Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2017

Open Access 01-12-2017 | Research article

Defatting of acetone leaf extract of Acacia karroo (Hayne) enhances its hypoglycaemic potential

Authors: Idris Njanje, Victor P. Bagla, Brian K. Beseni, Vusi Mbazima, Kgomotso W. Lebogo, Leseilane Mampuru, Matlou P. Mokgotho

Published in: BMC Complementary Medicine and Therapies | Issue 1/2017

Login to get access

Abstract

Background

Conventional drugs used to treat diabetes are too expensive, toxic and rarely available to rural communities. This study was aimed at investigating the phytochemical differences and hypoglycaemic effects (α-amylase enzyme inhibition, glucose uptake, GLUT4 translocation and phosphorylation of MAPKs) of non-defatted and defatted acetone leaf extract of Acacia karroo.

Methods

Qualitative phytochemical analyses of extracts were determined using standard chemical tests and total phenolic contents using the Folin-Ciocalteu reagent method. Presence of antioxidant constituents was determined using DPPH scavenging and ferric reducing power assays. Alpha amylase enzyme inhibitory potential was determined chromogenically and cytotoxicity of the extracts on C2C12 muscle and 3T3-L1 cells using the MTT assay. Glucose uptake by the cells was determined colorimetrically and the most active extract was evaluated for its ability to translocate GLUT4 and MAPKs phosphorylation potential using immunofluorescence microscopy and dot blot analysis, respectively.

Results

Phenols, flavonoids, tannins, saponins and cardiac glycosides were detected in both extracts. Defatting of the plant material resulted in low amounts of phenols (0.432 ± 0.014 TAE/mg), DPPH scavenging activity (EC50 0.40 ± 0.012 mg/ml), low toxicity and high ferric reducing power (EC50 1.13 ± 0.017 mg/ml), α-amylase enzyme inhibition (IC50 30.2 ± 3.037 μg/ml) and glucose uptake by both cells. The defatted extract showed an increase in GLUT4 translocation (at 25 μg/ml) with decrease in Akt expression while in combination with insulin showed a decrease in GLUT4 translocation. A finding, that is implicative that the effect of the extract on GLUT4 translocation in C2C12 cells was not Akt dependent. The defatted extract in the absence and presence of insulin show varying phosphorylation levels of CREB, p38, GSK-3 and ERK2 which are important in cell survival and metabolism.

