Skip to main content
Top
Published in: BMC Oral Health 1/2020

01-12-2020 | Lactation | Research article

Does the rate of orthodontic tooth movement change during pregnancy and lactation? A systematic review of the evidence from animal studies

Authors: Moaza Omar, Eleftherios G. Kaklamanos

Published in: BMC Oral Health | Issue 1/2020

Login to get access

Abstract

Background

The changes in bone homeostasis observed during pregnancy and lactation could result in alterations in the rate of orthodontic tooth movement, but research in human subjects presents significant ethical and practical limitations. Our aim was to compare the amount of orthodontic tooth movement between pregnant/lactating or not animals.

Methods

We searched without restrictions 8 databases and performed hand searching until July 2019 (PubMed, Central, Cochrane Database of Systematic Reviews, SCOPUS, Web of Science, Arab World Research Source, ClinicalTrials.​gov, ProQuest Dissertations and Theses Global). We searched for studies comparing quantitatively the amount of orthodontic tooth movement between pregnant/lactating or not animals. Following retrieval and selection of studies, the collection of related data was performed and the risk of bias was assessed using the SYRCLE’s Risk of Bias Tool. Exploratory synthesis was carried out using the random effects model.

Results

Four studies were finally identified raising no specific concerns regarding bias. One study showed that lactation increased the rate of tooth movement by 50 % [p < 0.05]. Although an overall increase was noted in the pregnancy group as well, it did not reach statistical significance [3 studies, Weighted Mean Difference: 0.10; 95% Confidence Interval: − 0.04 - 0.24; p = 0.165].

Conclusions

The metabolic changes occurring during pregnancy and lactation may have an impact on the rate of tooth movement in animals. Although these animal experimental results should be approached cautiously, it could be safe practice to consider the impact of these physiological changes in the clinical setting.

