Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2018

Open Access 01-12-2018 | Research article

Repeated electroacupuncture treatment attenuated hyperalgesia through suppression of spinal glial activation in chronic neuropathic pain rats

Authors: Jun-ying Wang, Yong-hui Gao, Li-na Qiao, Jian-liang Zhang, Cheng-Lin Duan-mu, Ya-xia Yan, Shu-ping Chen, Jun-ling Liu

Published in: BMC Complementary Medicine and Therapies | Issue 1/2018

Login to get access

Abstract

Background

Cumulated evidence reveals that glial cells in the spinal cord play an important role in the development of chronic neuropathic pain and are also complicated in the analgesic effect of EA intervention. But the roles of microgliacytes and astrocytes of spinal cord in the process of EA analgesia remain unknown.

Methods

A total of 120 male Wistar rats were used in the present study. The neuropathic pain model was established by chronic constrictive injury (CCI) of the sciatic nerve. The rats were randomly divided into sham group, CCI group, and sham CCI + EA group, and CCI + EA group. EA was applied to bilateral Zusanli (ST36)-Yanlingquan (GB34). The mechanical (both time and force responses) and thermal pain thresholds (PTs) of the bilateral hind-paws were measured. The number of microgliacytes and activity of astrocytes in the dorsal horns (DHs) of lumbar spinal cord (L4–5) were examined by immunofluorescence staining, and the expression of glial fibrillary acidic protein (GFAP) protein was detected by western blot.

Results

Following CCI, both mechanical and thermal PTs of the ipsilateral hind-paw were significantly decreased beginning from the 3rd day after surgery (P < 0.05), and the mechanical PT of the contralateral hind-paw was considerably decreased from the 6th day on after surgery (P < 0.05). CCI also significantly upregulated the number of Iba-1 labeled microgliacytes and the fluorescence intensity of glial fibrillary acidic protein (GFAP) -labeled astrocyte in the superficial laminae of DHs on bilateral sides (P < 0.05). After repeated EA, the mechanical and thermal PTs at bilateral hind-paws were significantly relieved (P < 0.05). The increased of number of microgliacytes was markedly suppressed by 2 days’ EA intervention, and the average fluorescence intensity was suppressed by 2 weeks’ EA. The expression of GFAP protein were down-regulated by 1 and 2 weeks’ EA treatment, respectively (P < 0.05).

