Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2015

Open Access 01-12-2015 | Research article

The aqueous extract of Albizia adianthifolia leaves attenuates 6-hydroxydopamine-induced anxiety, depression and oxidative stress in rat amygdala

Authors: Galba Jean Beppe, Alain Bertrand Dongmo, Harquin Simplice Foyet, Théophile Dimo, Marius Mihasan, Lucian Hritcu

Published in: BMC Complementary Medicine and Therapies | Issue 1/2015

Login to get access

Abstract

Background

While the Albizia adianthifolia (Schumach.) W. Wright (Fabaceae) is a traditional herb largely used in the African traditional medicine as analgesic, purgative, antiinflammatory, antioxidant, antimicrobial, memory-enhancer, anxiolytic and antidepressant drug, there are no scientific data that clarify the anxiolytic and antidepressant-like effects in 6-hydroxydopamine (6-OHDA)-lesioned animal model of Parkinson’s disease. This study was undertaken in order to identify the effects of aqueous extract of A. adianthifolia leaves on 6-hydroxydopamine-induced anxiety, depression and oxidative stress in the rat amygdala.

Methods

The effect of the aqueous extract of A. adianthifolia leaves (150 and 300 mg/kg, orally, daily, for 21 days) on anxiety and depression was assessed using elevated plus-maze and forced swimming tests, as animal models of anxiety and depression. Also, the antioxidant activity in the rat amygdala was assessed using assessed using superoxide dismutase, glutathione peroxidase and catalase specific activities, the total content of the reduced glutathione, protein carbonyl and malondialdehyde levels. Statistical analyses were performed using by one-way analysis of variance (ANOVA). Significant differences were determined by Tukey’s post hoc test. F values for which p < 0.05 were regarded as statistically significant. Pearson’s correlation coefficient and regression analysis were used in order to evaluate the connection between behavioral measures, the antioxidant defence and lipid peroxidation.

Results

6-OHDA-lesioned rats exhibited the following: decrease of the exploratory activity, the percentage of the time spent and the number of entries in the open arm within elevated plus-maze test and decrease of swimming time and increase of immobility time within forced swimming test. Administration of the aqueous extract significantly exhibited anxiolytic- and antidepressant-like effects and also antioxidant potential in the rat amygdala.