Registration

PROSPERO (CRD42018118003).
Appendix
Available only for authorised users
Literature
1.
go back to reference Cornwall BC. Treatment of dental disease. In: Skouteris CA, editor. Dental Management of the Pregnant Patient. New York: John Wiley & Sons; 2018. p. 75–85.CrossRef Cornwall BC. Treatment of dental disease. In: Skouteris CA, editor. Dental Management of the Pregnant Patient. New York: John Wiley & Sons; 2018. p. 75–85.CrossRef
2.
go back to reference Skouteris CA. Physiologic changes and their Sequelae in pregnancy. In: Skouteris CA, editor. Dental Management of the Pregnant Patient. New York: John Wiley & Sons; 2018. p. 5–24.CrossRef Skouteris CA. Physiologic changes and their Sequelae in pregnancy. In: Skouteris CA, editor. Dental Management of the Pregnant Patient. New York: John Wiley & Sons; 2018. p. 5–24.CrossRef
3.
go back to reference Tojo Y, Kurabayashi T, Honda A, Yamamoto Y, Yahata T, Takakuwa K, Tanaka K. Bone structural and metabolic changes at the end of pregnancy and lactation in rats. Am J Obstet Gynecol. 1998;178:180–5.PubMedCrossRef Tojo Y, Kurabayashi T, Honda A, Yamamoto Y, Yahata T, Takakuwa K, Tanaka K. Bone structural and metabolic changes at the end of pregnancy and lactation in rats. Am J Obstet Gynecol. 1998;178:180–5.PubMedCrossRef
4.
go back to reference Windahl SH, Andersson G, Gustafsson JA. Elucidation of estrogen receptor function in bone with the use of mouse models. Trends Endocrinol Metab. 2002;13:195–200.PubMedCrossRef Windahl SH, Andersson G, Gustafsson JA. Elucidation of estrogen receptor function in bone with the use of mouse models. Trends Endocrinol Metab. 2002;13:195–200.PubMedCrossRef
5.
go back to reference Eriksen EF, Colvard DS, Berg NJ, Graham ML, Mann KG, Spelsberg TC, Riggs BL. Evidence of estrogen receptors in normal human osteoblast-like cells. Science. 1988;241:84–6.PubMedCrossRef Eriksen EF, Colvard DS, Berg NJ, Graham ML, Mann KG, Spelsberg TC, Riggs BL. Evidence of estrogen receptors in normal human osteoblast-like cells. Science. 1988;241:84–6.PubMedCrossRef
6.
go back to reference Nakamura T, Imai Y, Matsumoto T, Sato S, Takeuchi K, Igarashi K, Harada Y, Azuma Y, Krust A, Yamamoto Y, Nishina H, Takeda S, Takayanagi H, Metzger D, Kanno J, Takaoka K, Martin TJ, Chambon P, Kato S. Estrogen prevents bone loss via estrogen receptor alpha and induction of Fas ligand in osteoclasts. Cell. 2007;130:811–23.PubMedCrossRef Nakamura T, Imai Y, Matsumoto T, Sato S, Takeuchi K, Igarashi K, Harada Y, Azuma Y, Krust A, Yamamoto Y, Nishina H, Takeda S, Takayanagi H, Metzger D, Kanno J, Takaoka K, Martin TJ, Chambon P, Kato S. Estrogen prevents bone loss via estrogen receptor alpha and induction of Fas ligand in osteoclasts. Cell. 2007;130:811–23.PubMedCrossRef
7.
go back to reference Srivastava S, Toraldo G, Weitzmann MN, Cenci S, Ross FP, Pacifici R. Estrogen decreases osteoclast formation by down-regulating receptor activator of NF-kappa B ligand (RANKL)-induced JNK activation. J Biol Chem. 2001;276:8836–40.PubMedCrossRef Srivastava S, Toraldo G, Weitzmann MN, Cenci S, Ross FP, Pacifici R. Estrogen decreases osteoclast formation by down-regulating receptor activator of NF-kappa B ligand (RANKL)-induced JNK activation. J Biol Chem. 2001;276:8836–40.PubMedCrossRef
8.
go back to reference Xu Y, Chu N, Qiu X, Gober HJ, Li D, Wang L. The interconnected role of chemokines and estrogen in bone metabolism. Biosci Trends. 2017;10:433–44.PubMedCrossRef Xu Y, Chu N, Qiu X, Gober HJ, Li D, Wang L. The interconnected role of chemokines and estrogen in bone metabolism. Biosci Trends. 2017;10:433–44.PubMedCrossRef
