Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2017

Open Access 01-12-2017 | Research article

Resveratrol distinctively modulates the inflammatory profiles of immune and endothelial cells

Authors: Joseph Schwager, Nathalie Richard, Franziska Widmer, Daniel Raederstorff

Published in: BMC Complementary Medicine and Therapies | Issue 1/2017

Login to get access

Abstract

Background

The phenolic substance resveratrol (RES) is a plant metabolite known to modulate numerous physiological functions and to exert beneficial effects as a cancer-chemopreventing agent and on neurological, hepatic, and cardiovascular systems. Since the compound affects the lifespan of yeast and flies it might be an anti-aging substance. Mechanistically, RES is involved in down regulating the inflammatory response. The pleiotropic effects of RES in cells of the immune and endothelial system were examined in this study.

Results

Murine macrophages (RAW264.7 cells), human monocytic/leukemia cells (THP-1), PBLs and HUVECs were incubated with RES and activated with inflammatory stimuli such as LPS or TNF-α. Inflammatory mediators and adhesion molecules were measured by multiplex analysis and gene expression was quantified by RT-PCR. In PBLs, which were activated with LPS, RES blunted the production of TNF-α, CCL2/MCP-1, CCL5/RANTES, CXCL8/IL-8, whereas it increased the production of IL-1β, IL-6, CCL4/MIP-1β and CXCL10/IP-10. Thus, in the blood compartment chemokines attracting mainly monocytes were up-regulated by RES, while those attracting T lymphocytes or neutrophils were diminished. At conditions of endothelial dysfunction (ED), RES reduced the expression of cytokines, chemokines, ICAM and GM-CSF in TNF-α activated HUVECs, whereas eNOS expression was corrected to pre-ED homeostasis. In macrophages nitric oxide, PGE2, cytokines (TNF-α, IL-1β, IL-6) and chemokines (CCL2/MCP-1, CCL4/MIP-1β, CCL5/RANTES, CXCL10/IP-10) were reduced by the phenolic substance.