Conclusions

Our results suggest that the aqueous extract ameliorates 6-OHDA-induced anxiety and depression by attenuation of the oxidative stress in the rat amygdala. These pieces of evidence accentuate its use in traditional medicine.
Literature
1.
go back to reference Collier TJ, Kanaan NM, Kordower JH. Ageing as a primary risk factor for Parkinson’s disease: evidence from studies of non-human primates. Nat Rev Neurosci. 2011;12:359–66.CrossRefPubMedPubMedCentral Collier TJ, Kanaan NM, Kordower JH. Ageing as a primary risk factor for Parkinson’s disease: evidence from studies of non-human primates. Nat Rev Neurosci. 2011;12:359–66.CrossRefPubMedPubMedCentral
2.
3.
go back to reference Schwarz J, Odin P, Buhmann C, Csoti I, Jost W, Wüllner U, et al. Depression in Parkinson’s disease. J Neurol. 2011;258:336–8.CrossRef Schwarz J, Odin P, Buhmann C, Csoti I, Jost W, Wüllner U, et al. Depression in Parkinson’s disease. J Neurol. 2011;258:336–8.CrossRef
4.
go back to reference Leentjens AFG, Dujardin K, Marsh L, Richard IH, Starkstein SE, Martinez-Martin P. Anxiety rating scales in Parkinson’s disease: A validation study of the Hamilton anxiety rating scale, the Beck anxiety inventory, and the hospital anxiety and depression scale. Movement Disord. 2011;26:407–15.CrossRefPubMed Leentjens AFG, Dujardin K, Marsh L, Richard IH, Starkstein SE, Martinez-Martin P. Anxiety rating scales in Parkinson’s disease: A validation study of the Hamilton anxiety rating scale, the Beck anxiety inventory, and the hospital anxiety and depression scale. Movement Disord. 2011;26:407–15.CrossRefPubMed
5.
go back to reference Chaturvedi RK, Shukla S, Seth K, Chauhan S, Sinha C, Shukla Y, et al. Neuroprotective and neurorescue effect of black tea extract in 6-hydroxydopamine-lesioned rat model of Parkinson’s disease. Neurobiol Dis. 2006;22:421–34.CrossRefPubMed Chaturvedi RK, Shukla S, Seth K, Chauhan S, Sinha C, Shukla Y, et al. Neuroprotective and neurorescue effect of black tea extract in 6-hydroxydopamine-lesioned rat model of Parkinson’s disease. Neurobiol Dis. 2006;22:421–34.CrossRefPubMed
6.
go back to reference Hritcu L, Ciobica A, Artenie V. Effects of right-unilateral 6-hydroxydopamine infusion-induced memory impairment and oxidative stress: relevance for Parkinson’s disease. Cent Eur J Biol. 2008;3:250–7. Hritcu L, Ciobica A, Artenie V. Effects of right-unilateral 6-hydroxydopamine infusion-induced memory impairment and oxidative stress: relevance for Parkinson’s disease. Cent Eur J Biol. 2008;3:250–7.
7.
go back to reference Akirav I, Maroun M. The role of the medial prefrontal cortex-amygdala circuit in stress effects on the extinction of fear. Neural Plasticity. 2007;2007:30873.CrossRefPubMedPubMedCentral Akirav I, Maroun M. The role of the medial prefrontal cortex-amygdala circuit in stress effects on the extinction of fear. Neural Plasticity. 2007;2007:30873.CrossRefPubMedPubMedCentral
8.
go back to reference Chen L, Liu J, Zhang QJ, Feng JJ, Gui ZH, Ali U, et al. Alterations of emotion, cognition and firing activity of the basolateral nucleus of the amygdala after partial bilateral lesions of the nigrostriatal pathway in rats. Brain Res Bull. 2011;85:329–38.CrossRefPubMed Chen L, Liu J, Zhang QJ, Feng JJ, Gui ZH, Ali U, et al. Alterations of emotion, cognition and firing activity of the basolateral nucleus of the amygdala after partial bilateral lesions of the nigrostriatal pathway in rats. Brain Res Bull. 2011;85:329–38.CrossRefPubMed
