Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2015

Open Access 01-12-2015 | Research article

An evaluation of the anti-angiogenic effect of the Korean medicinal formula “Sa-mi-yeon-geon-tang” in vitro and in ovo

Authors: Jin-Mu Yi, Ok-Sun Bang, No Soo Kim

Published in: BMC Complementary Medicine and Therapies | Issue 1/2015

Login to get access

Abstract

Background

Angiogenesis is a general hallmark of cancer; therefore, the inhibition of tumor-derived angiogenesis is considered to be an attractive target in the development of anti-cancer agents. Sa-mi-yeon-geon-tang (SMYGT), a decoction that consists of four natural medicinal products, has been traditionally prescribed in Oriental medicine to treat diverse diseases, including cancer. In the present study, we investigated the anti-angiogenic potential of SMYGT in vitro and in ovo.

Methods

The anti-angiogenic potential of SMYGT was evaluated using conventional in vitro assays with human umbilical vein endothelial cells (HUVECs) and chorioallantoic membrane (CAM) assays with fertilized eggs. The expression changes of pro-angiogenic proteins and intracellular signaling in HUVECs following SMYGT treatment were determined by quantitative polymerase chain reaction, gelatinase zymography, and western blot analysis.

Results

SMYGT efficiently inhibited three-dimensional capillary-like tube formation by HUVECs on extracellular matrix supports, as well as new vessel formation on CAMs. SMYGT inhibited cell adhesion to the extracellular matrix and HUVEC cell invasion through Matrigel without affecting cell proliferation, viability, and motility. These anti-angiogenic effects of SMYGT in HUVECs were related to decreases in the phosphorylation of focal adhesion kinase and the expression of matrix metallopeptidase-2 activity.