Conclusions

RES had cell-specific and context-dependent effects, in particular on the expression of IL-1β, IL-6, CCL4/MIP-1β and CXCL10/IP-10. It enhanced cellular features that mirror increased alertness to disturbed immune homeostasis in the vascular-endothelial compartment (e.g. increased production of IL-1β or IL-6), whereas it blunted inflammatory mediators in macrophages and consequently chronic inflammation. We infer from the present in vitro study, that RES has unique properties in the regulation of inflammatory and immune responses, which are controlled in a complex hierarchical and temporal order.
Appendix
Available only for authorised users
Literature
1.
go back to reference Hotamisligil GS, Erbay E. Nutrient sensing and inflammation in metabolic diseases. Nature Rev Immunology. 2008;8:923–34.CrossRef Hotamisligil GS, Erbay E. Nutrient sensing and inflammation in metabolic diseases. Nature Rev Immunology. 2008;8:923–34.CrossRef
2.
go back to reference Serhan CN, Savill J. Resolution of inflammation: the beginning programs the end. Nat Immunol. 2005;6:1191–7.CrossRefPubMed Serhan CN, Savill J. Resolution of inflammation: the beginning programs the end. Nat Immunol. 2005;6:1191–7.CrossRefPubMed
3.
go back to reference Chawla A, Nguyen KD, Goh YP. Macrophage-mediated inflammation in metabolic disease. Nature Rev Immunology. 2011;11:738–49.CrossRef Chawla A, Nguyen KD, Goh YP. Macrophage-mediated inflammation in metabolic disease. Nature Rev Immunology. 2011;11:738–49.CrossRef
4.
go back to reference Bakker GC, van Erk MJ, Pellis L, Wopereis S, et al. An antiinflammatory dietary mix modulates inflammation and oxidative and metabolic stress in overweight men: a nutrigenomics approach. Am J Clin Nutr. 2010;91:1044–59.CrossRefPubMed Bakker GC, van Erk MJ, Pellis L, Wopereis S, et al. An antiinflammatory dietary mix modulates inflammation and oxidative and metabolic stress in overweight men: a nutrigenomics approach. Am J Clin Nutr. 2010;91:1044–59.CrossRefPubMed
5.
go back to reference Alcarón de la Lasta C, Villegas I. Resveratrol as an anti-inflammatory and anti-aging agent: mechanisms and clinical implications. Mol Nutr Food Res. 2005;49:405–30.CrossRef Alcarón de la Lasta C, Villegas I. Resveratrol as an anti-inflammatory and anti-aging agent: mechanisms and clinical implications. Mol Nutr Food Res. 2005;49:405–30.CrossRef
6.
go back to reference Bitterman JL, Chung JH. Metabolic effects of resveratrol: addressing the controversies. Cell Mol Life Sci. 2015;72:1473–88.CrossRefPubMed Bitterman JL, Chung JH. Metabolic effects of resveratrol: addressing the controversies. Cell Mol Life Sci. 2015;72:1473–88.CrossRefPubMed
7.
go back to reference Raederstorff D, Kunz I, Schwager J. Resveratrol, from experimental data to nutritional evidence: the emergence of a new food ingredient. Ann N Y Acad Sci. 2013;1290:136–41.CrossRefPubMed Raederstorff D, Kunz I, Schwager J. Resveratrol, from experimental data to nutritional evidence: the emergence of a new food ingredient. Ann N Y Acad Sci. 2013;1290:136–41.CrossRefPubMed
8.
go back to reference Richard N, Arnol S, Hoeller U, Kilpert C, Schwager J. Hydroxytyrosol is the major anti-inflammatory compound in aqueous olive extracts and impairs cytokine and chemokine production in macrophages. Planta Med. 2011;77:1890–7.CrossRefPubMed Richard N, Arnol S, Hoeller U, Kilpert C, Schwager J. Hydroxytyrosol is the major anti-inflammatory compound in aqueous olive extracts and impairs cytokine and chemokine production in macrophages. Planta Med. 2011;77:1890–7.CrossRefPubMed
9.
go back to reference Richard N, Porath D, Radspieler A, Schwager J. Effects of resveratrol, piceatannol, tri-acetoxystilbene, and genistein on the inflammatory response of human peripheral blood leukocytes. Mol Nutr Food Res. 2005;49:431–42.CrossRefPubMed Richard N, Porath D, Radspieler A, Schwager J. Effects of resveratrol, piceatannol, tri-acetoxystilbene, and genistein on the inflammatory response of human peripheral blood leukocytes. Mol Nutr Food Res. 2005;49:431–42.CrossRefPubMed