10.
go back to reference Drake MT, Clarke BL, Lewiecki EM. The pathophysiology and treatment of osteoporosis. Clin Ther. 2015;37:1837–50.PubMedCrossRef Drake MT, Clarke BL, Lewiecki EM. The pathophysiology and treatment of osteoporosis. Clin Ther. 2015;37:1837–50.PubMedCrossRef
11.
go back to reference Syed F, Khosla S. Mechanisms of sex steroid effects on bone. Biochem Biophys Res Commun. 2005;328:688–96.PubMedCrossRef Syed F, Khosla S. Mechanisms of sex steroid effects on bone. Biochem Biophys Res Commun. 2005;328:688–96.PubMedCrossRef
12.
go back to reference Kearns AE, Khosla S, Kostenuik PJ. Receptor activator of nuclear factor kappaB ligand and osteoprotegerin regulation of bone remodeling in health and disease. Endocr Rev. 2008;29:155–92.PubMedCrossRef Kearns AE, Khosla S, Kostenuik PJ. Receptor activator of nuclear factor kappaB ligand and osteoprotegerin regulation of bone remodeling in health and disease. Endocr Rev. 2008;29:155–92.PubMedCrossRef
13.
go back to reference Turner RT, Colvard DS, Spelsberg TC. Estrogen inhibition of periosteal bone formation in rat long bones: down-regulation of gene expression for bone matrix proteins. Endocrinology. 1990;127:1346–51.PubMedCrossRef Turner RT, Colvard DS, Spelsberg TC. Estrogen inhibition of periosteal bone formation in rat long bones: down-regulation of gene expression for bone matrix proteins. Endocrinology. 1990;127:1346–51.PubMedCrossRef
14.
15.
go back to reference Kondoh S, Inoue K, Igarashi K, Sugizaki H, Shirode-Fukuda Y, Inoue E, Yu T, Takeuchi JK, Kanno J, Bonewald LF, Imai Y. Estrogen receptor α in osteocytes regulates trabecular bone formation in female mice. Bone. 2014;60:68–77.PubMedCrossRef Kondoh S, Inoue K, Igarashi K, Sugizaki H, Shirode-Fukuda Y, Inoue E, Yu T, Takeuchi JK, Kanno J, Bonewald LF, Imai Y. Estrogen receptor α in osteocytes regulates trabecular bone formation in female mice. Bone. 2014;60:68–77.PubMedCrossRef
16.
go back to reference Määttä JA, Büki KG, Gu G, Alanne MH, Vääräniemi J, Liljenbäck H, Poutanen M, Härkönen P, Väänänen K. Inactivation of estrogen receptor α in bone-forming cells induces bone loss in female mice. FASEB J. 2013;27:478–88.PubMedCrossRef Määttä JA, Büki KG, Gu G, Alanne MH, Vääräniemi J, Liljenbäck H, Poutanen M, Härkönen P, Väänänen K. Inactivation of estrogen receptor α in bone-forming cells induces bone loss in female mice. FASEB J. 2013;27:478–88.PubMedCrossRef
17.
go back to reference Graham JD, Clarke CL. Physiological action of progesterone in target tissues. Endocr Rev. 1997;18:502–19.PubMed Graham JD, Clarke CL. Physiological action of progesterone in target tissues. Endocr Rev. 1997;18:502–19.PubMed
18.
go back to reference Wei LL, Leach MW, Miner RS, Demers LM. Evidence for progesterone receptors in human osteoblast-like cells. Biochem Biophys Res Commun. 1993;195:525–32.PubMedCrossRef Wei LL, Leach MW, Miner RS, Demers LM. Evidence for progesterone receptors in human osteoblast-like cells. Biochem Biophys Res Commun. 1993;195:525–32.PubMedCrossRef
20.
go back to reference Singh AK, Chattopadhyay R, Chakravarty B, Chaudhury K. Altered circulating levels of matrix metalloproteinases 2 and 9 and their inhibitors and effect of progesterone supplementation in women with endometriosis undergoing in vitro fertilization. Fertil Steril. 2013;100:127–34.e1.PubMedCrossRef Singh AK, Chattopadhyay R, Chakravarty B, Chaudhury K. Altered circulating levels of matrix metalloproteinases 2 and 9 and their inhibitors and effect of progesterone supplementation in women with endometriosis undergoing in vitro fertilization. Fertil Steril. 2013;100:127–34.e1.PubMedCrossRef