Conclusions

Repeated EA can relieve neuropathic pain and mirror-image pain in chronic neuropathic pain rats, which is probably associated with its effect in downregulating glial cell activation of the lumbar spinal cord, the microgliacyte first and astrocyte later.
Literature
2.
3.
go back to reference Wang W, Wang W, Mei XP, Huang J, Wei Y, Wang Y, Wu S, Li Y. Crosstalk between spinal astrocytes and neurons in nerve injury-induced neuropathic pain. PLoS One. 2009;4(9):1–10. Wang W, Wang W, Mei XP, Huang J, Wei Y, Wang Y, Wu S, Li Y. Crosstalk between spinal astrocytes and neurons in nerve injury-induced neuropathic pain. PLoS One. 2009;4(9):1–10.
4.
go back to reference Sfieh-Garabedian B, Poole S, Haddad JJ, Massaad CA, Jabbur SJ, Saade NE. The role of the sympathetic efferents in endotoxin- induced localized inflammatory hyperalgesia and cytokine upregulation. Neuropharmacology. 2002;42(6):864–72.CrossRef Sfieh-Garabedian B, Poole S, Haddad JJ, Massaad CA, Jabbur SJ, Saade NE. The role of the sympathetic efferents in endotoxin- induced localized inflammatory hyperalgesia and cytokine upregulation. Neuropharmacology. 2002;42(6):864–72.CrossRef
5.
go back to reference Vallejo R, Tilley DM, Vogel L, Benyamin R. The role of glia and the immune system in the development and maintenance of neuropathic pain. Pain Practice. 2010;10(3):167–84.CrossRefPubMed Vallejo R, Tilley DM, Vogel L, Benyamin R. The role of glia and the immune system in the development and maintenance of neuropathic pain. Pain Practice. 2010;10(3):167–84.CrossRefPubMed
6.
go back to reference Wang JY, Gao YH, Chen SP, Duanmu CL, Zhang JL, Feng XM, Yan YX, Liu JL, Litscher G. The effect of repeated electroacupuncture analgesia on neurotrophic and cytokine factors in neruopathic pain rats. Evid Based Complement Alternat Med. 2016; https://doi.org/10.1155/2016/8403064. Wang JY, Gao YH, Chen SP, Duanmu CL, Zhang JL, Feng XM, Yan YX, Liu JL, Litscher G. The effect of repeated electroacupuncture analgesia on neurotrophic and cytokine factors in neruopathic pain rats. Evid Based Complement Alternat Med. 2016; https://​doi.​org/​10.​1155/​2016/​8403064.
7.
go back to reference Sweitzer SM, Schubert P, DeLeo JA. Propentofylline a glial modulating agent, exhibits antiallodynic properties in a rat model of neuropathic pain. J Pharmacol Exp Ther. 2001;297(3):1210–7.PubMed Sweitzer SM, Schubert P, DeLeo JA. Propentofylline a glial modulating agent, exhibits antiallodynic properties in a rat model of neuropathic pain. J Pharmacol Exp Ther. 2001;297(3):1210–7.PubMed
8.
go back to reference Loram LC, Taylor FR, Strand KA, Maier SF, Speake JD, Jordan KG, James JW, Wene SP, Pritchard RC, Green H, Van Dyke K, Mazarov A, Letchworth SR, Watkins LR. Systemic administration of an alpha-7 nicotinic acetylcholine agonist reverses neuropathic pain in male Sprague Dawley rats. J Pain. 2012;13(12):1162–71.CrossRefPubMedPubMedCentral Loram LC, Taylor FR, Strand KA, Maier SF, Speake JD, Jordan KG, James JW, Wene SP, Pritchard RC, Green H, Van Dyke K, Mazarov A, Letchworth SR, Watkins LR. Systemic administration of an alpha-7 nicotinic acetylcholine agonist reverses neuropathic pain in male Sprague Dawley rats. J Pain. 2012;13(12):1162–71.CrossRefPubMedPubMedCentral
9.
go back to reference Iwata K,Katagiri A, Shinoda M. Neuton-glia interaction is a key mechanism underlying persistent orofacial pain. J Oral Sci. 2017;59(2):173–5. Iwata K,Katagiri A, Shinoda M. Neuton-glia interaction is a key mechanism underlying persistent orofacial pain. J Oral Sci. 2017;59(2):173–5.
10.