10.
go back to reference Schwager J, Hoeller U, Wolfram S, Richard N. Rose hip and its constituent galactolipids confer cartilage protection by modulating cytokine, and chemokine expression. BMC Complement Altern Med. 2011;11:105.CrossRefPubMedPubMedCentral Schwager J, Hoeller U, Wolfram S, Richard N. Rose hip and its constituent galactolipids confer cartilage protection by modulating cytokine, and chemokine expression. BMC Complement Altern Med. 2011;11:105.CrossRefPubMedPubMedCentral
11.
go back to reference Takao K, Miyakawa T. Genomic responses in mouse models greatly mimic human inflammatory diseases. Proc Natl Acad Sci U S A. 2015;112:1167–72.CrossRefPubMed Takao K, Miyakawa T. Genomic responses in mouse models greatly mimic human inflammatory diseases. Proc Natl Acad Sci U S A. 2015;112:1167–72.CrossRefPubMed
12.
go back to reference Tsai SH, Lin-Shiau SY, Lin JK. Suppression of nitric oxide synthase and the down-regulation of the activation of NFkappaB in macrophages by resveratrol. Br J Pharmacol. 1999;126:673–80.CrossRefPubMedPubMedCentral Tsai SH, Lin-Shiau SY, Lin JK. Suppression of nitric oxide synthase and the down-regulation of the activation of NFkappaB in macrophages by resveratrol. Br J Pharmacol. 1999;126:673–80.CrossRefPubMedPubMedCentral
13.
go back to reference Auwerx J. The human leukemia cell line, THP-1: a multifacetted model for the study of monocyte-macrophage differentiation. Experientia. 1991;47:22–31.CrossRefPubMed Auwerx J. The human leukemia cell line, THP-1: a multifacetted model for the study of monocyte-macrophage differentiation. Experientia. 1991;47:22–31.CrossRefPubMed
14.
go back to reference Cullen JP, Morrow D, Jin Y, von Offenberg SN, et al. Resveratrol inhibits expression and binding activity of the monocyte chemotactic protein-1 receptor, CCR2, on THP-1 monocytes. Atherosclerosis. 2007;195:e125–33.CrossRefPubMedPubMedCentral Cullen JP, Morrow D, Jin Y, von Offenberg SN, et al. Resveratrol inhibits expression and binding activity of the monocyte chemotactic protein-1 receptor, CCR2, on THP-1 monocytes. Atherosclerosis. 2007;195:e125–33.CrossRefPubMedPubMedCentral
15.
go back to reference Oh YC, Kang OH, Choi JG, Chae HS, et al. Anti-inflammatory effect of resveratrol by inhibition of IL-8 production in LPS-induced THP-1 cells. The American Journal of Chinese Medicine. 2009;37:1203–14.CrossRefPubMed Oh YC, Kang OH, Choi JG, Chae HS, et al. Anti-inflammatory effect of resveratrol by inhibition of IL-8 production in LPS-induced THP-1 cells. The American Journal of Chinese Medicine. 2009;37:1203–14.CrossRefPubMed
16.
go back to reference Tsan MF, White JE, Maheshwari JG, Bremner TA, Sacco J. Resveratrol induces Fas signalling-independent apoptosis in THP-1 human monocytic leukaemia cells. Br J Haematol. 2000;109:405–12.CrossRefPubMed Tsan MF, White JE, Maheshwari JG, Bremner TA, Sacco J. Resveratrol induces Fas signalling-independent apoptosis in THP-1 human monocytic leukaemia cells. Br J Haematol. 2000;109:405–12.CrossRefPubMed
17.
go back to reference Marier JF, Vachon P, Gritsas A, Zhang J, et al. Metabolism and disposition of resveratrol in rats: extent of absorption, glucuronidation, and enterohepatic recirculation evidenced by a linked-rat model. J Pharmacol Exp Ther. 2002;302:369–73.CrossRefPubMed Marier JF, Vachon P, Gritsas A, Zhang J, et al. Metabolism and disposition of resveratrol in rats: extent of absorption, glucuronidation, and enterohepatic recirculation evidenced by a linked-rat model. J Pharmacol Exp Ther. 2002;302:369–73.CrossRefPubMed
18.