Conclusion

This study represents the first report on the hypoglycemic potential of A. karroo and presence of compounds that can be exploited in the search for therapeutics with antidiabetic effect.
Literature
1.
go back to reference Fowler MJ. Microvascular and macrovascular complications of diabetes. Clin Diabetes. 2008;26:77–82.CrossRef Fowler MJ. Microvascular and macrovascular complications of diabetes. Clin Diabetes. 2008;26:77–82.CrossRef
2.
go back to reference Whiting DR, Guariguata L, Weil C, Shaw J. IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res Clin Pr. 2011;94:311–21.CrossRef Whiting DR, Guariguata L, Weil C, Shaw J. IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res Clin Pr. 2011;94:311–21.CrossRef
3.
go back to reference Collier CA, Bruce CR, Smith AC, Lopaschuk G, Dyck DJ. Metformin counters the insulin-induced suppression of fatty acid oxidation and stimulation of triacylglycerol storage in rodent skeletal muscle. Am J Physiol-Endoc M. 2006;291:182–9. Collier CA, Bruce CR, Smith AC, Lopaschuk G, Dyck DJ. Metformin counters the insulin-induced suppression of fatty acid oxidation and stimulation of triacylglycerol storage in rodent skeletal muscle. Am J Physiol-Endoc M. 2006;291:182–9.
4.
go back to reference Eurich DT, McAlister FA, Blackburn DF. Benefits and harms of anti-diabetic agents in patients with diabetics and heart failure: systematic review. BMJ. 2007;335:497–9.CrossRefPubMedPubMedCentral Eurich DT, McAlister FA, Blackburn DF. Benefits and harms of anti-diabetic agents in patients with diabetics and heart failure: systematic review. BMJ. 2007;335:497–9.CrossRefPubMedPubMedCentral
5.
go back to reference Mohammed SA, Yaqub AG, Sanda KA, Nicholas AOW, Muhammad M, Abdullahi S. Review on diabetes, synthetic drugs and glycaemic effects of medicinal plants. J Med Plants Res. 2013;7:2628–37. Mohammed SA, Yaqub AG, Sanda KA, Nicholas AOW, Muhammad M, Abdullahi S. Review on diabetes, synthetic drugs and glycaemic effects of medicinal plants. J Med Plants Res. 2013;7:2628–37.
6.
go back to reference Vishwakarma AP, Vishwe A, Sahu P, Chaurasiya A. Magical remedies of Terminalia arjuna (ROXB.). Int J Pharm Arc. 2013;2:189–201. Vishwakarma AP, Vishwe A, Sahu P, Chaurasiya A. Magical remedies of Terminalia arjuna (ROXB.). Int J Pharm Arc. 2013;2:189–201.
7.
go back to reference Tiwari A, Rao J. Diabetes mellitus and multiple therapeutic approaches of phytochemicals: present status and future prospects. Cur Sci. 2002;81:30–8. Tiwari A, Rao J. Diabetes mellitus and multiple therapeutic approaches of phytochemicals: present status and future prospects. Cur Sci. 2002;81:30–8.
8.
go back to reference Seabi IM, Motaung SCKM, Ssemakalu CC, Mokgotho MP, Mogale AM, Shai LJ. Effects of Cassia abbreviata Oliv. And Helinus integrifolius (lam.) Kuntze on glucose uptake, Glut-4 expression and translocation in muscle (C2C12 mouse myoblasts) cells. Int J Pharmacog Phytochem Res. 2016;8:1003–9. Seabi IM, Motaung SCKM, Ssemakalu CC, Mokgotho MP, Mogale AM, Shai LJ. Effects of Cassia abbreviata Oliv. And Helinus integrifolius (lam.) Kuntze on glucose uptake, Glut-4 expression and translocation in muscle (C2C12 mouse myoblasts) cells. Int J Pharmacog Phytochem Res. 2016;8:1003–9.
9.
go back to reference Barnes RD, Filer DL, Milton SJ. Acacia karroo. Tropical Forestry: Oxford Forestry Institute, Oxford University; 1996. Barnes RD, Filer DL, Milton SJ. Acacia karroo. Tropical Forestry: Oxford Forestry Institute, Oxford University; 1996.
10.
go back to reference Aubrey A. acacia karroo Hayne. south Africa: south African National Biodiversity Institute; 2002. Aubrey A. acacia karroo Hayne. south Africa: south African National Biodiversity Institute; 2002.
11.
