Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2016

Open Access 01-12-2016 | Research article

Protective effects of Monotheca buxifolia fruit on renal toxicity induced by CCl4 in rats

Authors: Shumaila Jan, Muhammad Rashid Khan

Published in: BMC Complementary Medicine and Therapies | Issue 1/2016

Login to get access

Abstract

Background

Oxidative stress is believed to be a root cause of various degenerative and fibrotic disorders. Dietary foods enrich in antioxidants can cure or curtail the progression of oxidative stress induced disorders. Fruit of Monotheca buxifolia is used locally for digestive and urinary tract disorders. We have evaluated the protective potential of the methanol extract of M. buxifolia (MBM) in rat exposed to carbon tetrachloride (CCl4) toxicity.

Methods

Powder of the dried fruit of M. buxifolia was extracted twice with 95 % methanol to get the extract (MBM). Presence of polyphenolic constituents was detected by HPLC-DAD (High Performance Liquid Chromatography with Diode Array Detection) analysis. Sprague-Dawley male rats were divided in to six groups with six rats in each. Animals of Group I were kept control, while rats of Group II – Group V were treated intraperitoneally with 1 ml/kg body weight (bw) of CCl4 (30 % v/v; olive oil) 15 dosages in 30 days. Animals of Group III were orally administered silymarin (50 mg/kg bw) while Group IV and V with 200 and 400 mg/kg of MBM on next day of CCl4 treatment. Rats of Group VI were administered only with 400 mg/kg bw of MBM. Biochemical markers of the urine and serum were analyzed. Level of antioxidant enzymes, DNA damages lipid peroxides (TBARS), H2O2 and nitrite was assessed in renal tissues of rat. Histopathological changes in renal tissues of rat were also recorded.

Results

HPLC-DAD analysis of MBM indicated the existence of gallic acid, catechin, caffeic acid and rutin. MBM administration significantly alleviated the toxic effect of CCl4 in rat and decreased the elevated level of RBCs, pus and epithelial cells, specific gravity, creatinine, urobilinogen, urea and albumin while increased the pH and urinary protein. Increase in the level of urobilinogen, blood urea nitrogen (BUN), urea and total bilirubin while decrease of albumin and total protein in serum was restored by the administration of MBM to CCl4 fed rat. Administration of MBM to CCl4 exposed rats significantly increased the activity level of phase I and phase II enzymes and GSH while decreased the level of TBARS, H2O2, nitrite and DNA damages in renal tissues of rat. Furthermore, histopathological alterations induced with CCl4 in renal tissues of rat were also diminished with the administration of MBM.