go back to reference Pendurthi UR, Williams JT, Rao LV. Resveratrol, a polyphenolic compound found in wine, inhibits tissue factor expression in vascular cells: a possible mechanism for the cardiovascular benefits associated with moderate consumption of wine. Arterioscler Thromb Vasc Biol. 1999;19:419–26.CrossRefPubMed Pendurthi UR, Williams JT, Rao LV. Resveratrol, a polyphenolic compound found in wine, inhibits tissue factor expression in vascular cells: a possible mechanism for the cardiovascular benefits associated with moderate consumption of wine. Arterioscler Thromb Vasc Biol. 1999;19:419–26.CrossRefPubMed
19.
go back to reference Lenhoff S, Olofsson T. Cytokine regulation of GM-CSF and G-CSF secretion by human umbilical cord vein endothelial cells (HUVEC). Cytokine. 1996;8:702–9.CrossRefPubMed Lenhoff S, Olofsson T. Cytokine regulation of GM-CSF and G-CSF secretion by human umbilical cord vein endothelial cells (HUVEC). Cytokine. 1996;8:702–9.CrossRefPubMed
20.
go back to reference Wallerath T, Deckert G, Ternes T, Anderson H, et al. Resveratrol, a polyphenolic phytoalexin present in red wine, enhances expression and activity of endothelial nitric oxide synthase. Circulation. 2002;106:1652–8.CrossRefPubMed Wallerath T, Deckert G, Ternes T, Anderson H, et al. Resveratrol, a polyphenolic phytoalexin present in red wine, enhances expression and activity of endothelial nitric oxide synthase. Circulation. 2002;106:1652–8.CrossRefPubMed
21.
go back to reference Kulkarni SS, Canto C. The molecular targets of resveratrol. Biochim Biophys Acta. 1852;2015:1114–23. Kulkarni SS, Canto C. The molecular targets of resveratrol. Biochim Biophys Acta. 1852;2015:1114–23.
22.
23.
go back to reference Csiszar A, Smith K, Labinskyy N, Orosz Z, et al. Resveratrol attenuates TNF-alpha-induced activation of coronary arterial endothelial cells: role of NF-kappaB inhibition. American journal of physiology. Heart and Circulatory Physiology. 2006;291:H1694–9.CrossRefPubMed Csiszar A, Smith K, Labinskyy N, Orosz Z, et al. Resveratrol attenuates TNF-alpha-induced activation of coronary arterial endothelial cells: role of NF-kappaB inhibition. American journal of physiology. Heart and Circulatory Physiology. 2006;291:H1694–9.CrossRefPubMed
24.
go back to reference Pellegatta F, Bertelli AA, Staels B, Duhem C, et al. Different short- and long-term effects of resveratrol on nuclear factor-kappaB phosphorylation and nuclear appearance in human endothelial cells. Am J Clin Nutr. 2003;77:1220–8.PubMed Pellegatta F, Bertelli AA, Staels B, Duhem C, et al. Different short- and long-term effects of resveratrol on nuclear factor-kappaB phosphorylation and nuclear appearance in human endothelial cells. Am J Clin Nutr. 2003;77:1220–8.PubMed
25.
go back to reference Fossati G, Mazzucchelli I, Gritti D, Ricevuti G, et al. In vitro effects of GM-CSF on mature peripheral blood neutrophils. Int J Mol Med. 1998;1:943–51.PubMed Fossati G, Mazzucchelli I, Gritti D, Ricevuti G, et al. In vitro effects of GM-CSF on mature peripheral blood neutrophils. Int J Mol Med. 1998;1:943–51.PubMed
26.
go back to reference Murray PJ, Allen JE, Biswas SK, Fisher EA, et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity. 2014;41:14–20.CrossRefPubMedPubMedCentral Murray PJ, Allen JE, Biswas SK, Fisher EA, et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity. 2014;41:14–20.CrossRefPubMedPubMedCentral
27.
go back to reference Gordon S, Taylor PR. Monocyte and macrophage heterogeneity. Nature Rev Immunology. 2005;5:953–64.CrossRef Gordon S, Taylor PR. Monocyte and macrophage heterogeneity. Nature Rev Immunology. 2005;5:953–64.CrossRef
28.
go back to reference Dong W, Wang X, Bi S, Pan Z, et al. Inhibitory effects of resveratrol on foam cell formation are mediated through monocyte chemotactic protein-1 and lipid metabolism-related proteins. Int J Mol Med. 2014;33:1161–8.PubMed Dong W, Wang X, Bi S, Pan Z, et al. Inhibitory effects of resveratrol on foam cell formation are mediated through monocyte chemotactic protein-1 and lipid metabolism-related proteins. Int J Mol Med. 2014;33:1161–8.PubMed
