Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2017

Open Access 01-12-2017 | Research article

Microscopic identification and in vitro activity of Agastache rugosa (Fisch. et Mey) from Xinjiang, China

Authors: Haiyan Gong, Shaoyu Li, Lijuan He, Rena Kasimu

Published in: BMC Complementary Medicine and Therapies | Issue 1/2017

Login to get access

Abstract

Background

Agastache rugosa is well-known as a common traditional Chinese medicine, which have relieving summer-heat, analgesic and antipyretic effects, have long been used as folkloristic remedy in the treatment of several infectious diseases, anti-inflammatory, and for its antibacterial properties. Considering the lack of available data on the morphology, anatomy and in vitro activity of A. rugosa, the goal of the present study was to carry out the microscopic identification of its aerial parts and in vitro activity research as a contribution to the quality control and reasonable utilization involving A. rugosa.

Methods

The present study was (a) to describe the microscopic identification with usual light and scanning electron microtechniques of A. rugosa, collected from Xinjiang Region; (b) based on previous research on the essential oil constituents among different parts of A. rugosa from Xinjiang by GC-MS method, to evaluate its antibacterial effect and cell viabilitity assay.

Results

The microscopic identification of botanical material showed some typical structure. The essential oils from the dried flower (EOF) and leaves (EOL) of A. rugosa were 0.29% and 0.57% (w/w), respectively. The in vitro antibacterial activities showed strong inhibition against S.aureus, E. coli of EOF; strong inhibition against E. coli of EOL. Based GC-MS analysis, the MTT assay showed a dose and time-dependent increase in damage for gastric cancer cell line SGC-7901.