Conclusion

Restoration of various parameters induced with toxic insult of CCl4 in rat suggests the antioxidant and repairing potential of M. buxifolia fruit in kidney disorders.
Literature
1.
go back to reference Afsar T, Khan MR, Razak S, Ullah S, Mirza B. Antipyretic, anti-inflammatory and analgesic activity of Acacia hydaspica R. Parker and its phytochemical analysis. BMC Complement Altern Med. 2015;15:136.CrossRefPubMedPubMedCentral Afsar T, Khan MR, Razak S, Ullah S, Mirza B. Antipyretic, anti-inflammatory and analgesic activity of Acacia hydaspica R. Parker and its phytochemical analysis. BMC Complement Altern Med. 2015;15:136.CrossRefPubMedPubMedCentral
2.
go back to reference Bokhari J, Khan MR. Evaluation of anti-asthmatic and antioxidant potential of Boerhavia procumbens in toluene diisocyanate (TDI) treated rats. J Ethnopharmacol. 2015;172:377–85.CrossRefPubMed Bokhari J, Khan MR. Evaluation of anti-asthmatic and antioxidant potential of Boerhavia procumbens in toluene diisocyanate (TDI) treated rats. J Ethnopharmacol. 2015;172:377–85.CrossRefPubMed
3.
go back to reference Shah NA, Khan MR, Naz K, Khan MA. Antioxidant potential, DNA protection, and HPLC-DAD analysis of neglected medicinal Jurinea dolomiaea roots. Biomed Res Int. 2014;2014:726241.PubMedPubMedCentral Shah NA, Khan MR, Naz K, Khan MA. Antioxidant potential, DNA protection, and HPLC-DAD analysis of neglected medicinal Jurinea dolomiaea roots. Biomed Res Int. 2014;2014:726241.PubMedPubMedCentral
4.
go back to reference Ullah S, Khan MR, Shah NA, Shah SA, Majid M, Farooq MA. Ethnomedicinal plants use value in the District Lakki Marwat of Pakistan. J Ethnopharmacol. 2014;2015(158):412–22.CrossRef Ullah S, Khan MR, Shah NA, Shah SA, Majid M, Farooq MA. Ethnomedicinal plants use value in the District Lakki Marwat of Pakistan. J Ethnopharmacol. 2014;2015(158):412–22.CrossRef
5.
go back to reference Khan MR, Rizvi W, Khan GN, Khan RA, Shaheen S. Carbon tetrachloride induced nephrotoxicity in rat: protective role of Digera muricata (L.) Mart. J Ethnopharmacol. 2009;122:91–9.CrossRefPubMed Khan MR, Rizvi W, Khan GN, Khan RA, Shaheen S. Carbon tetrachloride induced nephrotoxicity in rat: protective role of Digera muricata (L.) Mart. J Ethnopharmacol. 2009;122:91–9.CrossRefPubMed
6.
go back to reference Naz K, Khan MR, Shah NA, Sattar S, Noureen F, Awan ML. Pistacia chinensis: a potent ameliorator of CCl4 induced lung and thyroid toxicity in rat model. Biomed Res Int. 2014;2014:192906.CrossRefPubMedPubMedCentral Naz K, Khan MR, Shah NA, Sattar S, Noureen F, Awan ML. Pistacia chinensis: a potent ameliorator of CCl4 induced lung and thyroid toxicity in rat model. Biomed Res Int. 2014;2014:192906.CrossRefPubMedPubMedCentral
7.
go back to reference Jan S, Khan MR, Rashid U, Bokhari J. Assessment of antioxidant potential, total phenolics and flavonoids of different fractions of Monotheca buxifolia fruit. Osong Public Health Res Perspect. 2013;4:246–54.CrossRefPubMedPubMedCentral Jan S, Khan MR, Rashid U, Bokhari J. Assessment of antioxidant potential, total phenolics and flavonoids of different fractions of Monotheca buxifolia fruit. Osong Public Health Res Perspect. 2013;4:246–54.CrossRefPubMedPubMedCentral
8.
go back to reference Rehman J, Khan IU, Farid S, Kamal S, Aslam N. Phytochemical screening and evaluation of in vitro antioxidant potential of Monotheca buxifolia. E3 J Biotechnol Pharm Res. 2013;4(4):54–60. Rehman J, Khan IU, Farid S, Kamal S, Aslam N. Phytochemical screening and evaluation of in vitro antioxidant potential of Monotheca buxifolia. E3 J Biotechnol Pharm Res. 2013;4(4):54–60.