go back to reference Brown D, Ng’ambi JW, Norris D, Mbajiorgu FE. Blood profiles of indigenous Pedi goats fed varying levels of Vachellia karroo leaf meal in Setaria verticillata hay-based diet. S Afr J Anim Sci. 2016;46:432–40.CrossRef Brown D, Ng’ambi JW, Norris D, Mbajiorgu FE. Blood profiles of indigenous Pedi goats fed varying levels of Vachellia karroo leaf meal in Setaria verticillata hay-based diet. S Afr J Anim Sci. 2016;46:432–40.CrossRef
12.
go back to reference Anold HJ, Gulumian M. Pharmacopoeia of traditional medicine in Venda. J Ethnopharmacol. 1984;12:35–74.CrossRef Anold HJ, Gulumian M. Pharmacopoeia of traditional medicine in Venda. J Ethnopharmacol. 1984;12:35–74.CrossRef
13.
go back to reference Adedapo AA, Sofidiya MO, Masika PJ, Afolayan AJ. Anti-inflammatory and analgesic activities of the aqueous extract of acacia Karroo stem bark in experimental animals. Basic Clin Pharmaco Toxico. 2008;103:397–400.CrossRef Adedapo AA, Sofidiya MO, Masika PJ, Afolayan AJ. Anti-inflammatory and analgesic activities of the aqueous extract of acacia Karroo stem bark in experimental animals. Basic Clin Pharmaco Toxico. 2008;103:397–400.CrossRef
14.
go back to reference Kazembe T, Chinyuku J. In vitro babeosis assaying using Acacia karroo and Dicomaanomala plant extracts and extract fortified antimalarial drugs, bulletin of environment. Pharmaco Life Sci. 2012;1:26–31. Kazembe T, Chinyuku J. In vitro babeosis assaying using Acacia karroo and Dicomaanomala plant extracts and extract fortified antimalarial drugs, bulletin of environment. Pharmaco Life Sci. 2012;1:26–31.
15.
go back to reference Yadav R, Agarwala M. Phytochemical analysis of some medicinal plants. J Phytol. 2011;3:3–14. Yadav R, Agarwala M. Phytochemical analysis of some medicinal plants. J Phytol. 2011;3:3–14.
16.
go back to reference Ntsoelinyane PH, Manduna IT, Mashele SS. The anticancer, antioxidant and phytochemical screening of Philenoptera violacea and Xanthocercis zambesiaca leaf, flower & twig extracts. Int J Pharmacol Res. 2014;4:2277–3312. Ntsoelinyane PH, Manduna IT, Mashele SS. The anticancer, antioxidant and phytochemical screening of Philenoptera violacea and Xanthocercis zambesiaca leaf, flower & twig extracts. Int J Pharmacol Res. 2014;4:2277–3312.
17.
go back to reference Humadi SS, Istudor V. Lythrum salicaria (purple loosestrife). Medicinal use, extraction and identification of its total phenolic compounds. Farmacia. 2009;57:192–200. Humadi SS, Istudor V. Lythrum salicaria (purple loosestrife). Medicinal use, extraction and identification of its total phenolic compounds. Farmacia. 2009;57:192–200.
18.
go back to reference Katsube T, Tabata H, Ohta Y, Yamasaki Y, Anuurad E, Shiwaku K, Yamane Y. Screening for antioxidant activity in edible plant products: comparison of low-density lipoprotein oxidation assay, DPPH radical scavenging assay and Folin-Ciocalteu assay. J Agric Food Chem. 2004;52:2391–6.CrossRefPubMed Katsube T, Tabata H, Ohta Y, Yamasaki Y, Anuurad E, Shiwaku K, Yamane Y. Screening for antioxidant activity in edible plant products: comparison of low-density lipoprotein oxidation assay, DPPH radical scavenging assay and Folin-Ciocalteu assay. J Agric Food Chem. 2004;52:2391–6.CrossRefPubMed
19.
go back to reference Arulpriya P, Lalitha P, Hemalatha S. In vitro antioxidant testing of the extracts of Samanea saman (Jacq.) Merr. Der Chemica Sinica. 2010;1:73–9. Arulpriya P, Lalitha P, Hemalatha S. In vitro antioxidant testing of the extracts of Samanea saman (Jacq.) Merr. Der Chemica Sinica. 2010;1:73–9.
20.
21.
go back to reference Jing L. C2C12 myoblasts. Bio-Protoc. 2012;2:1–3. Jing L. C2C12 myoblasts. Bio-Protoc. 2012;2:1–3.
23.
go back to reference Mossman T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65:55–63.CrossRef Mossman T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65:55–63.CrossRef
24.
