogradov AD, Grivennikova VG. Generation of superoxide-radical by the NADH: ubiquinone oxidoreductase of heart mitochondria. Biochemistry. 2005;70:120–7.PubMed Vinogradov AD, Grivennikova VG. Generation of superoxide-radical by the NADH: ubiquinone oxidoreductase of heart mitochondria. Biochemistry. 2005;70:120–7.PubMed
32.
go back to reference Poderoso JJ, Carreras MC, Lisdero C, Riobó N, Schöpfer F, Boveris A. Nitric oxide inhibits electron transfer and increases superoxide radical production in rat heart mitochondria and submitochondrial particles. Arch Biochem Biophys. 1996;328:85–92.CrossRefPubMed Poderoso JJ, Carreras MC, Lisdero C, Riobó N, Schöpfer F, Boveris A. Nitric oxide inhibits electron transfer and increases superoxide radical production in rat heart mitochondria and submitochondrial particles. Arch Biochem Biophys. 1996;328:85–92.CrossRefPubMed
33.
go back to reference Dröge W. Free radicals in the physiological control of cell function. Physiol Rev. 2002;82:47–95.CrossRefPubMed Dröge W. Free radicals in the physiological control of cell function. Physiol Rev. 2002;82:47–95.CrossRefPubMed
35.
go back to reference Mathur A, Hong Y, Kemp BK. Evaluation of fluorescent dyes for the detection of mitochondrial membrane potential changes in cultured cardiomyocytes. Cardiovasc Res. 2000;46:126–38.CrossRefPubMed Mathur A, Hong Y, Kemp BK. Evaluation of fluorescent dyes for the detection of mitochondrial membrane potential changes in cultured cardiomyocytes. Cardiovasc Res. 2000;46:126–38.CrossRefPubMed
Metadata
Title
Herbal formula Xinshuitong capsule exerts its cardioprotective effects via mitochondria in the hypoxia-reoxygenated human cardiomyocytes
Authors
Chunjiang Tan
Jianwei Zeng
Yanbin Wu
Jiahui Zhang
Wenlie Chen
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2018
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-018-2235-4

Other articles of this Issue 1/2018

BMC Complementary Medicine and Therapies 1/2018 Go to the issue