9.
go back to reference Farid S, Khan IU, Rehman J. In-vitro evaluation of antioxidant activity of Monotheca buxifolia: A spectrophotometric approach. Amazon: LAP LAMBERT Academic Publishing; 2012. p. 1–80. Farid S, Khan IU, Rehman J. In-vitro evaluation of antioxidant activity of Monotheca buxifolia: A spectrophotometric approach. Amazon: LAP LAMBERT Academic Publishing; 2012. p. 1–80.
10.
go back to reference Hazrat A, Nisar M, Zaman S. Antibacterial activities of sixteen species of medicinal plants reported from Dir Kohistan Valley KPK, Pakistan. Pak J Bot. 2013;45:1369–74. Hazrat A, Nisar M, Zaman S. Antibacterial activities of sixteen species of medicinal plants reported from Dir Kohistan Valley KPK, Pakistan. Pak J Bot. 2013;45:1369–74.
11.
go back to reference Murad W, Azizullah A, Adnan M, Tariq A, Khan KU, Waheed S, Ahmad A. Ethnobotanical assessment of plant resources of Banda Daud Shah, District Karak, Pakistan. J Ethnobiol Ethnomed. 2013;9:77.CrossRefPubMedPubMedCentral Murad W, Azizullah A, Adnan M, Tariq A, Khan KU, Waheed S, Ahmad A. Ethnobotanical assessment of plant resources of Banda Daud Shah, District Karak, Pakistan. J Ethnobiol Ethnomed. 2013;9:77.CrossRefPubMedPubMedCentral
12.
go back to reference Barkatullah, Ibrar M, Rauf A, Hadda TB, Mubarak MS, Patel S. Quantitative ethnobotanical survey of medicinal flora thriving in Malakand Pass Hills, Khyber Pakhtunkhwa, Pakistan. J Ethnopharmacol. 2015;169:335–46.CrossRefPubMed Barkatullah, Ibrar M, Rauf A, Hadda TB, Mubarak MS, Patel S. Quantitative ethnobotanical survey of medicinal flora thriving in Malakand Pass Hills, Khyber Pakhtunkhwa, Pakistan. J Ethnopharmacol. 2015;169:335–46.CrossRefPubMed
13.
go back to reference Marwat SA, Rehman FU, Usman K, Khakwani AA, Ghulam S, Anwar N, Sadiq M, Khan SJ. Medico-ethnobotanical studies of edible wild fruit plants species from the flora of north western Pakistan (D. I. Khan district). J Med Plant Res. 2011;5(16):3679–86. Marwat SA, Rehman FU, Usman K, Khakwani AA, Ghulam S, Anwar N, Sadiq M, Khan SJ. Medico-ethnobotanical studies of edible wild fruit plants species from the flora of north western Pakistan (D. I. Khan district). J Med Plant Res. 2011;5(16):3679–86.
14.
go back to reference Nazir M, Rehman JU, Khan SA, Bhatty MK. The constituents of unsaponifiable from Monotheca buxifolia seed oil. Eur J Life Sci Technol. 1986;88:266–8. Nazir M, Rehman JU, Khan SA, Bhatty MK. The constituents of unsaponifiable from Monotheca buxifolia seed oil. Eur J Life Sci Technol. 1986;88:266–8.
15.
go back to reference Zu Y, Li C, Fu Y, Zhao C. Simultaneous determination of catechin, rutin, quercetin, kaempferol and isorhamnetin in the extract of sea buckthorn (Hippophae rhamnoides L.) leaves by RP-HPLC with DAD. J Pharm Biomed. 2006;41:714–9.CrossRef Zu Y, Li C, Fu Y, Zhao C. Simultaneous determination of catechin, rutin, quercetin, kaempferol and isorhamnetin in the extract of sea buckthorn (Hippophae rhamnoides L.) leaves by RP-HPLC with DAD. J Pharm Biomed. 2006;41:714–9.CrossRef
16.
go back to reference Qaiser F, Trembley JH, Kren BT, Wu JJ, Naveed AK, Ahmed K. Protein kinase CK2 inhibition induces cell death via early impact on mitochondrial function. J Cell Biochem. 2014;115:2103–15.CrossRefPubMedPubMedCentral Qaiser F, Trembley JH, Kren BT, Wu JJ, Naveed AK, Ahmed K. Protein kinase CK2 inhibition induces cell death via early impact on mitochondrial function. J Cell Biochem. 2014;115:2103–15.CrossRefPubMedPubMedCentral