go back to reference Watkins LR, Milligan ED, Maier SF. Spinal cord glia: new players in pain. Pain. 2001;93(3):201–5.CrossRefPubMed Watkins LR, Milligan ED, Maier SF. Spinal cord glia: new players in pain. Pain. 2001;93(3):201–5.CrossRefPubMed
12.
13.
go back to reference Gim GT, Lee JH, Park E, Sung YH, Kim CJ, Hwang WW, Chu JP, Min BI. Electroacupuncture attenuates mechanical and warm allodynia through suppression of spinal glial activation in a rat model of neuropathic pain. Brain Res Bull. 2011;86(5–6):403–11.CrossRefPubMed Gim GT, Lee JH, Park E, Sung YH, Kim CJ, Hwang WW, Chu JP, Min BI. Electroacupuncture attenuates mechanical and warm allodynia through suppression of spinal glial activation in a rat model of neuropathic pain. Brain Res Bull. 2011;86(5–6):403–11.CrossRefPubMed
14.
go back to reference Sun S, Cao H, Han M, Li TT, Zhao ZQ, Zhang YQ. Evidence for suppression of electroacupuncture on spinal glial activation and behavioral hypersensitivity in a rat model of monoarthritis. Brain Res Bull. 2008;75(1):83–93.CrossRefPubMed Sun S, Cao H, Han M, Li TT, Zhao ZQ, Zhang YQ. Evidence for suppression of electroacupuncture on spinal glial activation and behavioral hypersensitivity in a rat model of monoarthritis. Brain Res Bull. 2008;75(1):83–93.CrossRefPubMed
15.
go back to reference Liang LL, Yang JL, Lu N, Gu XY, Zhang YQ, Zhao ZQ. Synergetic analgesia of propentofylline and electroacupuncture by interrupting spinal glial function in rats. Neurochem Res. 2010;35(11):1780–6.CrossRefPubMed Liang LL, Yang JL, Lu N, Gu XY, Zhang YQ, Zhao ZQ. Synergetic analgesia of propentofylline and electroacupuncture by interrupting spinal glial function in rats. Neurochem Res. 2010;35(11):1780–6.CrossRefPubMed
16.
go back to reference Choi DC, Lee JY, Lim EJ, Baik HH, Oh TH, Yune TY. Inhibition of ROS-induced p38MAPK and ERK activation in microglia by acupuncture relieves neuropathic pain after spinal cord injury in rats. Exp Neurol. 2012;236(2):268–82.CrossRefPubMed Choi DC, Lee JY, Lim EJ, Baik HH, Oh TH, Yune TY. Inhibition of ROS-induced p38MAPK and ERK activation in microglia by acupuncture relieves neuropathic pain after spinal cord injury in rats. Exp Neurol. 2012;236(2):268–82.CrossRefPubMed
17.
go back to reference Teh DBL, Prasad A, Jiang W, Ariffin MZ, Khanna S, Belorkar A, Wong L, Liu X, All AH. Transcriptome analysis reveals neuroprotective aspects of human reactive astrocytes induced by interleukin 1β. Sci Rep. 2017;7(1):13988.CrossRefPubMedPubMedCentral Teh DBL, Prasad A, Jiang W, Ariffin MZ, Khanna S, Belorkar A, Wong L, Liu X, All AH. Transcriptome analysis reveals neuroprotective aspects of human reactive astrocytes induced by interleukin 1β. Sci Rep. 2017;7(1):13988.CrossRefPubMedPubMedCentral
18.
go back to reference Paniagua-Torija B, Arevalo-Martin A, Molina-Holgado E, Molina-Holgado F, Garcia-Ovejero D. Spinal cord injury induces a long-lasting upregulation of interleukin-1beta in astrocytes around the central canal. Neuroscience. 2015;284:283–9.CrossRefPubMed Paniagua-Torija B, Arevalo-Martin A, Molina-Holgado E, Molina-Holgado F, Garcia-Ovejero D. Spinal cord injury induces a long-lasting upregulation of interleukin-1beta in astrocytes around the central canal. Neuroscience. 2015;284:283–9.CrossRefPubMed
19.
go back to reference Bennett GJ, Xie YK. A peripheral mononeuropathy in the rat that produces disorders of pain sensation like those seen in man. Pain. 1988;33(1):87–107.CrossRefPubMed Bennett GJ, Xie YK. A peripheral mononeuropathy in the rat that produces disorders of pain sensation like those seen in man. Pain. 1988;33(1):87–107.CrossRefPubMed
20.