Conclusions

SMYGT exhibited an anti-angiogenic potential in both in vitro and in ovo experiments, which may partially contribute to its anti-tumor effect in clinical conditions. We suggest that SMYGT may be a promising source material for the development of anti-cancer chemotherapeutics that target angiogenesis.
Appendix
Available only for authorised users
Literature
1.
go back to reference Hazama S, Nakamura Y, Tanaka H, Hirakawa K, Tahara K, Shimizu R, et al. A phase II study of five peptides combination with oxaliplatin-based chemotherapy as a first-line therapy for advanced colorectal cancer (FXV study). J Transl Med. 2014;12:108–17.CrossRefPubMedPubMedCentral Hazama S, Nakamura Y, Tanaka H, Hirakawa K, Tahara K, Shimizu R, et al. A phase II study of five peptides combination with oxaliplatin-based chemotherapy as a first-line therapy for advanced colorectal cancer (FXV study). J Transl Med. 2014;12:108–17.CrossRefPubMedPubMedCentral
2.
go back to reference Theodossiou TA, Galanou MC, Paleos CM. Novel amiodarone-doxorubicin cocktail liposomes enhance doxorubicin retention and cytotoxicity in DU145 human prostate carcinoma cells. J Med Chem. 2008;51:6067–74.CrossRefPubMed Theodossiou TA, Galanou MC, Paleos CM. Novel amiodarone-doxorubicin cocktail liposomes enhance doxorubicin retention and cytotoxicity in DU145 human prostate carcinoma cells. J Med Chem. 2008;51:6067–74.CrossRefPubMed
3.
go back to reference Dorff TB, Groshen S, Tsao-Wei DD, Xiong S, Gross ME, Vogelzang N, et al. A Phase II trial of a combination herbal supplement for men with biochemically recurrent prostate cancer. Prostate Cancer Prostatic Dis. 2014;17:359–65.CrossRefPubMedPubMedCentral Dorff TB, Groshen S, Tsao-Wei DD, Xiong S, Gross ME, Vogelzang N, et al. A Phase II trial of a combination herbal supplement for men with biochemically recurrent prostate cancer. Prostate Cancer Prostatic Dis. 2014;17:359–65.CrossRefPubMedPubMedCentral
4.
go back to reference Wei W, Lv PP, Chen XM, Yue ZG, Fu Q, Liu SY, et al. Codelivery of mTERT siRNA and paclitaxel by chitosan-based nanoparticles promoted synergistic tumor suppression. Biomaterials. 2013;34:3912–23.CrossRefPubMed Wei W, Lv PP, Chen XM, Yue ZG, Fu Q, Liu SY, et al. Codelivery of mTERT siRNA and paclitaxel by chitosan-based nanoparticles promoted synergistic tumor suppression. Biomaterials. 2013;34:3912–23.CrossRefPubMed
5.
go back to reference Lam W, Bussom S, Guan F, Jiang Z, Zhang W, Gullen EA, et al. The four-herb Chinese medicine PHY906 reduces chemotherapy-induced gastrointestinal toxicity. The four-herb Chinese medicine PHY906 reduces chemotherapy-induced gastrointestinal toxicity. Sci Transl Med. 2010;2:45–59.CrossRef Lam W, Bussom S, Guan F, Jiang Z, Zhang W, Gullen EA, et al. The four-herb Chinese medicine PHY906 reduces chemotherapy-induced gastrointestinal toxicity. The four-herb Chinese medicine PHY906 reduces chemotherapy-induced gastrointestinal toxicity. Sci Transl Med. 2010;2:45–59.CrossRef
6.
go back to reference Liu SH, Cheng YC. Old formula, new Rx: the journey of PHY906 as cancer adjuvant therapy. J Ethnopharmacol. 2012;140:614–23.CrossRefPubMed Liu SH, Cheng YC. Old formula, new Rx: the journey of PHY906 as cancer adjuvant therapy. J Ethnopharmacol. 2012;140:614–23.CrossRefPubMed
7.
go back to reference Yue PY, Mak NK, Cheng YK, Leung KW, Ng TB, Fan DT, et al. Pharmacogenomics and the Yin/Yang actions of ginseng: anti-tumor, angiomodulating and steroid-like activities of ginsenosides. Chin Med. 2007;2:6.CrossRefPubMedPubMedCentral Yue PY, Mak NK, Cheng YK, Leung KW, Ng TB, Fan DT, et al. Pharmacogenomics and the Yin/Yang actions of ginseng: anti-tumor, angiomodulating and steroid-like activities of ginsenosides. Chin Med. 2007;2:6.CrossRefPubMedPubMedCentral
8.
go back to reference Wang XL, Ma F, Wu XZ. Anticancer effects of 5-fluorouracil combined with warming and relieving cold phlegm formula on human breast cancer. Chin J Integr Med. 2012;18:599–604.CrossRefPubMed Wang XL, Ma F, Wu XZ. Anticancer effects of 5-fluorouracil combined with warming and relieving cold phlegm formula on human breast cancer. Chin J Integr Med. 2012;18:599–604.CrossRefPubMed
9.