17.
go back to reference OECD. OECD guideline for testing chemicals 425. Acute oral toxicity-up and down procedure, vol. 2. 2001. p. 12–6. OECD. OECD guideline for testing chemicals 425. Acute oral toxicity-up and down procedure, vol. 2. 2001. p. 12–6.
18.
go back to reference Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with Folin phenol reagent. J Biol Chem. 1951;193:265–75.PubMed Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with Folin phenol reagent. J Biol Chem. 1951;193:265–75.PubMed
19.
go back to reference Chance B, Maehly AC. Assay of catalase and peroxidase. Methods Enzymol. 1955;2:764–75.CrossRef Chance B, Maehly AC. Assay of catalase and peroxidase. Methods Enzymol. 1955;2:764–75.CrossRef
20.
go back to reference Kakkar P, Das B, Viswanathan PN. A modified spectrophotometric assay of superoxide dismutase. Indian J Biochem Biophys. 1984;21:130–2.PubMed Kakkar P, Das B, Viswanathan PN. A modified spectrophotometric assay of superoxide dismutase. Indian J Biochem Biophys. 1984;21:130–2.PubMed
21.
go back to reference Benson AM, Hunkeler MJ, Talalay P. Increase of NADPH, quinone reductase activity by dietary antioxidant: possible role in protection against carcinogenesis and toxicity. Proc Natl Acad Sci U S A. 1990;77:5216–20.CrossRef Benson AM, Hunkeler MJ, Talalay P. Increase of NADPH, quinone reductase activity by dietary antioxidant: possible role in protection against carcinogenesis and toxicity. Proc Natl Acad Sci U S A. 1990;77:5216–20.CrossRef
22.
go back to reference Mohandas J, Marshal JJ, Duggin GG, Horvath JS, Tiller DJ. Differential distribution of glutathione and glutathione-related enzymes in rabbit kidney. Possible implications in analgesic nephropathy. Biochem Pharmacol. 1984;33:1801–7.CrossRefPubMed Mohandas J, Marshal JJ, Duggin GG, Horvath JS, Tiller DJ. Differential distribution of glutathione and glutathione-related enzymes in rabbit kidney. Possible implications in analgesic nephropathy. Biochem Pharmacol. 1984;33:1801–7.CrossRefPubMed
23.
go back to reference Carlberg I, Mannervik EB. Glutathione level in rat brain. J Biol Chem. 1975;250:4475–80. Carlberg I, Mannervik EB. Glutathione level in rat brain. J Biol Chem. 1975;250:4475–80.
24.
go back to reference Habig WH, Pabst MJ, Jakoby WB. Glutathione-S-transferases: the first enzymatic step in mercapturic acid formation. J Biol Chem. 1974;249:7130–9.PubMed Habig WH, Pabst MJ, Jakoby WB. Glutathione-S-transferases: the first enzymatic step in mercapturic acid formation. J Biol Chem. 1974;249:7130–9.PubMed
25.
go back to reference Orlowaski M, Miester A. γ-Glutamyl cyclotransferase distribution, isozymic forms, and specificity. J Biol Chem. 1973;248:2836–44. Orlowaski M, Miester A. γ-Glutamyl cyclotransferase distribution, isozymic forms, and specificity. J Biol Chem. 1973;248:2836–44.
26.
go back to reference Jollow DJ, Mitchell JR, Zampaglione N, Gillete JR. Bromobenzene induced liver necrosis. Protective role of glutathione and evidence for 3, 4-bromobenzene oxide as a hepatotoxic metabolite. Pharmacology. 1974;11:151–69.CrossRefPubMed Jollow DJ, Mitchell JR, Zampaglione N, Gillete JR. Bromobenzene induced liver necrosis. Protective role of glutathione and evidence for 3, 4-bromobenzene oxide as a hepatotoxic metabolite. Pharmacology. 1974;11:151–69.CrossRefPubMed
27.