21.
go back to reference Allen TK, Feng L, Grotegut CA, Murtha AP. Progesterone receptor membrane component 1 as the mediator of the inhibitory effect of progestins on cytokine-induced matrix metalloproteinase 9 activity in vitro. Reprod Sci. 2014;21:260–8.PubMedPubMedCentralCrossRef Allen TK, Feng L, Grotegut CA, Murtha AP. Progesterone receptor membrane component 1 as the mediator of the inhibitory effect of progestins on cytokine-induced matrix metalloproteinase 9 activity in vitro. Reprod Sci. 2014;21:260–8.PubMedPubMedCentralCrossRef
22.
go back to reference Neville MC, McFadden TB, Forsyth I. Hormonal regulation of mammary differentiation and milk secretion. J Mammary Gland Biol Neoplasia. 2002;7:49–66.PubMedCrossRef Neville MC, McFadden TB, Forsyth I. Hormonal regulation of mammary differentiation and milk secretion. J Mammary Gland Biol Neoplasia. 2002;7:49–66.PubMedCrossRef
23.
go back to reference Ben-Jonathan N, LaPensee CR, LaPensee EW. What can we learn from rodents about prolactin in humans? Endocr Rev. 2008;29:1–41.PubMedCrossRef Ben-Jonathan N, LaPensee CR, LaPensee EW. What can we learn from rodents about prolactin in humans? Endocr Rev. 2008;29:1–41.PubMedCrossRef
24.
go back to reference Goffin V, Binart N, Touraine P, Kelly PA. Prolactin: the new biology of an old hormone. Annu Rev Physiol. 2002;64:7–67.CrossRef Goffin V, Binart N, Touraine P, Kelly PA. Prolactin: the new biology of an old hormone. Annu Rev Physiol. 2002;64:7–67.CrossRef
25.
go back to reference Bernard V, Young J, Binart N. Prolactin - a pleiotropic factor in health and disease. Nat Rev Endocrinol. 2019;15:356–65.PubMedCrossRef Bernard V, Young J, Binart N. Prolactin - a pleiotropic factor in health and disease. Nat Rev Endocrinol. 2019;15:356–65.PubMedCrossRef
26.
go back to reference VanHouten JN, Wysolmerski JJ. Low estrogen and high parathyroid hormone-related peptide levels contribute to accelerated bone resorption and bone loss in lactating mice. Endocrinology. 2003;144:5521–9.PubMedCrossRef VanHouten JN, Wysolmerski JJ. Low estrogen and high parathyroid hormone-related peptide levels contribute to accelerated bone resorption and bone loss in lactating mice. Endocrinology. 2003;144:5521–9.PubMedCrossRef
27.
go back to reference Prior JC, Vigna YM, Wark JD, Eyre DR, Lentle BC, Li DK, Ebeling PR, Atley L. Premenopausal ovariectomy-related bone loss: a randomized, double-blind, one-year trial of conjugated estrogen or medroxyprogesterone acetate. J Bone Miner Res. 1997;12:1851–63.PubMedCrossRef Prior JC, Vigna YM, Wark JD, Eyre DR, Lentle BC, Li DK, Ebeling PR, Atley L. Premenopausal ovariectomy-related bone loss: a randomized, double-blind, one-year trial of conjugated estrogen or medroxyprogesterone acetate. J Bone Miner Res. 1997;12:1851–63.PubMedCrossRef
28.
go back to reference Kasper D, Fauci AS, Hauser SL, Longo DL, Jameson JL, Loscalzo J. Harrison’s principles of internal medicine. 20th ed. New York: McGraw Hill Education Medical; 2018. Kasper D, Fauci AS, Hauser SL, Longo DL, Jameson JL, Loscalzo J. Harrison’s principles of internal medicine. 20th ed. New York: McGraw Hill Education Medical; 2018.
29.
go back to reference Clément-Lacroix P, Ormandy C, Lepescheux L, Ammann P, Damotte D, Goffin V, Bouchard B, Amling M, Gaillard-Kelly M, Binart N, Baron R, Kelly PA. Osteoblasts are a new target for prolactin: analysis of bone formation in prolactin receptor knockout mice. Endocrinology. 1999;140:96–105.PubMedCrossRef Clément-Lacroix P, Ormandy C, Lepescheux L, Ammann P, Damotte D, Goffin V, Bouchard B, Amling M, Gaillard-Kelly M, Binart N, Baron R, Kelly PA. Osteoblasts are a new target for prolactin: analysis of bone formation in prolactin receptor knockout mice. Endocrinology. 1999;140:96–105.PubMedCrossRef