go back to reference Foley JE, Kashiwagi A, Verso MA, Reaven G, Andrews J. Improvement in in vitro insulin action after one month insulin therapy in obese non-insulin dependent diabetes: measurements of glucose transport and metabolism, insulin binding and lipolysis in isolated adipocytes. J Clin Invest. 1983;72:1901–9.CrossRefPubMedPubMedCentral Foley JE, Kashiwagi A, Verso MA, Reaven G, Andrews J. Improvement in in vitro insulin action after one month insulin therapy in obese non-insulin dependent diabetes: measurements of glucose transport and metabolism, insulin binding and lipolysis in isolated adipocytes. J Clin Invest. 1983;72:1901–9.CrossRefPubMedPubMedCentral
25.
go back to reference Monaghan P, Robertson D, Amos TA, Dyer MJ, Mason DY, Greaves MF. Ultrastructural localization of Bcl-2 protein. J Histochem Cytochem. 1992;40:1819–25.CrossRefPubMed Monaghan P, Robertson D, Amos TA, Dyer MJ, Mason DY, Greaves MF. Ultrastructural localization of Bcl-2 protein. J Histochem Cytochem. 1992;40:1819–25.CrossRefPubMed
26.
go back to reference Doughari JH. Phytochemicals: extraction methods, basic structures and mode of action as potential chemotherapeutic agents: INTECH Open Access Publisher; 2012. Doughari JH. Phytochemicals: extraction methods, basic structures and mode of action as potential chemotherapeutic agents: INTECH Open Access Publisher; 2012.
27.
go back to reference Van Raalte DH, Diamant M. Steroid diabetes: from mechanism to treatment. Neth J Med. 2014;72:62–72.PubMed Van Raalte DH, Diamant M. Steroid diabetes: from mechanism to treatment. Neth J Med. 2014;72:62–72.PubMed
28.
go back to reference Qader SW, Abdulla MA, Chua LS, Najim N, Zain MM, Hamdan S. Antioxidant, total phenolic content and cytotoxicity evaluation of selected Malaysian plants. Molecules. 2011;16:3433–43.CrossRefPubMed Qader SW, Abdulla MA, Chua LS, Najim N, Zain MM, Hamdan S. Antioxidant, total phenolic content and cytotoxicity evaluation of selected Malaysian plants. Molecules. 2011;16:3433–43.CrossRefPubMed
29.
go back to reference Bagchi D, Bagchi M, Stohs S, Das D, Ray S, Kuszynski C, Joshi S, Pruess H. Free radicals and grape seed proanthocyanidin extract: importance in human health and disease prevention. Toxicology. 2000;148:187–97.CrossRefPubMed Bagchi D, Bagchi M, Stohs S, Das D, Ray S, Kuszynski C, Joshi S, Pruess H. Free radicals and grape seed proanthocyanidin extract: importance in human health and disease prevention. Toxicology. 2000;148:187–97.CrossRefPubMed
30.
go back to reference Singh N, Gupta M. Effect of ethanolic extract of Syzygium cumini seed powder on pancreatic islets of alloxen diabetic rats. Indian J Exp Biol. 2007;45:861–7.PubMed Singh N, Gupta M. Effect of ethanolic extract of Syzygium cumini seed powder on pancreatic islets of alloxen diabetic rats. Indian J Exp Biol. 2007;45:861–7.PubMed
31.
go back to reference Idamokoro EM, Masika PJ, Muchenje VA. Report on the in vitro antioxidant properties of Vachellia karroo leaf extract: a plant widely grazed by goats in the central eastern cape of South Africa. Sustainability. 2017;9:164.CrossRef Idamokoro EM, Masika PJ, Muchenje VA. Report on the in vitro antioxidant properties of Vachellia karroo leaf extract: a plant widely grazed by goats in the central eastern cape of South Africa. Sustainability. 2017;9:164.CrossRef
32.
go back to reference Anokwuru CP, Adaramola FB, Akirinbola D, Fagbemi E, Onikoyi F. Antioxidant and anti-denaturing activities of defatted and non-defatted methanolic extracts of three medicinal plants in Nigeria. Res. 2012;4:56–62. Anokwuru CP, Adaramola FB, Akirinbola D, Fagbemi E, Onikoyi F. Antioxidant and anti-denaturing activities of defatted and non-defatted methanolic extracts of three medicinal plants in Nigeria. Res. 2012;4:56–62.
33.
go back to reference Sylvie DD, Anatole PC, Cabral BP, Veronique PB. Comparison of in vitro antioxidant properties of extracts from three plants used for medical purpose in Cameroon: Acalypha racemosa, Garcinia lucida and Hymenocardia lyrata. Asian Pac J Tropic Biomed. 2014;4:S625–32.CrossRef Sylvie DD, Anatole PC, Cabral BP, Veronique PB. Comparison of in vitro antioxidant properties of extracts from three plants used for medical purpose in Cameroon: Acalypha racemosa, Garcinia lucida and Hymenocardia lyrata. Asian Pac J Tropic Biomed. 2014;4:S625–32.CrossRef