go back to reference Bae MY, Kang IC, Kim SH. Study on antitumor activity of Samiyeongeontanggamibang (SYTG). J Korean Oriental Oncol. 1999;5:33–46. Bae MY, Kang IC, Kim SH. Study on antitumor activity of Samiyeongeontanggamibang (SYTG). J Korean Oriental Oncol. 1999;5:33–46.
10.
go back to reference Kim SE, Ryu BH, Park JW. Effects of Samiunkyungtang on inflammation and fecal enzymes in ulcerative colitis animal model. J Korean Oriental Med. 2008;29:50–62. Kim SE, Ryu BH, Park JW. Effects of Samiunkyungtang on inflammation and fecal enzymes in ulcerative colitis animal model. J Korean Oriental Med. 2008;29:50–62.
11.
go back to reference Yi JM, Park JS, Oh SM, Lee J, Kim J, Oh DS, et al. Ethanol extract of Gleditsia sinensis thorn suppresses angiogenesis in vitro and in vivo. BMC Complement Altern Med. 2012;12:243–52.CrossRefPubMedPubMedCentral Yi JM, Park JS, Oh SM, Lee J, Kim J, Oh DS, et al. Ethanol extract of Gleditsia sinensis thorn suppresses angiogenesis in vitro and in vivo. BMC Complement Altern Med. 2012;12:243–52.CrossRefPubMedPubMedCentral
12.
13.
14.
go back to reference Tosetti F, Ferrari N, De Flora S, Albini A. Angioprevention’: angiogenesis is a common and key target for cancer chemopreventive agents. FASEB J. 2002;16:2–14.CrossRefPubMed Tosetti F, Ferrari N, De Flora S, Albini A. Angioprevention’: angiogenesis is a common and key target for cancer chemopreventive agents. FASEB J. 2002;16:2–14.CrossRefPubMed
15.
go back to reference Kumaran G, Clamp AR, Jayson GC. Angiogenesis as a therapeutic target in cancer. Clin Med. 2008;8:455–8.CrossRef Kumaran G, Clamp AR, Jayson GC. Angiogenesis as a therapeutic target in cancer. Clin Med. 2008;8:455–8.CrossRef
16.
go back to reference Mehta RR, Yamada T, Taylor BN, Christov K, King ML, Majumdar D, et al. A cell penetrating peptide derived from azurin inhibits angiogenesis and tumor growth by inhibiting phosphorylation of VEGFR-2, FAK and Akt. Angiogenesis. 2011;14:355–69.CrossRefPubMed Mehta RR, Yamada T, Taylor BN, Christov K, King ML, Majumdar D, et al. A cell penetrating peptide derived from azurin inhibits angiogenesis and tumor growth by inhibiting phosphorylation of VEGFR-2, FAK and Akt. Angiogenesis. 2011;14:355–69.CrossRefPubMed
17.
go back to reference Alessandro R, Masiero L, Lapidos K, Spoonster J, Kohn EC. Endothelial cell spreading on type IV collagen and spreading-induced FAK phosphorylation is regulated by Ca2+ influx. Biochem Biophys Res Commun. 1998;248:635–40.CrossRefPubMed Alessandro R, Masiero L, Lapidos K, Spoonster J, Kohn EC. Endothelial cell spreading on type IV collagen and spreading-induced FAK phosphorylation is regulated by Ca2+ influx. Biochem Biophys Res Commun. 1998;248:635–40.CrossRefPubMed
18.
go back to reference Golubovskaya VM, Cance WG. Focal adhesion kinase and p53 signaling in cancer cells. Int Rev Cytol. 2007;263:103–53.CrossRefPubMed Golubovskaya VM, Cance WG. Focal adhesion kinase and p53 signaling in cancer cells. Int Rev Cytol. 2007;263:103–53.CrossRefPubMed
19.
go back to reference Ben-Yosef Y, Miller A, Shapiro S, Lahat N. Hypoxia of endothelial cells leads to MMP-2-dependent survival and death. Am J Physiol Cell Physiol. 2005;289:C1321–31.CrossRefPubMed Ben-Yosef Y, Miller A, Shapiro S, Lahat N. Hypoxia of endothelial cells leads to MMP-2-dependent survival and death. Am J Physiol Cell Physiol. 2005;289:C1321–31.CrossRefPubMed
20.
21.
go back to reference Miyake JA, Benadiba M, Colquhoun A. Gamma-linolenic acid inhibits both tumour cell cycle progression and angiogenesis in the orthotopic C6 glioma model through changes in VEGF, Flt1, ERK1/2, MMP2, cyclin D1, pRb, p53 and p27 protein expression. Lipids Health Dis. 2009;8:8–17.CrossRefPubMedPubMedCentral Miyake JA, Benadiba M, Colquhoun A. Gamma-linolenic acid inhibits both tumour cell cycle progression and angiogenesis in the orthotopic C6 glioma model through changes in VEGF, Flt1, ERK1/2, MMP2, cyclin D1, pRb, p53 and p27 protein expression. Lipids Health Dis. 2009;8:8–17.CrossRefPubMedPubMedCentral
22.
go back to reference Lu C, Lee JJ, Komaki R, Herbst RS, Feng L, Evans WK, et al. Chemoradiotherapy with or without AE-941 in stage III non-small cell lung cancer: a randomized phase III trial. J Natl Cancer Inst. 2010;102:859–65.CrossRefPubMedPubMedCentral Lu C, Lee JJ, Komaki R, Herbst RS, Feng L, Evans WK, et al. Chemoradiotherapy with or without AE-941 in stage III non-small cell lung cancer: a randomized phase III trial. J Natl Cancer Inst. 2010;102:859–65.CrossRefPubMedPubMedCentral