go back to reference Tsujino H, Kondo E, Fukuoka T, Dai Y, Tokunaga A, Miki K, Yonenobu K, Ochi T, Noguchi K. Activating transcription factor 3 (ATF3) induction by axotomy in sensory and motor neurons: a novel neuronal marker of nerve injury. Mol Cell Neurosci. 2000;15(2):170–82.CrossRefPubMed Tsujino H, Kondo E, Fukuoka T, Dai Y, Tokunaga A, Miki K, Yonenobu K, Ochi T, Noguchi K. Activating transcription factor 3 (ATF3) induction by axotomy in sensory and motor neurons: a novel neuronal marker of nerve injury. Mol Cell Neurosci. 2000;15(2):170–82.CrossRefPubMed
21.
go back to reference Zhang X, Wang Y, Wang Z, Wang C, Ding W, Liu Z. A randomized clinical trial comparing the effectiveness of electroacupuncture versus medium-frequency electrotherapy for discogenic sciatica. Evid Based Complement Alternat Med. 2017; https://doi.org/10.1155/2017/9502718. Zhang X, Wang Y, Wang Z, Wang C, Ding W, Liu Z. A randomized clinical trial comparing the effectiveness of electroacupuncture versus medium-frequency electrotherapy for discogenic sciatica. Evid Based Complement Alternat Med. 2017; https://​doi.​org/​10.​1155/​2017/​9502718.
22.
go back to reference Bauer BA, Tilburt JC, Sood A, Li GX, Wang SH. Complementary and alternative medicine therapies for chronic pain. Chin J Integr Med. 2016;22(6):403–11.CrossRefPubMed Bauer BA, Tilburt JC, Sood A, Li GX, Wang SH. Complementary and alternative medicine therapies for chronic pain. Chin J Integr Med. 2016;22(6):403–11.CrossRefPubMed
23.
go back to reference Wang JY, Liu JL, Chen SP, Gao YH, Meng FY, Qiao LN. Acupuncture effects on the hippocampal cholinergic system in a rat model of neuropathic pain. Neural Regen Res. 2012;7(3):212–8.PubMedPubMedCentral Wang JY, Liu JL, Chen SP, Gao YH, Meng FY, Qiao LN. Acupuncture effects on the hippocampal cholinergic system in a rat model of neuropathic pain. Neural Regen Res. 2012;7(3):212–8.PubMedPubMedCentral
24.
25.
go back to reference Kim JH, Min BI, Na HS, Park DS. Relieving effects of electroacupuncture on mechanical allodynia in neuropathic pain model of inferior caudal trunk injury in rat: mediation by spinal opioid receptors. Brain Res. 2004;998(2):230–6.CrossRefPubMed Kim JH, Min BI, Na HS, Park DS. Relieving effects of electroacupuncture on mechanical allodynia in neuropathic pain model of inferior caudal trunk injury in rat: mediation by spinal opioid receptors. Brain Res. 2004;998(2):230–6.CrossRefPubMed
26.
go back to reference Sun RQ, Wang HC, Wang Y. Effect of electroacupuncture with different frequencies on neuropathic pain in a rat model. Zhongguo Ying Yong Sheng Li Xue Za Zhi. 2002;18(2):128–31.PubMed Sun RQ, Wang HC, Wang Y. Effect of electroacupuncture with different frequencies on neuropathic pain in a rat model. Zhongguo Ying Yong Sheng Li Xue Za Zhi. 2002;18(2):128–31.PubMed
27.
go back to reference Shen Z, Shao XM, Fang F, Sun J, Fang JF, Fang JQ. Effect of mild and strong manual acupuncture stimulation of “Huantiao” (GB 30) on mechanical pain thresholds and extracellular signal-regulated kinase protein expression in spinal dorsal horns in rats with neuropathic mirror-image pain. Zhen Ci Yan Jiu. 2014;39(2):106–11.PubMed Shen Z, Shao XM, Fang F, Sun J, Fang JF, Fang JQ. Effect of mild and strong manual acupuncture stimulation of “Huantiao” (GB 30) on mechanical pain thresholds and extracellular signal-regulated kinase protein expression in spinal dorsal horns in rats with neuropathic mirror-image pain. Zhen Ci Yan Jiu. 2014;39(2):106–11.PubMed
28.
go back to reference Scholz J, Woolf CJ. The neuropathic pain triad: neurons, immune cells and glia. Nat Neurosci. 2007;10(11):1361–8.CrossRefPubMed Scholz J, Woolf CJ. The neuropathic pain triad: neurons, immune cells and glia. Nat Neurosci. 2007;10(11):1361–8.CrossRefPubMed
29.