9.
go back to reference Kitayama T, Onitsuka Y, Song L, Morioka N, Morita K, Dohi T. Assessing an eating disorder induced by 6-OHDA and the possibility of nerve regeneration therapy by transplantation of neural progenitor cells in rats. Nihon Shinkei Seishin Yakurigaku Zasshi. 2007;27:109–16.PubMed Kitayama T, Onitsuka Y, Song L, Morioka N, Morita K, Dohi T. Assessing an eating disorder induced by 6-OHDA and the possibility of nerve regeneration therapy by transplantation of neural progenitor cells in rats. Nihon Shinkei Seishin Yakurigaku Zasshi. 2007;27:109–16.PubMed
10.
go back to reference Hefco V, Yamada K, Hefco A, Hritcu L, Tiron A, Nabeshima T. Role of the mesotelencephalic dopamine system in learning and memory processes in the rat. Eur J Pharmacol. 2003;475:55–60.CrossRefPubMed Hefco V, Yamada K, Hefco A, Hritcu L, Tiron A, Nabeshima T. Role of the mesotelencephalic dopamine system in learning and memory processes in the rat. Eur J Pharmacol. 2003;475:55–60.CrossRefPubMed
11.
go back to reference Patil SP, Jain PD, Sancheti JS, Ghumatkar PJ, Tambe R, Sathaye S. Neuroprotective and neurotrophic effects of apigenin and luteolin in MPTP induced parkinsonism in mice. Neuropharmacology. 2014;86:192–202.CrossRefPubMed Patil SP, Jain PD, Sancheti JS, Ghumatkar PJ, Tambe R, Sathaye S. Neuroprotective and neurotrophic effects of apigenin and luteolin in MPTP induced parkinsonism in mice. Neuropharmacology. 2014;86:192–202.CrossRefPubMed
13.
go back to reference Stafford GI, Pedersen ME, van Staden J, Jäger AK. Review on plants with CNS-effects used in traditional South African medicine against mental diseases. J Ethnopharmacol. 2008;119:513–37.CrossRefPubMed Stafford GI, Pedersen ME, van Staden J, Jäger AK. Review on plants with CNS-effects used in traditional South African medicine against mental diseases. J Ethnopharmacol. 2008;119:513–37.CrossRefPubMed
14.
go back to reference Kim W-K, Jung JW, Ahn NY, Oh HR, Lee BK, Oh JK, et al. Anxiolytic-like effects of extracts from Albizzia julibrissin bark in the elevated plus-maze in rats. Life Sci. 2004;75:2787–95.CrossRefPubMed Kim W-K, Jung JW, Ahn NY, Oh HR, Lee BK, Oh JK, et al. Anxiolytic-like effects of extracts from Albizzia julibrissin bark in the elevated plus-maze in rats. Life Sci. 2004;75:2787–95.CrossRefPubMed
15.
go back to reference Jung Y-H, Ha R-R, Kwon S-H, Hong S-I, Lee K-H, Kim S-Y, et al. Anxiolytic effects of Julibroside C1 isolated from Albizzia julibrissin in mice. Prog Neuropsychopharmacol Biol Psychiatry. 2013;44:184–92.CrossRefPubMed Jung Y-H, Ha R-R, Kwon S-H, Hong S-I, Lee K-H, Kim S-Y, et al. Anxiolytic effects of Julibroside C1 isolated from Albizzia julibrissin in mice. Prog Neuropsychopharmacol Biol Psychiatry. 2013;44:184–92.CrossRefPubMed
16.
go back to reference Beppe G, Dongmo A, Foyet H, Tsabang N, Olteanu Z, Cioanca O, et al. Memory-enhancing activities of the aqueous extract of Albizia adianthifolia leaves in the 6-hydroxydopamine-lesion rodent model of Parkinson’s disease. BMC Complement Altern Med. 2014;14:142.CrossRefPubMedPubMedCentral Beppe G, Dongmo A, Foyet H, Tsabang N, Olteanu Z, Cioanca O, et al. Memory-enhancing activities of the aqueous extract of Albizia adianthifolia leaves in the 6-hydroxydopamine-lesion rodent model of Parkinson’s disease. BMC Complement Altern Med. 2014;14:142.CrossRefPubMedPubMedCentral
17.