go back to reference Iqbal M, Sharma SD, Zadeh HR, Hasan N, Abdulla M, Athar M. Glutathione metabolizing enzymes and oxidative stress in ferric nitrilotriacetate (Fe-NTA) mediated hepatic injury. Redox Rep. 1996;2:385–91.CrossRefPubMed Iqbal M, Sharma SD, Zadeh HR, Hasan N, Abdulla M, Athar M. Glutathione metabolizing enzymes and oxidative stress in ferric nitrilotriacetate (Fe-NTA) mediated hepatic injury. Redox Rep. 1996;2:385–91.CrossRefPubMed
28.
go back to reference Pick A, Keisari Y. Superoxide anion and hydrogen peroxide production by chemically elicited peritoneal macrophages-induction by multiple non phagocytic stimuli. Cell Immunol. 1981;59:301–18.CrossRefPubMed Pick A, Keisari Y. Superoxide anion and hydrogen peroxide production by chemically elicited peritoneal macrophages-induction by multiple non phagocytic stimuli. Cell Immunol. 1981;59:301–18.CrossRefPubMed
29.
go back to reference Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR. Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids. Anal Biochem. 1982;126:131–8.CrossRefPubMed Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR. Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids. Anal Biochem. 1982;126:131–8.CrossRefPubMed
30.
go back to reference Wu B, Ootani A, Iwakiri R, Sakata Y, Fujise T, Amemori S, Yokoyama F, Tsunada S, Fujimoto K. T cell deficiency leads to liver carcinogenesis in Azoxymethane-treated rats. Soc Exp Biol Med. 2005;231:91–8. Wu B, Ootani A, Iwakiri R, Sakata Y, Fujise T, Amemori S, Yokoyama F, Tsunada S, Fujimoto K. T cell deficiency leads to liver carcinogenesis in Azoxymethane-treated rats. Soc Exp Biol Med. 2005;231:91–8.
31.
go back to reference Logarto PA, Silva YR, Guerra SI, Iglesias BL. Comparative study of the assay of Artemia salina L. and the estimate of the medium lethal dose (LD50 value) in mice, to determine oral acute toxicity of plant extracts. Phytomedicine. 2001;8:395–400.CrossRef Logarto PA, Silva YR, Guerra SI, Iglesias BL. Comparative study of the assay of Artemia salina L. and the estimate of the medium lethal dose (LD50 value) in mice, to determine oral acute toxicity of plant extracts. Phytomedicine. 2001;8:395–400.CrossRef
32.
go back to reference Khan MR, Zehra H. Amelioration of CCl4-induced nephrotoxicity by Oxalis corniculata in rat. Exp Toxicol Pathol. 2013;65:327–34.CrossRefPubMed Khan MR, Zehra H. Amelioration of CCl4-induced nephrotoxicity by Oxalis corniculata in rat. Exp Toxicol Pathol. 2013;65:327–34.CrossRefPubMed
33.
go back to reference Khan RA, Khan MR, Sahreen S. Protective effects of rutin against potassium bromate induced nephrotoxicity in rats. BMC Complement Altern Med. 2012;12:204.CrossRefPubMedPubMedCentral Khan RA, Khan MR, Sahreen S. Protective effects of rutin against potassium bromate induced nephrotoxicity in rats. BMC Complement Altern Med. 2012;12:204.CrossRefPubMedPubMedCentral
34.
go back to reference Khan RA, Khan MR, Sahreen S. CCl4-induced hepatotoxicity: protective effect of rutin on p53, CYP2E1 and the antioxidative status in rat. BMC Complement Altern Med. 2012;12:178.CrossRefPubMedPubMedCentral Khan RA, Khan MR, Sahreen S. CCl4-induced hepatotoxicity: protective effect of rutin on p53, CYP2E1 and the antioxidative status in rat. BMC Complement Altern Med. 2012;12:178.CrossRefPubMedPubMedCentral
35.