go back to reference Ren K, Dubner R. Neuron-glia crosstalk gets serious: role in pain herpersensitivity. Current Opin Anesthesiol. 2008;21(5):570–9. Ren K, Dubner R. Neuron-glia crosstalk gets serious: role in pain herpersensitivity. Current Opin Anesthesiol. 2008;21(5):570–9.
30.
go back to reference McMalon SB, Malcangio M. Current challenges in glia-pain biology. Neuron. 2009;64(1):46–54.CrossRef McMalon SB, Malcangio M. Current challenges in glia-pain biology. Neuron. 2009;64(1):46–54.CrossRef
31.
go back to reference Ji RR, Kawasaki Y, Zhuang ZY, Wen YR, Decosterd I. Possible role of spinal astrocytes in maintaining chronic pain sensitization: review of current evidence with focus on bFGF/JUK pathway. Neuron Glia Biol. 2006;2(4):259–69.CrossRefPubMedPubMedCentral Ji RR, Kawasaki Y, Zhuang ZY, Wen YR, Decosterd I. Possible role of spinal astrocytes in maintaining chronic pain sensitization: review of current evidence with focus on bFGF/JUK pathway. Neuron Glia Biol. 2006;2(4):259–69.CrossRefPubMedPubMedCentral
32.
go back to reference Garrisonc CJ, Dougherty PM, Kajander KC, Carlton SM. Staining of glial fibrillary acidic protein(GFAP) in lumbar spinal cord increase following a sciatic nerve constriction injury. Brain Res. 1991;565(1991):1–7.CrossRef Garrisonc CJ, Dougherty PM, Kajander KC, Carlton SM. Staining of glial fibrillary acidic protein(GFAP) in lumbar spinal cord increase following a sciatic nerve constriction injury. Brain Res. 1991;565(1991):1–7.CrossRef
33.
go back to reference Wieseler-Frank J, Maier SF, Watkins LR. Glial activation and pathological pain. Neurochem Int. 2004;45(2–3):389–95.CrossRefPubMed Wieseler-Frank J, Maier SF, Watkins LR. Glial activation and pathological pain. Neurochem Int. 2004;45(2–3):389–95.CrossRefPubMed
35.
go back to reference Hansson E. Could chronic pain and spread of pain sensation be induced and maintained by glial activation? Acta Physiol (Oxf). 2006;187(1–2):321–7.CrossRef Hansson E. Could chronic pain and spread of pain sensation be induced and maintained by glial activation? Acta Physiol (Oxf). 2006;187(1–2):321–7.CrossRef
36.
go back to reference Michot B, Deumens R, Hermans E. Immunohistochemical comparison of astrocytic mGluR5 upregulation in infraorbital nerve- versus sciatic nerve-ligated rat. Neurosci Lett. 2017;653:113–9.CrossRefPubMed Michot B, Deumens R, Hermans E. Immunohistochemical comparison of astrocytic mGluR5 upregulation in infraorbital nerve- versus sciatic nerve-ligated rat. Neurosci Lett. 2017;653:113–9.CrossRefPubMed
37.
go back to reference Obata H, Sakurazawa S, Kimura M, Saito S. Activation of astrocytes in the spinal cord contributes to the development of bilateral allodynia after peripheral nerve injury in rats. Brain Res. 2010;1363:72–80.CrossRefPubMed Obata H, Sakurazawa S, Kimura M, Saito S. Activation of astrocytes in the spinal cord contributes to the development of bilateral allodynia after peripheral nerve injury in rats. Brain Res. 2010;1363:72–80.CrossRefPubMed
38.
go back to reference Choi HS, Roh DH, Yoon SY, Moon JY, Choi SR, Kwon SG, Kang SY, Han HJ, Kim HW, Beitz AJ, Oh SB, Lee JH. Microglial interleukin-1β in the ipsilateral dorsal horn inhibits the development of mirror-image contralateral mechanical allodynia through astrocyte activation in a rat model of inflammatory pain. Pain. 2015;156(6):1046–59.PubMed Choi HS, Roh DH, Yoon SY, Moon JY, Choi SR, Kwon SG, Kang SY, Han HJ, Kim HW, Beitz AJ, Oh SB, Lee JH. Microglial interleukin-1β in the ipsilateral dorsal horn inhibits the development of mirror-image contralateral mechanical allodynia through astrocyte activation in a rat model of inflammatory pain. Pain. 2015;156(6):1046–59.PubMed
39.