go back to reference Sanjay K. Saponins of Albizia lebbek in Alzheimer’s and Parkinson’s disease. IJMPR. 2003;19:42–8. Sanjay K. Saponins of Albizia lebbek in Alzheimer’s and Parkinson’s disease. IJMPR. 2003;19:42–8.
18.
go back to reference Paxinos G, Watson C. The rat brain in stereotaxic coordinates. 6th ed. London: Academic Press; 2007. Paxinos G, Watson C. The rat brain in stereotaxic coordinates. 6th ed. London: Academic Press; 2007.
19.
go back to reference Franklin AE, Engeland CG, Kavaliers M, Ossenkopp K-P. Lipopolysaccharide-induced hypoactivity and behavioral tolerance development are modulated by the light–dark cycle in male and female rats. Psychopharmacology. 2003;170:399–408.CrossRefPubMed Franklin AE, Engeland CG, Kavaliers M, Ossenkopp K-P. Lipopolysaccharide-induced hypoactivity and behavioral tolerance development are modulated by the light–dark cycle in male and female rats. Psychopharmacology. 2003;170:399–408.CrossRefPubMed
20.
go back to reference Herrera-Marschitz M, Arbuthnott G, Ungerstedt U. The rotational model and microdialysis: Significance for dopamine signalling, clinical studies, and beyond. Prog Neurobiol. 2010;90:176–89.CrossRefPubMed Herrera-Marschitz M, Arbuthnott G, Ungerstedt U. The rotational model and microdialysis: Significance for dopamine signalling, clinical studies, and beyond. Prog Neurobiol. 2010;90:176–89.CrossRefPubMed
21.
go back to reference Rajendra Kopalli S, Koppula S, Young Shin K, Noh S-J, Jin Q, Yeon Hwang B, et al. SF-6 attenuates 6-hydroxydopamine-induced neurotoxicity: An in vitro and in vivo investigation in experimental models of Parkinson’s disease. J Ethnopharmacol. 2012;143:686–94.CrossRefPubMed Rajendra Kopalli S, Koppula S, Young Shin K, Noh S-J, Jin Q, Yeon Hwang B, et al. SF-6 attenuates 6-hydroxydopamine-induced neurotoxicity: An in vitro and in vivo investigation in experimental models of Parkinson’s disease. J Ethnopharmacol. 2012;143:686–94.CrossRefPubMed
22.
go back to reference Hayashi Y, Sogabe S, Hattori Y, Tanaka J. Anxiolytic and hypnotic effects in mice of roasted coffee bean volatile compounds. Neurosci Lett. 2012;531:166–9.CrossRefPubMed Hayashi Y, Sogabe S, Hattori Y, Tanaka J. Anxiolytic and hypnotic effects in mice of roasted coffee bean volatile compounds. Neurosci Lett. 2012;531:166–9.CrossRefPubMed
23.
go back to reference Rodgers RJ, Dalvi A. Anxiety, defence and the elevated plus-maze. Neurosci Biobehav Rev. 1997;21:801–10.CrossRefPubMed Rodgers RJ, Dalvi A. Anxiety, defence and the elevated plus-maze. Neurosci Biobehav Rev. 1997;21:801–10.CrossRefPubMed
24.
go back to reference Campos M, Fernandes E, Ferreira J, Santos AS, Calixto J. Antidepressant-like effects of Trichilia catigua (Catuaba) extract: evidence for dopaminergic-mediated mechanisms. Psychopharmacol (Berl). 2005;182:45–53.CrossRef Campos M, Fernandes E, Ferreira J, Santos AS, Calixto J. Antidepressant-like effects of Trichilia catigua (Catuaba) extract: evidence for dopaminergic-mediated mechanisms. Psychopharmacol (Berl). 2005;182:45–53.CrossRef
25.
go back to reference Winterbourn C, Hawkins R, Brian M, Carrell R. The estimation of red cell superoxide dismutase activity. J Lab Clin Med. 1975;85:337.PubMed Winterbourn C, Hawkins R, Brian M, Carrell R. The estimation of red cell superoxide dismutase activity. J Lab Clin Med. 1975;85:337.PubMed
26.