30.
go back to reference Abraham G, Halbreich U, Friedman RH, Josiassen RC. Bone mineral density and prolactin associations in patients with chronic schizophrenia. Schizophr Res. 2003;59:17–8.PubMedCrossRef Abraham G, Halbreich U, Friedman RH, Josiassen RC. Bone mineral density and prolactin associations in patients with chronic schizophrenia. Schizophr Res. 2003;59:17–8.PubMedCrossRef
31.
go back to reference Jiang N, Guo W, Chen M, Zheng Y, Zhou J, Kim SG, Embree MC, Songhee Song K, Marao HF, Mao JJ. Periodontal ligament and alveolar bone in health and adaptation: tooth movement. Front Oral Biol. 2016;18:1–8.PubMed Jiang N, Guo W, Chen M, Zheng Y, Zhou J, Kim SG, Embree MC, Songhee Song K, Marao HF, Mao JJ. Periodontal ligament and alveolar bone in health and adaptation: tooth movement. Front Oral Biol. 2016;18:1–8.PubMed
32.
go back to reference Shamseer L, Moher D, Clarke M, Ghersi D, Liberati A, Petticrew M, Shekelle P. Stewart LA; PRISMA-P Group. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. BMJ. 2015;350:g7647.PubMedCrossRef Shamseer L, Moher D, Clarke M, Ghersi D, Liberati A, Petticrew M, Shekelle P. Stewart LA; PRISMA-P Group. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. BMJ. 2015;350:g7647.PubMedCrossRef
33.
go back to reference Beller EM, Glasziou PP, Altman DG, Hopewell S, Bastian H, Chalmers I, Gøtzsche PC, Lasserson T, Tovey D. PRISMA for Abstracts Group PRISMA for Abstracts: reporting systematic reviews in journal and conference abstracts. PLoS Med. 2013;10:e1001419.PubMedPubMedCentralCrossRef Beller EM, Glasziou PP, Altman DG, Hopewell S, Bastian H, Chalmers I, Gøtzsche PC, Lasserson T, Tovey D. PRISMA for Abstracts Group PRISMA for Abstracts: reporting systematic reviews in journal and conference abstracts. PLoS Med. 2013;10:e1001419.PubMedPubMedCentralCrossRef
34.
go back to reference Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA. Cochrane handbook for systematic reviews of interventions. 2nd ed. UK: The Cochrane Collaboration and John Wiley & Sons Ltd; 2019.CrossRef Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA. Cochrane handbook for systematic reviews of interventions. 2nd ed. UK: The Cochrane Collaboration and John Wiley & Sons Ltd; 2019.CrossRef
35.
go back to reference Moher D, Liberati A, Tetzlaff J, Altman DG. PRISMA Group Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ. 2009;339:b2535.PubMedPubMedCentralCrossRef Moher D, Liberati A, Tetzlaff J, Altman DG. PRISMA Group Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ. 2009;339:b2535.PubMedPubMedCentralCrossRef
36.
go back to reference Mead R, Gilmour SG, Mead A. Statistical principles for the Design of Experiments. Cambridge: Cambridge University Press; 2012.CrossRef Mead R, Gilmour SG, Mead A. Statistical principles for the Design of Experiments. Cambridge: Cambridge University Press; 2012.CrossRef
37.
go back to reference Shoji K, Ohtsuka-Isoya M, Horiuchi H, Shinoda H. Bone mineral density of alveolar bone in rats during pregnancy and lactation. J Periodontol. 2000;71:1073–8.PubMedCrossRef Shoji K, Ohtsuka-Isoya M, Horiuchi H, Shinoda H. Bone mineral density of alveolar bone in rats during pregnancy and lactation. J Periodontol. 2000;71:1073–8.PubMedCrossRef
38.