34.
go back to reference Picot CMN, Subratty AH, Mahomoodally MF. Inhibitory potential of five traditionally used native antidiabetic medicinal plants on α-amylase, α-glucosidase, glucose entrapment, and amylolysis kinetics in vitro. Adv Pharmacol Sci. 2014;2014:1–7.CrossRef Picot CMN, Subratty AH, Mahomoodally MF. Inhibitory potential of five traditionally used native antidiabetic medicinal plants on α-amylase, α-glucosidase, glucose entrapment, and amylolysis kinetics in vitro. Adv Pharmacol Sci. 2014;2014:1–7.CrossRef
35.
go back to reference Ali H, Houghton PJ, Soumyanath A. α-amylase inhibitory activity of some Malaysian plants used to treat diabetes; with particular reference to Phyllanthus amarus. J Ethnopharmacol. 2006;107:449–55.CrossRefPubMed Ali H, Houghton PJ, Soumyanath A. α-amylase inhibitory activity of some Malaysian plants used to treat diabetes; with particular reference to Phyllanthus amarus. J Ethnopharmacol. 2006;107:449–55.CrossRefPubMed
36.
go back to reference Salehi P, Asghari B, Esmaeili MA, Dehghan H, Ghazi I. α-Glucosidase and-amylase inhibitory effect and antioxidant activity of ten plant extracts traditionally used in Iran for diabetes. J Med Plants Res. 2013;7:257–66. Salehi P, Asghari B, Esmaeili MA, Dehghan H, Ghazi I. α-Glucosidase and-amylase inhibitory effect and antioxidant activity of ten plant extracts traditionally used in Iran for diabetes. J Med Plants Res. 2013;7:257–66.
37.
go back to reference Thilagam E, Parimaladevi B, Kumarappan C, Mandal SC. α-Glucosidase and α-amylase inhibitory activity of Senna surattensis. J Acupunc Meridian Stud. 2013;6:24–30.CrossRef Thilagam E, Parimaladevi B, Kumarappan C, Mandal SC. α-Glucosidase and α-amylase inhibitory activity of Senna surattensis. J Acupunc Meridian Stud. 2013;6:24–30.CrossRef
38.
go back to reference Manukumar HM, Kumar SJ, Chandrashekar B, Raghava S, Umesha S. Evidences for diabetes and insulin mimetic activity of medicinal plants: present status and future prospects. Crit Rev Food Sci Nut. 2016;57:1549–7852. Manukumar HM, Kumar SJ, Chandrashekar B, Raghava S, Umesha S. Evidences for diabetes and insulin mimetic activity of medicinal plants: present status and future prospects. Crit Rev Food Sci Nut. 2016;57:1549–7852.
39.
go back to reference Kalekar SA, Munshi RP, Bhalerao SS, Thatte UM. Insulin sensitizing effect of 3 Indian medicinal plants: an in vitro study. Indian J Pharmacol. 2013;45:30–3.CrossRefPubMedPubMedCentral Kalekar SA, Munshi RP, Bhalerao SS, Thatte UM. Insulin sensitizing effect of 3 Indian medicinal plants: an in vitro study. Indian J Pharmacol. 2013;45:30–3.CrossRefPubMedPubMedCentral
40.
go back to reference Keller K, Engelhardt M. Strength and muscle mass loss with aging process. Age and strength loss. Muscl Ligam Tend J. 2013;3:346–50. Keller K, Engelhardt M. Strength and muscle mass loss with aging process. Age and strength loss. Muscl Ligam Tend J. 2013;3:346–50.
41.
go back to reference Hajiaghaalipour F, Khalilpourfarshbafi M, Arya A. Modulation of glucose transporter protein by dietary flavonoids in type 2 diabetes mellitus. Int J Biol Sci. 2015;11:508–24.CrossRefPubMedPubMedCentral Hajiaghaalipour F, Khalilpourfarshbafi M, Arya A. Modulation of glucose transporter protein by dietary flavonoids in type 2 diabetes mellitus. Int J Biol Sci. 2015;11:508–24.CrossRefPubMedPubMedCentral
42.
go back to reference Gulati N, Laudet B, Zohrabian VM, Murali RAJ, Jhanwar-Uniyal MEENA. The antiproliferative effect of Quercetin in cancer cells is mediated via inhibition of the PI3K-Akt/PKB pathway. Anticancer Res. 2006;26:1177–81.PubMed Gulati N, Laudet B, Zohrabian VM, Murali RAJ, Jhanwar-Uniyal MEENA. The antiproliferative effect of Quercetin in cancer cells is mediated via inhibition of the PI3K-Akt/PKB pathway. Anticancer Res. 2006;26:1177–81.PubMed