go back to reference Sharma M, Gupta Y. Chronic treatment with trans resveratrol prevents intracerebroventricular streptozotocin induced cognitive impairment and oxidative stress in rats. Life Sci. 2002;7:2489–98.CrossRef Sharma M, Gupta Y. Chronic treatment with trans resveratrol prevents intracerebroventricular streptozotocin induced cognitive impairment and oxidative stress in rats. Life Sci. 2002;7:2489–98.CrossRef
28.
go back to reference Fukuzawa A, Tokumura A. Glutathione peroxidase activity in tissues of vitamin E-deficient mice. J Nutr Sci Vitaminol (Tokyo). 1976;22:405–7.CrossRef Fukuzawa A, Tokumura A. Glutathione peroxidase activity in tissues of vitamin E-deficient mice. J Nutr Sci Vitaminol (Tokyo). 1976;22:405–7.CrossRef
29.
go back to reference Oliver C, Ahn B, Moerman E, Goldstein S, Stadtman E. Age-related changes in oxidized proteins. J Biol Chem. 1987;262:5488–91.PubMed Oliver C, Ahn B, Moerman E, Goldstein S, Stadtman E. Age-related changes in oxidized proteins. J Biol Chem. 1987;262:5488–91.PubMed
30.
go back to reference Luo S, Wehr N. Protein carbonylation: avoiding pitfalls in the 2,4-dinitrophenylhydrazine assay. Redox Rep. 2009;14:159–66.CrossRefPubMed Luo S, Wehr N. Protein carbonylation: avoiding pitfalls in the 2,4-dinitrophenylhydrazine assay. Redox Rep. 2009;14:159–66.CrossRefPubMed
31.
go back to reference Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979;95:351–8.CrossRefPubMed Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979;95:351–8.CrossRefPubMed
32.
go back to reference Smith P, Krohn R, Hermanson G, Mallia A, Gartner F, Provenzano M, et al. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985;150:76–85.CrossRefPubMed Smith P, Krohn R, Hermanson G, Mallia A, Gartner F, Provenzano M, et al. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985;150:76–85.CrossRefPubMed
33.
go back to reference Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, et al. Current Protocol in Molecular Biology. New York: Wiley-Interscience; 2002. Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, et al. Current Protocol in Molecular Biology. New York: Wiley-Interscience; 2002.
34.
go back to reference Bonito Oliva A, Masini D, Fisone G. A mouse model of non-motor symptoms in Parkinson’s disease: focus on pharmacological interventions targeting affective dysfunctions. Front Behav Neurosci. 2014;8:290.CrossRefPubMedPubMedCentral Bonito Oliva A, Masini D, Fisone G. A mouse model of non-motor symptoms in Parkinson’s disease: focus on pharmacological interventions targeting affective dysfunctions. Front Behav Neurosci. 2014;8:290.CrossRefPubMedPubMedCentral
35.
go back to reference Kumar D, Bhat ZA. Apigenin 7-glucoside from Stachys tibetica Vatke and its anxiolytic effect in rats. Phytomedicine. 2014;21:1010–4.CrossRefPubMed Kumar D, Bhat ZA. Apigenin 7-glucoside from Stachys tibetica Vatke and its anxiolytic effect in rats. Phytomedicine. 2014;21:1010–4.CrossRefPubMed
36.
go back to reference Kish SJ, Tong J, Hornykiewicz O, Rajput A, Chang L-J, Guttman M, et al. Preferential loss of serotonin markers in caudate versus putamen in Parkinson’s disease. Brain. 2008;131:120–31.PubMed Kish SJ, Tong J, Hornykiewicz O, Rajput A, Chang L-J, Guttman M, et al. Preferential loss of serotonin markers in caudate versus putamen in Parkinson’s disease. Brain. 2008;131:120–31.PubMed
37.