go back to reference Choi HS, Roh DH, Yoon SY, Kwon SG, Choi SR, Kang SY, Moon JY, Han HJ, AJ KHWB, Lee JH. The role of spinal interleukin-1β and astrocyte connexin 43 in the development of mirror-image pain in an inflammatory pain model. Exp Neurol. 2016;287(Pt 1):1–13.PubMed Choi HS, Roh DH, Yoon SY, Kwon SG, Choi SR, Kang SY, Moon JY, Han HJ, AJ KHWB, Lee JH. The role of spinal interleukin-1β and astrocyte connexin 43 in the development of mirror-image pain in an inflammatory pain model. Exp Neurol. 2016;287(Pt 1):1–13.PubMed
41.
go back to reference Lee JY, Chor DC, Oh TH, Yune TY. Analgesic effect of acupuncture is mediated via inhibition of JNK activation in astrocytes after spinal cord injury. PLoS One. 2013;8(9):e73948.CrossRefPubMedPubMedCentral Lee JY, Chor DC, Oh TH, Yune TY. Analgesic effect of acupuncture is mediated via inhibition of JNK activation in astrocytes after spinal cord injury. PLoS One. 2013;8(9):e73948.CrossRefPubMedPubMedCentral
42.
go back to reference Liang Y, Qiu Y, Du J, Liu J, Fang J, Zhu J, Fang J. Inhibition of spinal microglia and astrocytes contributes to the anti-allodynic effect of electroacupuncture in neuropathic pain induced by spinal nerve ligation. Acupunct Med. 2016;34(1):40–7.CrossRefPubMed Liang Y, Qiu Y, Du J, Liu J, Fang J, Zhu J, Fang J. Inhibition of spinal microglia and astrocytes contributes to the anti-allodynic effect of electroacupuncture in neuropathic pain induced by spinal nerve ligation. Acupunct Med. 2016;34(1):40–7.CrossRefPubMed
43.
go back to reference Svensson M, Eriksson NP, Aldskogius H. Evidence for activation of astrocytes via reactive microglial cells following hypoglossal nerve transection. J Neurosci Res. 1993;35(4):373–81.CrossRefPubMed Svensson M, Eriksson NP, Aldskogius H. Evidence for activation of astrocytes via reactive microglial cells following hypoglossal nerve transection. J Neurosci Res. 1993;35(4):373–81.CrossRefPubMed
44.
go back to reference Zhang J, De Koninck Y. Spatial and temporal relationship between monocyte peripheral nerve injury. J Neurochem. 2006;97(3):772–83.CrossRefPubMed Zhang J, De Koninck Y. Spatial and temporal relationship between monocyte peripheral nerve injury. J Neurochem. 2006;97(3):772–83.CrossRefPubMed
45.
go back to reference Hashizume H, DeLeo JA, Colburn RW, Weinstein JN. Spinal glial activation and cytokine expression after lumbar root injury in the rat. Spine. 2000;2(10):1206–17.CrossRef Hashizume H, DeLeo JA, Colburn RW, Weinstein JN. Spinal glial activation and cytokine expression after lumbar root injury in the rat. Spine. 2000;2(10):1206–17.CrossRef
46.
go back to reference Mi WL, Mao-Ying QL, Wang XW, Li X, Yang CJ, Jiang JW, Yu J, Wang J, Liu Q, Wang YQ, Wu GC. Involvement of spinal neurotrophin-3 in electroacupuncture analgesia and inhibition of spinal glial activation in rat model of monoarthritis. J Pain. 2011;12(9):974–84.CrossRefPubMed Mi WL, Mao-Ying QL, Wang XW, Li X, Yang CJ, Jiang JW, Yu J, Wang J, Liu Q, Wang YQ, Wu GC. Involvement of spinal neurotrophin-3 in electroacupuncture analgesia and inhibition of spinal glial activation in rat model of monoarthritis. J Pain. 2011;12(9):974–84.CrossRefPubMed
Metadata
Title
Repeated electroacupuncture treatment attenuated hyperalgesia through suppression of spinal glial activation in chronic neuropathic pain rats
Authors
Jun-ying Wang
Yong-hui Gao
Li-na Qiao
Jian-liang Zhang
Cheng-Lin Duan-mu
Ya-xia Yan
Shu-ping Chen
Jun-ling Liu
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2018
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-018-2134-8

Other articles of this Issue 1/2018

BMC Complementary Medicine and Therapies 1/2018 Go to the issue