go back to reference Sahreen S, Khan MR, Khan RA, Alkreathy HM. Protective effects of Carissa opaca fruits against CCl4-induced oxidative kidney lipid peroxidation and trauma in rat. Food Nutr Res. 2015;59:28438.CrossRefPubMed Sahreen S, Khan MR, Khan RA, Alkreathy HM. Protective effects of Carissa opaca fruits against CCl4-induced oxidative kidney lipid peroxidation and trauma in rat. Food Nutr Res. 2015;59:28438.CrossRefPubMed
36.
go back to reference Adewole SO, Salako AA, Doherty OW, Naicker T. Effect of melatonin on carbon tetrachloride_induced kidney injury in Wistar rats. Afr J Biomed Res. 2007;10:153–64. Adewole SO, Salako AA, Doherty OW, Naicker T. Effect of melatonin on carbon tetrachloride_induced kidney injury in Wistar rats. Afr J Biomed Res. 2007;10:153–64.
37.
go back to reference Dogukan A, Akpolat N, Celiker H, Ilhan N, Bahcecioglu IH, Gunal AI. Protective effect of interferon on carbon tetrachloride induced nephrotoxicity. J Nephrol. 2003;16:81–4.PubMed Dogukan A, Akpolat N, Celiker H, Ilhan N, Bahcecioglu IH, Gunal AI. Protective effect of interferon on carbon tetrachloride induced nephrotoxicity. J Nephrol. 2003;16:81–4.PubMed
38.
go back to reference Srinivasan M, Rukkumani R, Sudheer AR, Menon VP. Ferulic acid, a natural protector against carbon tetrachloride-induced toxicity. Fundam Clin Pharmacol. 2005;19:491–6.CrossRefPubMed Srinivasan M, Rukkumani R, Sudheer AR, Menon VP. Ferulic acid, a natural protector against carbon tetrachloride-induced toxicity. Fundam Clin Pharmacol. 2005;19:491–6.CrossRefPubMed
39.
go back to reference Khan MR, Siddique F. Antioxidant effects of Citharexylum spinosum in CCl4 induced nephrotoxicity in rat. Exp Toxicol Pathol. 2012;64:349–55.CrossRefPubMed Khan MR, Siddique F. Antioxidant effects of Citharexylum spinosum in CCl4 induced nephrotoxicity in rat. Exp Toxicol Pathol. 2012;64:349–55.CrossRefPubMed
40.
go back to reference Soni B, Visavadiya NP, Madamwar D. Ameliorative action of cyanobacterial phycoerythrin on CCl4-induced toxicity in rats. Toxicology. 2008;248:59–65.CrossRefPubMed Soni B, Visavadiya NP, Madamwar D. Ameliorative action of cyanobacterial phycoerythrin on CCl4-induced toxicity in rats. Toxicology. 2008;248:59–65.CrossRefPubMed
41.
go back to reference Toyokuni S, Okamoto K, Yodoi J, Hiai H. Persistent oxidative stress in cancer. FEBS Lett. 1995;358:1–3.CrossRefPubMed Toyokuni S, Okamoto K, Yodoi J, Hiai H. Persistent oxidative stress in cancer. FEBS Lett. 1995;358:1–3.CrossRefPubMed
42.
go back to reference Kawai Y, Nakao T, Kunimura N, Kohda Y, Gemba M. Relationship of intracellular calcium and oxygen radicals to cisplatin-related renal cell injury. J Pharmacol Sci. 2006;100:65–72.CrossRefPubMed Kawai Y, Nakao T, Kunimura N, Kohda Y, Gemba M. Relationship of intracellular calcium and oxygen radicals to cisplatin-related renal cell injury. J Pharmacol Sci. 2006;100:65–72.CrossRefPubMed
43.
go back to reference Basnakian AG, Apostolov EO, Yin X, Napirei M, Mannherz HG, Shah SV. Cisplatin nephrotoxicity is mediated by deoxyribonuclease I. J Am Soc Nephrol. 2005;16:697–702.CrossRefPubMed Basnakian AG, Apostolov EO, Yin X, Napirei M, Mannherz HG, Shah SV. Cisplatin nephrotoxicity is mediated by deoxyribonuclease I. J Am Soc Nephrol. 2005;16:697–702.CrossRefPubMed
Metadata
Title
Protective effects of Monotheca buxifolia fruit on renal toxicity induced by CCl4 in rats
Authors
Shumaila Jan
Muhammad Rashid Khan
Publication date
01-12-2016
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2016
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-016-1256-0

Other articles of this Issue 1/2016

BMC Complementary Medicine and Therapies 1/2016 Go to the issue