go back to reference Mansouri MT, Soltani M, Naghizadeh B, Farbood Y, Mashak A, Sarkaki A. A possible mechanism for the anxiolytic-like effect of gallic acid in the rat elevated plus maze. Pharmacol Biochem Behav. 2014;117:40–6.CrossRefPubMed Mansouri MT, Soltani M, Naghizadeh B, Farbood Y, Mashak A, Sarkaki A. A possible mechanism for the anxiolytic-like effect of gallic acid in the rat elevated plus maze. Pharmacol Biochem Behav. 2014;117:40–6.CrossRefPubMed
38.
go back to reference Adebesin IF, Akindele AJ, Adeyemi OO. Evaluation of neuropharmacological effects of aqueous leaf extract of Albizia glaberrima (Leguminosae) in mice. J Ethnopharmacol. 2015;160:101–8.CrossRefPubMed Adebesin IF, Akindele AJ, Adeyemi OO. Evaluation of neuropharmacological effects of aqueous leaf extract of Albizia glaberrima (Leguminosae) in mice. J Ethnopharmacol. 2015;160:101–8.CrossRefPubMed
39.
go back to reference Emamghoreishi M, Khasaki M, Aazam MF. Coriandrum sativum: evaluation of its anxiolytic effect in the elevated plus-maze. J Ethnopharmacol. 2005;96:365–70.CrossRefPubMed Emamghoreishi M, Khasaki M, Aazam MF. Coriandrum sativum: evaluation of its anxiolytic effect in the elevated plus-maze. J Ethnopharmacol. 2005;96:365–70.CrossRefPubMed
40.
go back to reference Savić MM, Kukić JM, Grayer RJ, Milinković MM, Marin PD, Divljaković J, et al. Behavioural characterization of four endemic Stachys taxa. Phytother Res. 2010;24:1309–16.CrossRefPubMed Savić MM, Kukić JM, Grayer RJ, Milinković MM, Marin PD, Divljaković J, et al. Behavioural characterization of four endemic Stachys taxa. Phytother Res. 2010;24:1309–16.CrossRefPubMed
41.
go back to reference Cioanca O, Hritcu L, Mihasan M, Hancianu M. Cognitive-enhancing and antioxidant activities of inhaled coriander volatile oil in amyloid β(1–42) rat model of Alzheimer’s disease. Physiol Behav. 2013;120:193–202.CrossRefPubMed Cioanca O, Hritcu L, Mihasan M, Hancianu M. Cognitive-enhancing and antioxidant activities of inhaled coriander volatile oil in amyloid β(1–42) rat model of Alzheimer’s disease. Physiol Behav. 2013;120:193–202.CrossRefPubMed
42.
go back to reference Tolardo R, Zetterman L, Bitencourtt DR, Mora TC, de Oliveira FL, Biavatti MW, et al. Evaluation of behavioral and pharmacological effects of Hedyosmum brasiliense and isolated sesquiterpene lactones in rodents. J Ethnopharmacol. 2010;128:63–70.CrossRefPubMed Tolardo R, Zetterman L, Bitencourtt DR, Mora TC, de Oliveira FL, Biavatti MW, et al. Evaluation of behavioral and pharmacological effects of Hedyosmum brasiliense and isolated sesquiterpene lactones in rodents. J Ethnopharmacol. 2010;128:63–70.CrossRefPubMed
43.
go back to reference Drui G, Carnicella S, Carcenac C, Favier M, Bertrand A, Boulet S, et al. Loss of dopaminergic nigrostriatal neurons accounts for the motivational and affective deficits in Parkinson’s disease. Mol Psychiatry. 2014;19:358–67.CrossRefPubMed Drui G, Carnicella S, Carcenac C, Favier M, Bertrand A, Boulet S, et al. Loss of dopaminergic nigrostriatal neurons accounts for the motivational and affective deficits in Parkinson’s disease. Mol Psychiatry. 2014;19:358–67.CrossRefPubMed
44.
go back to reference Jesse CR, Bortolatto CF, Savegnago L, Rocha JBT, Nogueira CW. Involvement of L-arginine-nitric oxide-cyclic guanosine monophosphate pathway in the antidepressant-like effect of tramadol in the rat forced swimming test. Prog Neuropsychopharmacol Biol Psychiatry. 2008;32:1838–43.CrossRefPubMed Jesse CR, Bortolatto CF, Savegnago L, Rocha JBT, Nogueira CW. Involvement of L-arginine-nitric oxide-cyclic guanosine monophosphate pathway in the antidepressant-like effect of tramadol in the rat forced swimming test. Prog Neuropsychopharmacol Biol Psychiatry. 2008;32:1838–43.CrossRefPubMed