43.
go back to reference Prasad CNV, Anjana T, Banerji A, Gopalakrishnapillai A. Gallic acid induces GLUT4 translocation and glucose uptake activity in 3T3-L1 cells. FEBS Lett. 2010;584:531–6.CrossRefPubMed Prasad CNV, Anjana T, Banerji A, Gopalakrishnapillai A. Gallic acid induces GLUT4 translocation and glucose uptake activity in 3T3-L1 cells. FEBS Lett. 2010;584:531–6.CrossRefPubMed
44.
go back to reference Nebreda AR, Porras A. p38 MAP kinases: beyond the stress response. Trends in Biochem Sci. 2000;25:257–60.CrossRef Nebreda AR, Porras A. p38 MAP kinases: beyond the stress response. Trends in Biochem Sci. 2000;25:257–60.CrossRef
45.
go back to reference Somwar R, Sweeney G, Huang C, Wenyan NIU, Lador C, Ramlal T, Amira KLIP. GLUT4 translocation precedes the stimulation of glucose uptake by insulin in muscle cells: potential activation of GLUT4 via p38 mitogen-activated protein kinase. Biochem J. 2001;359:639–49.CrossRefPubMedPubMedCentral Somwar R, Sweeney G, Huang C, Wenyan NIU, Lador C, Ramlal T, Amira KLIP. GLUT4 translocation precedes the stimulation of glucose uptake by insulin in muscle cells: potential activation of GLUT4 via p38 mitogen-activated protein kinase. Biochem J. 2001;359:639–49.CrossRefPubMedPubMedCentral
49.
go back to reference Roberts DJ, Miyamoto S, Hexokinase II. Integrates energy metabolism and cellular protection: Akting on mitochondria and TORCing to autophagy. Cell Death Differ. 2015;22:248–57.CrossRefPubMed Roberts DJ, Miyamoto S, Hexokinase II. Integrates energy metabolism and cellular protection: Akting on mitochondria and TORCing to autophagy. Cell Death Differ. 2015;22:248–57.CrossRefPubMed
50.
go back to reference Ichiki T. Role of cAMP response element binding protein in cardiovascular remodelling. Arterioscl Thromb vas. Biol. 2006;26:449–55. Ichiki T. Role of cAMP response element binding protein in cardiovascular remodelling. Arterioscl Thromb vas. Biol. 2006;26:449–55.
51.
go back to reference Altarejos JY, Montminy MCREB. The CRTC co-activators: sensors for hormonal and metabolic signals. Nat rev Molec. Cell Biol. 2011;2:141–51. Altarejos JY, Montminy MCREB. The CRTC co-activators: sensors for hormonal and metabolic signals. Nat rev Molec. Cell Biol. 2011;2:141–51.
52.
go back to reference Xing J, Ginty DD, Greenberg ME. Coupling of the RAS-MAPK pathway to gene activation by RSK2, a growth factor-regulated CREB kinase. Sci. 1996;273:959.CrossRef Xing J, Ginty DD, Greenberg ME. Coupling of the RAS-MAPK pathway to gene activation by RSK2, a growth factor-regulated CREB kinase. Sci. 1996;273:959.CrossRef
53.
go back to reference Tan YI, Rouse J, Zhang A, Cariati S, Cohen P, Comb MJFGF. Stress regulate CREB and ATF-1 via a pathway involving p38 MAP kinase and MAPKAP kinase-2. EMBO J. 1996;15:4629–42.PubMedPubMedCentral Tan YI, Rouse J, Zhang A, Cariati S, Cohen P, Comb MJFGF. Stress regulate CREB and ATF-1 via a pathway involving p38 MAP kinase and MAPKAP kinase-2. EMBO J. 1996;15:4629–42.PubMedPubMedCentral
55.
go back to reference Buscà R, Pouysségur J, Lenormand P. ERK1 and ERK2 Map Kinases: Specific Roles or Functional Redundancy? Front Cell Dev Biol. 2016;4:1–23.CrossRef Buscà R, Pouysségur J, Lenormand P. ERK1 and ERK2 Map Kinases: Specific Roles or Functional Redundancy? Front Cell Dev Biol. 2016;4:1–23.CrossRef
Metadata
Title
Defatting of acetone leaf extract of Acacia karroo (Hayne) enhances its hypoglycaemic potential
Authors
Idris Njanje
Victor P. Bagla
Brian K. Beseni
Vusi Mbazima
Kgomotso W. Lebogo
Leseilane Mampuru
Matlou P. Mokgotho
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2017
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-017-1987-6

Other articles of this Issue 1/2017

BMC Complementary Medicine and Therapies 1/2017 Go to the issue