29.
go back to reference Richmond A. NF-kappa B, chemokine gene transcription and tumour growth. Nature Rev Immunology. 2002;2:664–74.CrossRef Richmond A. NF-kappa B, chemokine gene transcription and tumour growth. Nature Rev Immunology. 2002;2:664–74.CrossRef
30.
go back to reference Ito S, Ansari P, Sakatsume M, Dickensheets H, et al. Interleukin-10 inhibits expression of both interferon alpha- and interferon gamma- induced genes by suppressing tyrosine phosphorylation of STAT1. Blood. 1999;93:1456–63.PubMed Ito S, Ansari P, Sakatsume M, Dickensheets H, et al. Interleukin-10 inhibits expression of both interferon alpha- and interferon gamma- induced genes by suppressing tyrosine phosphorylation of STAT1. Blood. 1999;93:1456–63.PubMed
31.
go back to reference Ohmori Y, Hamilton TA. Requirement for STAT1 in LPS-induced gene expression in macrophages. J Leukoc Biol. 2001;69:598–604.PubMed Ohmori Y, Hamilton TA. Requirement for STAT1 in LPS-induced gene expression in macrophages. J Leukoc Biol. 2001;69:598–604.PubMed
33.
go back to reference Schwager J, Richard N, Riegger C, Salem, N Jr. omega-3 PUFAs and Resveratrol Differently Modulate Acute and Chronic Inflammatory Processes. BioMed Res Int. 2015. doi:10.1155/2015/535189. Schwager J, Richard N, Riegger C, Salem, N Jr. omega-3 PUFAs and Resveratrol Differently Modulate Acute and Chronic Inflammatory Processes. BioMed Res Int. 2015. doi:10.​1155/​2015/​535189.
35.
go back to reference Willoughby DA, Moore AR, Colville-Nash PR, Gilroy D. Resolution of inflammation. Int J Immunopharmacol. 2000;22:1131–5.CrossRefPubMed Willoughby DA, Moore AR, Colville-Nash PR, Gilroy D. Resolution of inflammation. Int J Immunopharmacol. 2000;22:1131–5.CrossRefPubMed
37.
38.
go back to reference Mauer J, Chaurasia B, Goldau J, Vogt MC, et al. Signaling by IL-6 promotes alternative activation of macrophages to limit endotoxemia and obesity-associated resistance to insulin. Nat Immunol. 2014;15:423–30.CrossRefPubMedPubMedCentral Mauer J, Chaurasia B, Goldau J, Vogt MC, et al. Signaling by IL-6 promotes alternative activation of macrophages to limit endotoxemia and obesity-associated resistance to insulin. Nat Immunol. 2014;15:423–30.CrossRefPubMedPubMedCentral
39.
go back to reference Walle T, Hsieh F, DeLegge MH, Oatis JE Jr, Walle UK. High absorption but very low bioavailability of oral resveratrol in humans. Drug Metab Dispos. 2004;32:1377–82.CrossRefPubMed Walle T, Hsieh F, DeLegge MH, Oatis JE Jr, Walle UK. High absorption but very low bioavailability of oral resveratrol in humans. Drug Metab Dispos. 2004;32:1377–82.CrossRefPubMed
40.
go back to reference Gallucci S, Matzinger P. Danger signals: SOS to the immune system. Curr Opin Immunol. 2001;13:114–9.CrossRefPubMed Gallucci S, Matzinger P. Danger signals: SOS to the immune system. Curr Opin Immunol. 2001;13:114–9.CrossRefPubMed
41.
go back to reference Almeida L, Vaz-da-Silva M, Falcao A, Soares E, et al. Pharmacokinetic and safety profile of trans-resveratrol in a rising multiple-dose study in healthy volunteers. Mol Nutr Food Res. 2009;53(Suppl 1):S7–15.CrossRefPubMed Almeida L, Vaz-da-Silva M, Falcao A, Soares E, et al. Pharmacokinetic and safety profile of trans-resveratrol in a rising multiple-dose study in healthy volunteers. Mol Nutr Food Res. 2009;53(Suppl 1):S7–15.CrossRefPubMed
Metadata
Title
Resveratrol distinctively modulates the inflammatory profiles of immune and endothelial cells
Authors
Joseph Schwager
Nathalie Richard
Franziska Widmer
Daniel Raederstorff
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2017
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-017-1823-z

Other articles of this Issue 1/2017

BMC Complementary Medicine and Therapies 1/2017 Go to the issue