45.
go back to reference Caspani O, Reitz M-C, Ceci A, Kremer A, Treede R-D. Tramadol reduces anxiety-related and depression-associated behaviors presumably induced by pain in the chronic constriction injury model of neuropathic pain in rats. Pharmacol Biochem Behav. 2014;124:290–6.CrossRefPubMed Caspani O, Reitz M-C, Ceci A, Kremer A, Treede R-D. Tramadol reduces anxiety-related and depression-associated behaviors presumably induced by pain in the chronic constriction injury model of neuropathic pain in rats. Pharmacol Biochem Behav. 2014;124:290–6.CrossRefPubMed
46.
go back to reference Baluchnejadmojarad T, Roghani M, Mafakheri M. Neuroprotective effect of silymarin in 6-hydroxydopamine hemi-parkinsonian rat: Involvement of estrogen receptors and oxidative stress. Neurosci Lett. 2010;480:206–10.CrossRefPubMed Baluchnejadmojarad T, Roghani M, Mafakheri M. Neuroprotective effect of silymarin in 6-hydroxydopamine hemi-parkinsonian rat: Involvement of estrogen receptors and oxidative stress. Neurosci Lett. 2010;480:206–10.CrossRefPubMed
47.
go back to reference Zare K, Eidi A, Roghani M, Rohani A. The neuroprotective potential of sinapic acid in the 6-hydroxydopamine-induced hemi-parkinsonian rat. Metab Brain Dis. 2015;30:205-13. Zare K, Eidi A, Roghani M, Rohani A. The neuroprotective potential of sinapic acid in the 6-hydroxydopamine-induced hemi-parkinsonian rat. Metab Brain Dis. 2015;30:205-13.
48.
go back to reference Foyet HS, Hritcu L, Ciobica A, Stefan M, Kamtchouing P, Cojocaru D. Methanolic extract of Hibiscus asper leaves improves spatial memory deficits in the 6-hydroxydopamine-lesion rodent model of Parkinson’s disease. J Ethnopharmacol. 2011;133:773–9.CrossRefPubMed Foyet HS, Hritcu L, Ciobica A, Stefan M, Kamtchouing P, Cojocaru D. Methanolic extract of Hibiscus asper leaves improves spatial memory deficits in the 6-hydroxydopamine-lesion rodent model of Parkinson’s disease. J Ethnopharmacol. 2011;133:773–9.CrossRefPubMed
49.
go back to reference Zafir A, Ara A, Banu N. In vivo antioxidant status: A putative target of antidepressant action. Prog Neuropsychopharmacol Biol Psychiatry. 2009;33:220–8.CrossRefPubMed Zafir A, Ara A, Banu N. In vivo antioxidant status: A putative target of antidepressant action. Prog Neuropsychopharmacol Biol Psychiatry. 2009;33:220–8.CrossRefPubMed
50.
go back to reference Avallone R, Zanoli P, Puia G, Kleinschnitz M, Schreier P, Baraldi M. Pharmacological profile of apigenin, a flavonoid isolated from Matricaria chamomilla. Biochem Pharmacol. 2000;59:1387–94.CrossRefPubMed Avallone R, Zanoli P, Puia G, Kleinschnitz M, Schreier P, Baraldi M. Pharmacological profile of apigenin, a flavonoid isolated from Matricaria chamomilla. Biochem Pharmacol. 2000;59:1387–94.CrossRefPubMed
Metadata
Title
The aqueous extract of Albizia adianthifolia leaves attenuates 6-hydroxydopamine-induced anxiety, depression and oxidative stress in rat amygdala
Authors
Galba Jean Beppe
Alain Bertrand Dongmo
Harquin Simplice Foyet
Théophile Dimo
Marius Mihasan
Lucian Hritcu
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2015
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-015-0912-0

Other articles of this Issue 1/2015

BMC Complementary Medicine and Therapies 1/2015 Go to the issue