Conclusions

The results of this work, based on an extensive analytical characterization of the EOF and EOL chemical composition, compared with other origins, showed A. rugosa possessed antibacterial and cytotoxicity properties activities, which need much additional work to open up new biomedical application of these components.
Literature
1.
go back to reference Hudaberdi M, Pan XL. Introduction of Agastache rugosa (Fisch. et Mey) of Xinjiang (4th of Flora Xinjiangensis). Xinjiang: Xinjiang Science&Technology Publishing House Publ; 2004. p. 237–9. Hudaberdi M, Pan XL. Introduction of Agastache rugosa (Fisch. et Mey) of Xinjiang (4th of Flora Xinjiangensis). Xinjiang: Xinjiang Science&Technology Publishing House Publ; 2004. p. 237–9.
2.
go back to reference Liu YM. Uighur Medicine Standard, upper volume. Xinjiang Uygur Autonomous Region Health Department Edits. Xinjiang: Health Science and Technology Publishing House Publ (K); 1993. p. 120–7. Liu YM. Uighur Medicine Standard, upper volume. Xinjiang Uygur Autonomous Region Health Department Edits. Xinjiang: Health Science and Technology Publishing House Publ (K); 1993. p. 120–7.
3.
go back to reference Cho SE, Park JH, Hong SH. First report of powdery mildew caused by golovinomyces biocellatus on Agastache rugosa in Korea. Plant Disease. 2014;98(9): 1278-1279. Cho SE, Park JH, Hong SH. First report of powdery mildew caused by golovinomyces biocellatus on Agastache rugosa in Korea. Plant Disease. 2014;98(9): 1278-1279.
4.
go back to reference Oha HM, Kang YJ, Leea YS, Parka MK, Kima SH, Kima HJ. Protein kinase G-dependent heme oxygenase-1 induction by Agastache rugosa leaf extract protects RAW 264.7 cells from hydrogen peroxide-induced injury. J Ethnopharmacol. 2006;103:229–35.CrossRef Oha HM, Kang YJ, Leea YS, Parka MK, Kima SH, Kima HJ. Protein kinase G-dependent heme oxygenase-1 induction by Agastache rugosa leaf extract protects RAW 264.7 cells from hydrogen peroxide-induced injury. J Ethnopharmacol. 2006;103:229–35.CrossRef
5.
go back to reference Kim HK, Lee HK, Shin CG, Huh H. HIV integrase inhibitory activity of Agastache rugosa. Arch Pharm Res. 1999;22:520–3.CrossRefPubMed Kim HK, Lee HK, Shin CG, Huh H. HIV integrase inhibitory activity of Agastache rugosa. Arch Pharm Res. 1999;22:520–3.CrossRefPubMed
6.
go back to reference Johansen NDA. Plant microtechnique. New York: McGraw Hill Book; 1940. p. 121–4. Johansen NDA. Plant microtechnique. New York: McGraw Hill Book; 1940. p. 121–4.
7.
go back to reference Berlyn GP, Miksch JP. Botanical microtechnique and cytochemistry. Ames: Iowa State University; 1976. p. 1256–31. Berlyn GP, Miksch JP. Botanical microtechnique and cytochemistry. Ames: Iowa State University; 1976. p. 1256–31.
8.
go back to reference CLSI. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically, Approved Standard 9th Ed. Document M07–A9. Wayne, PA: Clinical and Laboratory Standards Institute; 2012. CLSI. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically, Approved Standard 9th Ed. Document M07–A9. Wayne, PA: Clinical and Laboratory Standards Institute; 2012.
9.
go back to reference Kario SK, Bedwell J, Tyler PC, Cater A, Corbel MJ. Development of a tetrazolium salt assay for rapid determination of viability of BCG vaccines. Vaccine. 1999;17:2423–38.CrossRef Kario SK, Bedwell J, Tyler PC, Cater A, Corbel MJ. Development of a tetrazolium salt assay for rapid determination of viability of BCG vaccines. Vaccine. 1999;17:2423–38.CrossRef
10.
go back to reference Walenka E, Sadowska B, Rozalska S, Hryniewicz W, Rozalska B. Lysostaphin as a potential therapeutic agent for staphylococcal biofilm eradication. Pol J Microbiol. 2005;54:191–200. Walenka E, Sadowska B, Rozalska S, Hryniewicz W, Rozalska B. Lysostaphin as a potential therapeutic agent for staphylococcal biofilm eradication. Pol J Microbiol. 2005;54:191–200.
11.
go back to reference Gong H, Zhou X, Zhu M, Ma X, Zhang X, Tian S. Constituents of essential oil from the dried flower and leaf of Agastache rugosa (Fisch. et Mey) from Xinjiang, in China. J. Essent. Oil Bear. Plants. 2012;15(4):534-538. Gong H, Zhou X, Zhu M, Ma X, Zhang X, Tian S. Constituents of essential oil from the dried flower and leaf of Agastache rugosa (Fisch. et Mey) from Xinjiang, in China. J. Essent. Oil Bear. Plants. 2012;15(4):534-538.
12.
go back to reference Gong HY, Liu WH, Lv GY, Tian SG. Analysis of Essential Oils of Origanum vulgare from Six Production Areas of China and Pakistan. J Pharmacogn. 2014;24:25–32. Gong HY, Liu WH, Lv GY, Tian SG. Analysis of Essential Oils of Origanum vulgare from Six Production Areas of China and Pakistan. J Pharmacogn. 2014;24:25–32.
13.
go back to reference Zhou XY, Yu Q, Gong HY, Tian SG. GC-MS Analysis of Ziziphora clinopodioides essential oil from north Xinjiang, China. Nat Prod Commun. 2012;7(1):81–2.PubMed Zhou XY, Yu Q, Gong HY, Tian SG. GC-MS Analysis of Ziziphora clinopodioides essential oil from north Xinjiang, China. Nat Prod Commun. 2012;7(1):81–2.PubMed
Metadata
Title
Microscopic identification and in vitro activity of Agastache rugosa (Fisch. et Mey) from Xinjiang, China
Authors
Haiyan Gong
Shaoyu Li
Lijuan He
Rena Kasimu
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2017
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-017-1605-7

Other articles of this Issue 1/2017

BMC Complementary Medicine and Therapies 1/2017 Go to the issue