23.
go back to reference Peng Z, Liu M, Fang Z, Chen L, Wu J, Zhang Q. In vitro antiproliferative effect of a water-soluble Laminaria japonica polysaccharide on human melanoma cell line A375. Food Chemical Toxicol. 2013;58:56–60.CrossRef Peng Z, Liu M, Fang Z, Chen L, Wu J, Zhang Q. In vitro antiproliferative effect of a water-soluble Laminaria japonica polysaccharide on human melanoma cell line A375. Food Chemical Toxicol. 2013;58:56–60.CrossRef
24.
go back to reference Zhu W, Ooi VE, Chan PK, Ang Jr PO. Isolation and characterization of a sulfated polysaccharide from the brown alga Sargassum patens and determination of its anti-herpes activity. Biochem Cell Biol. 2003;81(1):25–33.CrossRefPubMed Zhu W, Ooi VE, Chan PK, Ang Jr PO. Isolation and characterization of a sulfated polysaccharide from the brown alga Sargassum patens and determination of its anti-herpes activity. Biochem Cell Biol. 2003;81(1):25–33.CrossRefPubMed
25.
go back to reference Chen X, Nie W, Yu G, Li Y, Hu Y, Lu J, et al. Antitumor and immunomodulatory activity of polysaccharides from Sargassum fusiforme. Food Chem Toxicol. 2012;50:695–700.CrossRefPubMed Chen X, Nie W, Yu G, Li Y, Hu Y, Lu J, et al. Antitumor and immunomodulatory activity of polysaccharides from Sargassum fusiforme. Food Chem Toxicol. 2012;50:695–700.CrossRefPubMed
26.
go back to reference Huang X, Zhou H, Zhang H. The effect of Sargassum fusiforme polysaccharide extracts on vibriosis resistance and immune activity of the shrimp, Fenneropenaeus chinensis. Fish Shellfish Immunol. 2006;20:750–7.CrossRefPubMed Huang X, Zhou H, Zhang H. The effect of Sargassum fusiforme polysaccharide extracts on vibriosis resistance and immune activity of the shrimp, Fenneropenaeus chinensis. Fish Shellfish Immunol. 2006;20:750–7.CrossRefPubMed
27.
go back to reference Mao WJ, Li BF, Gu QQ, Fang YC, Xing HT. Preliminary studies on the chemical characterization and antihyperlipidemic activity of polysaccharide from the brown alga Sargassum fusiforme. Hydrobiologia. 2004;512:263–6.CrossRef Mao WJ, Li BF, Gu QQ, Fang YC, Xing HT. Preliminary studies on the chemical characterization and antihyperlipidemic activity of polysaccharide from the brown alga Sargassum fusiforme. Hydrobiologia. 2004;512:263–6.CrossRef
28.
go back to reference Yang X, Zhou SL, Ma AC, Xu HT, Guan HS, Liu HB. Chemical profiles and identification of key compound caffeine in marine-derived traditional Chinese medicine Ostreae concha. Mar Drugs. 2012;10:1180–91.CrossRefPubMedPubMedCentral Yang X, Zhou SL, Ma AC, Xu HT, Guan HS, Liu HB. Chemical profiles and identification of key compound caffeine in marine-derived traditional Chinese medicine Ostreae concha. Mar Drugs. 2012;10:1180–91.CrossRefPubMedPubMedCentral
29.
go back to reference Zhou J, Hu N, Wu YL, Pan YJ, Sun CR. Preliminary studies on the chemical characterization and antioxidant properties of acidic polysaccharides from Sargassum fusiforme. J Zhejiang Univ Sci B. 2008;9:721–7.CrossRefPubMedPubMedCentral Zhou J, Hu N, Wu YL, Pan YJ, Sun CR. Preliminary studies on the chemical characterization and antioxidant properties of acidic polysaccharides from Sargassum fusiforme. J Zhejiang Univ Sci B. 2008;9:721–7.CrossRefPubMedPubMedCentral
30.
go back to reference Hwang YJ, Lee EJ, Kim HR, Hwang KA. In vitro antioxidant and anticancer effects of solvent fractions from Prunella vulgaris var. lilacina. BMC Complement Altern Med. 2013;13:310–8.CrossRefPubMedPubMedCentral Hwang YJ, Lee EJ, Kim HR, Hwang KA. In vitro antioxidant and anticancer effects of solvent fractions from Prunella vulgaris var. lilacina. BMC Complement Altern Med. 2013;13:310–8.CrossRefPubMedPubMedCentral
31.
Metadata
Title
An evaluation of the anti-angiogenic effect of the Korean medicinal formula “Sa-mi-yeon-geon-tang” in vitro and in ovo
Authors
Jin-Mu Yi
Ok-Sun Bang
No Soo Kim
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2015
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-015-0573-z

Other articles of this Issue 1/2015

BMC Complementary Medicine and Therapies 1/2015 Go to the issue