go back to reference Hooijmans CR, Rovers MM, de Vries RB, Leenaars M, Ritskes-Hoitinga M, Langendam MW. SYRCLE’s risk of bias tool for animal studies. BMC Med Res Methodol. 2014;14:43.PubMedPubMedCentralCrossRef Hooijmans CR, Rovers MM, de Vries RB, Leenaars M, Ritskes-Hoitinga M, Langendam MW. SYRCLE’s risk of bias tool for animal studies. BMC Med Res Methodol. 2014;14:43.PubMedPubMedCentralCrossRef
39.
go back to reference Borenstein M, Hedges LV, Higgins JPT, Rothstein HR. Introduction to meta-analysis. Chichester: Wiley; 2009.CrossRef Borenstein M, Hedges LV, Higgins JPT, Rothstein HR. Introduction to meta-analysis. Chichester: Wiley; 2009.CrossRef
40.
41.
go back to reference Guyatt GH, Oxman AD, Schünemann HJ, Tugwell P, Knottnerus A. GRADE guidelines: a new series of articles in the journal of clinical epidemiology. J Clin Epidemiol. 2011;64:380–2.PubMedCrossRef Guyatt GH, Oxman AD, Schünemann HJ, Tugwell P, Knottnerus A. GRADE guidelines: a new series of articles in the journal of clinical epidemiology. J Clin Epidemiol. 2011;64:380–2.PubMedCrossRef
42.
go back to reference Goldie RS, King GJ. Root resorption and tooth movement in orthodontically treated, calcium-deficient, and lactating rats. Am J Orthod. 1984;85:424–30.PubMedCrossRef Goldie RS, King GJ. Root resorption and tooth movement in orthodontically treated, calcium-deficient, and lactating rats. Am J Orthod. 1984;85:424–30.PubMedCrossRef
43.
go back to reference Ghajar K, Olyaee P, Mirzakouchaki B, Ghahremani L, Garjani A, Dadgar E, Marjani S. The effect of pregnancy on orthodontic tooth movement in rats. Med Oral Patol Oral Cir Bucal. 2013;18:e351–5.PubMedCrossRef Ghajar K, Olyaee P, Mirzakouchaki B, Ghahremani L, Garjani A, Dadgar E, Marjani S. The effect of pregnancy on orthodontic tooth movement in rats. Med Oral Patol Oral Cir Bucal. 2013;18:e351–5.PubMedCrossRef
44.
go back to reference Hellsing E, Hammarström L. The effects of pregnancy and fluoride on orthodontic tooth movements in rats. Eur J Orthod. 1991;13:223–30.PubMedCrossRef Hellsing E, Hammarström L. The effects of pregnancy and fluoride on orthodontic tooth movements in rats. Eur J Orthod. 1991;13:223–30.PubMedCrossRef
45.
go back to reference Kim YS, Lee KS. Effects of pregnancy on alveolar bone turnover during experimental tooth movement in rats. Kor J Orthod. 2000;3:413–21. Kim YS, Lee KS. Effects of pregnancy on alveolar bone turnover during experimental tooth movement in rats. Kor J Orthod. 2000;3:413–21.
46.
go back to reference Macari S, Sharma LA, Wyatt A, da Silva JM, Dias GJ, Silva TA, Szawka RE, Grattan DR. Lactation induces increases in the RANK/RANKL/OPG system in maxillary bone. Bone. 2018;110:160–9.PubMedCrossRef Macari S, Sharma LA, Wyatt A, da Silva JM, Dias GJ, Silva TA, Szawka RE, Grattan DR. Lactation induces increases in the RANK/RANKL/OPG system in maxillary bone. Bone. 2018;110:160–9.PubMedCrossRef
47.
go back to reference He Z, Chen Y, Luo S. Effects of pregnancy on orthodontic tooth movements: effects of progesterone on orthodontic tooth movements in pregnant rats. Hua Xi Kou Qiang Yi Xue Za Zhi. 1998;16:124–6.PubMed He Z, Chen Y, Luo S. Effects of pregnancy on orthodontic tooth movements: effects of progesterone on orthodontic tooth movements in pregnant rats. Hua Xi Kou Qiang Yi Xue Za Zhi. 1998;16:124–6.PubMed
48.
go back to reference Suckow M, Hankenson FC, Wilson R, Foley P. The laboratory rat. 3rd ed. London: Academic Press; 2020. Suckow M, Hankenson FC, Wilson R, Foley P. The laboratory rat. 3rd ed. London: Academic Press; 2020.
49.
go back to reference Sanz-Salvador L, García-Pérez MÁ, Tarín JJ, Cano A. Bone metabolic changes during pregnancy: a period of vulnerability to osteoporosis and fracture. Eur J Endocrinol. 2015;172:R53–5.PubMedCrossRef Sanz-Salvador L, García-Pérez MÁ, Tarín JJ, Cano A. Bone metabolic changes during pregnancy: a period of vulnerability to osteoporosis and fracture. Eur J Endocrinol. 2015;172:R53–5.PubMedCrossRef
51.
go back to reference Jin Z, Ding Y, Li X. Effects of estrogen on experimental tooth movement in osteoporosis rats. Zhonghua Kou Qiang Yi Xue Za Zhi. 2000;35:55–7.PubMed Jin Z, Ding Y, Li X. Effects of estrogen on experimental tooth movement in osteoporosis rats. Zhonghua Kou Qiang Yi Xue Za Zhi. 2000;35:55–7.PubMed
52.
go back to reference Poosti M, Basafa M, Eslami N. Progesterone effects on experimental tooth movement in rabbits. J Calif Dent Assoc. 2009;37:483–6.PubMed Poosti M, Basafa M, Eslami N. Progesterone effects on experimental tooth movement in rabbits. J Calif Dent Assoc. 2009;37:483–6.PubMed
53.
go back to reference Gulson B, Taylor A, Eisman J. Bone remodeling during pregnancy and post-partum assessed by metal lead levels and isotopic concentrations. Bone. 2016;89:40–51.PubMedCrossRef Gulson B, Taylor A, Eisman J. Bone remodeling during pregnancy and post-partum assessed by metal lead levels and isotopic concentrations. Bone. 2016;89:40–51.PubMedCrossRef
54.
go back to reference Salles JP. Bone metabolism during pregnancy. Ann Endocrinol (Paris). 2016;77:163–8.CrossRef Salles JP. Bone metabolism during pregnancy. Ann Endocrinol (Paris). 2016;77:163–8.CrossRef
55.
go back to reference Lewko WM, Anderson A. Estrogen receptors and growth response in cultured human periodontal ligament cells. Life Sci. 1986;39:1201–6.PubMedCrossRef Lewko WM, Anderson A. Estrogen receptors and growth response in cultured human periodontal ligament cells. Life Sci. 1986;39:1201–6.PubMedCrossRef
56.
go back to reference Messer HH, Goebel NK, Wilcox L. A comparison of bone loss from different skeletal sites during acute calcium deficiency in mice. Arch Oral Biol. 1981;26:1001–4.PubMedCrossRef Messer HH, Goebel NK, Wilcox L. A comparison of bone loss from different skeletal sites during acute calcium deficiency in mice. Arch Oral Biol. 1981;26:1001–4.PubMedCrossRef
57.
go back to reference Onal M, Galli C, Fu Q, Xiong J, Weinstein RS, Manolagas SC, O'Brien CA. The RANKL distal control region is required for the increase in RANKL expression, but not the bone loss, associated with hyperparathyroidism or lactation in adult mice. Mol Endocrinol. 2012;26:341–8.PubMedCrossRef Onal M, Galli C, Fu Q, Xiong J, Weinstein RS, Manolagas SC, O'Brien CA. The RANKL distal control region is required for the increase in RANKL expression, but not the bone loss, associated with hyperparathyroidism or lactation in adult mice. Mol Endocrinol. 2012;26:341–8.PubMedCrossRef
58.
go back to reference Suntornsaratoon P, Wongdee K, Goswami S, Krishnamra N, Charoenphandhu N. Bone modeling in bromocriptine-treated pregnant and lactating rats: possible osteoregulatory role of prolactin in lactation. Am J Physiol Endocrinol Metab. 2010;299:E426.PubMedCrossRef Suntornsaratoon P, Wongdee K, Goswami S, Krishnamra N, Charoenphandhu N. Bone modeling in bromocriptine-treated pregnant and lactating rats: possible osteoregulatory role of prolactin in lactation. Am J Physiol Endocrinol Metab. 2010;299:E426.PubMedCrossRef
59.
go back to reference Petrikowski CG, Overton TR. Quantitative radiographic changes in the mandible, femur and vertebra in lactating rats fed a low-calcium diet. Dentomaxillofac Radiol. 1996;25:136–45.PubMedCrossRef Petrikowski CG, Overton TR. Quantitative radiographic changes in the mandible, femur and vertebra in lactating rats fed a low-calcium diet. Dentomaxillofac Radiol. 1996;25:136–45.PubMedCrossRef
60.
go back to reference Ardeshirpour L, Dann P, Adams DJ, Nelson T, VanHouten J, Horowitz MC, Wysolmerski JJ. Weaning triggers a decrease in receptor activator of nuclear factor-kappaB ligand expression, widespread osteoclast apoptosis, and rapid recovery of bone mass after lactation in mice. Endocrinology. 2007;148:3875–86.PubMedCrossRef Ardeshirpour L, Dann P, Adams DJ, Nelson T, VanHouten J, Horowitz MC, Wysolmerski JJ. Weaning triggers a decrease in receptor activator of nuclear factor-kappaB ligand expression, widespread osteoclast apoptosis, and rapid recovery of bone mass after lactation in mice. Endocrinology. 2007;148:3875–86.PubMedCrossRef
61.
go back to reference Seriwatanachai D, Thongchote K, Charoenphandhu N, Pandaranandaka J, Tudpor K, Teerapornpuntakit J, Suthiphongchai T, Krishnamra N. Prolactin directly enhances bone turnover by raising osteoblast-expressed receptor activator of nuclear factor kappaB ligand/osteoprotegerin ratio. Bone. 2008;42:535–6.PubMedCrossRef Seriwatanachai D, Thongchote K, Charoenphandhu N, Pandaranandaka J, Tudpor K, Teerapornpuntakit J, Suthiphongchai T, Krishnamra N. Prolactin directly enhances bone turnover by raising osteoblast-expressed receptor activator of nuclear factor kappaB ligand/osteoprotegerin ratio. Bone. 2008;42:535–6.PubMedCrossRef
62.
go back to reference Valentine JC, Pigott TD, Rothstein HR. How many studies do you need? A primer on statistical power for meta-analysis. J Educ Behav Stat. 2010;35:215–47.CrossRef Valentine JC, Pigott TD, Rothstein HR. How many studies do you need? A primer on statistical power for meta-analysis. J Educ Behav Stat. 2010;35:215–47.CrossRef
63.
go back to reference Ryan, R. and Cochrane Consumers and Communication Review Group. 2016. Cochrane Consumers and communication review group: metaanalysis. http://cccrgcochraneorg Accessed January 31, 2020. Ryan, R. and Cochrane Consumers and Communication Review Group. 2016. Cochrane Consumers and communication review group: metaanalysis. http://​cccrgcochraneorg​ Accessed January 31, 2020.
64.
go back to reference Almeida M, Laurent MR, Dubois V, Claessens F, O'Brien CA, Bouillon R, Vanderschueren D, Manolagas SC. Estrogens and androgens in skeletal physiology and pathophysiology. Physiol Rev. 2017;97:135–87.CrossRefPubMed Almeida M, Laurent MR, Dubois V, Claessens F, O'Brien CA, Bouillon R, Vanderschueren D, Manolagas SC. Estrogens and androgens in skeletal physiology and pathophysiology. Physiol Rev. 2017;97:135–87.CrossRefPubMed
65.
go back to reference Ren Y, Maltha JC, Kuijpers-Jagtman AM. The rat as a model for orthodontic tooth movement--a critical review and a proposed solution. Eur J Orthod. 2004;26:483–90.PubMedCrossRef Ren Y, Maltha JC, Kuijpers-Jagtman AM. The rat as a model for orthodontic tooth movement--a critical review and a proposed solution. Eur J Orthod. 2004;26:483–90.PubMedCrossRef
66.
go back to reference Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. J Pharmacol Pharmacother. 2010;1:94–9.PubMedPubMedCentralCrossRef Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. J Pharmacol Pharmacother. 2010;1:94–9.PubMedPubMedCentralCrossRef
Metadata
Title
Does the rate of orthodontic tooth movement change during pregnancy and lactation? A systematic review of the evidence from animal studies
Authors
Moaza Omar
Eleftherios G. Kaklamanos
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Oral Health / Issue 1/2020
Electronic ISSN: 1472-6831
DOI
https://doi.org/10.1186/s12903-020-01223-2

Other articles of this Issue 1/2020

BMC Oral Health 1/2020 Go to the issue