Skip to main content
Top
Published in: BMC Oral Health 1/2020

Open Access 01-12-2020 | Research article

In situ efficacy of an experimental toothpaste on enamel rehardening and prevention of demineralisation: a randomised, controlled trial

Authors: Jonathan E. Creeth, Gary R. Burnett, Audrey Souverain, Paola Gomez-Pereira, Domenick T. Zero, Frank Lippert, Anderson T. Hara

Published in: BMC Oral Health | Issue 1/2020

Login to get access

Abstract

Background

A novel sodium fluoride toothpaste containing lactate ion and polyvinylmethylether-maleic anhydride has been developed to promote enamel remineralisation and resistance to demineralisation. In this in situ study, we compared this toothpaste (‘Test’) with a stannous fluoride-zinc citrate (SnF2-Zn) toothpaste (‘Reference’) (both 1100–1150 ppm fluoride) and a fluoride-free toothpaste (‘Placebo’) using an enamel dental erosion-rehardening model.

Methods

In each phase of this randomised, investigator-blind, crossover study, participants wore palatal appliances holding bovine enamel specimens with erosive lesions. They brushed their natural teeth with either the Test, Reference or Placebo toothpastes, then swished the resultant slurry. Specimens were removed at 2 h and 4 h post-brushing and exposed to an in vitro acid challenge. Surface microhardness was measured at each stage; enamel fluoride uptake was measured after in situ rehardening. Surface microhardness recovery, relative erosion resistance, enamel fluoride uptake and acid resistance ratio were calculated at both timepoints.

Results

Sixty two randomised participants completed the study. Test toothpaste treatment yielded significantly greater surface microhardness recovery, relative erosion resistance and enamel fluoride uptake values than either Reference or Placebo toothpastes after 2 and 4 h. The acid resistance ratio value for Test toothpaste was significantly greater than either of the other treatments after 2 h; after 4 h, it was significantly greater versus Placebo only. No treatment-related adverse events were reported.

Conclusions

In this in situ model, the novel-formulation sodium fluoride toothpaste enhanced enamel rehardening and overall protection against demineralisation compared with a fluoride-free toothpaste and a marketed SnF2-Zn toothpaste.

Trial registration

ClinicalTrials.​gov; NCT03296072; registered September 28, 2017.
Literature
1.
go back to reference Bartlett D. Intrinsic causes of erosion. Monogr Oral Sci. 2006;20:119–39.CrossRef Bartlett D. Intrinsic causes of erosion. Monogr Oral Sci. 2006;20:119–39.CrossRef
2.
go back to reference Lussi A, Schlueter N, Rakhmatullina E, Ganss C. Dental erosion--an overview with emphasis on chemical and histopathological aspects. Caries Res. 2011;45(Suppl 1):2–12.CrossRef Lussi A, Schlueter N, Rakhmatullina E, Ganss C. Dental erosion--an overview with emphasis on chemical and histopathological aspects. Caries Res. 2011;45(Suppl 1):2–12.CrossRef
3.
go back to reference Amaechi BT, Higham SM. In vitro remineralisation of eroded enamel lesions by saliva. J Dent. 2001;29:371–6.CrossRef Amaechi BT, Higham SM. In vitro remineralisation of eroded enamel lesions by saliva. J Dent. 2001;29:371–6.CrossRef
4.
go back to reference Attin T, Knofel S, Buchalla W, Tutuncu R. In situ evaluation of different remineralization periods to decrease brushing abrasion of demineralized enamel. Caries Res. 2001;35:216–22.CrossRef Attin T, Knofel S, Buchalla W, Tutuncu R. In situ evaluation of different remineralization periods to decrease brushing abrasion of demineralized enamel. Caries Res. 2001;35:216–22.CrossRef
5.
go back to reference Wiegand A, Muller I, Schnapp JD, Werner C, Attin T. Impact of fluoride, milk and water rinsing on surface rehardening of acid softened enamel. An in situ study. Am J Dent. 2008;21:113–8.PubMed Wiegand A, Muller I, Schnapp JD, Werner C, Attin T. Impact of fluoride, milk and water rinsing on surface rehardening of acid softened enamel. An in situ study. Am J Dent. 2008;21:113–8.PubMed
6.
go back to reference Barlow AP, Sufi F, Mason SC. Evaluation of different fluoridated dentifrice formulations using an in situ erosion remineralization model. J Clin Dent. 2009;20:192–8.PubMed Barlow AP, Sufi F, Mason SC. Evaluation of different fluoridated dentifrice formulations using an in situ erosion remineralization model. J Clin Dent. 2009;20:192–8.PubMed
7.
go back to reference Creeth JE, Kelly SA, Martinez-Mier EA, Bosma ML, Butler A, Lynch RJ, et al. Dose-response effect of fluoride dentifrice on remineralisation and further demineralisation of erosive lesions: a randomised in situ clinical study. J Dent. 2015;43:823–31.CrossRef Creeth JE, Kelly SA, Martinez-Mier EA, Bosma ML, Butler A, Lynch RJ, et al. Dose-response effect of fluoride dentifrice on remineralisation and further demineralisation of erosive lesions: a randomised in situ clinical study. J Dent. 2015;43:823–31.CrossRef
8.
go back to reference Zero DT, Hara AT, Kelly SA, González-Cabezas C, Eckert GJ, Barlow AP, et al. Evaluation of a desensitizing test dentifrice using an in situ erosion remineralization model. J Clin Dent. 2006;17:112–6.PubMed Zero DT, Hara AT, Kelly SA, González-Cabezas C, Eckert GJ, Barlow AP, et al. Evaluation of a desensitizing test dentifrice using an in situ erosion remineralization model. J Clin Dent. 2006;17:112–6.PubMed
9.
go back to reference Nehme M, Parkinson CR, Zero DT, Hara AT. Randomised study of the effects of fluoride and time on in situ remineralisation of acid-softened enamel. Clin Oral Investig. 2019;23:4455–63.CrossRef Nehme M, Parkinson CR, Zero DT, Hara AT. Randomised study of the effects of fluoride and time on in situ remineralisation of acid-softened enamel. Clin Oral Investig. 2019;23:4455–63.CrossRef
10.
go back to reference Lippert F, Lynch RJ. Comparison of Knoop and Vickers surface microhardness and transverse microradiography for the study of early caries lesion formation in human and bovine enamel. Arch Oral Biol. 2014;59:704–10.CrossRef Lippert F, Lynch RJ. Comparison of Knoop and Vickers surface microhardness and transverse microradiography for the study of early caries lesion formation in human and bovine enamel. Arch Oral Biol. 2014;59:704–10.CrossRef
11.
go back to reference West NX, He T, Macdonald EL, Seong J, Hellin N, Barker ML, et al. Erosion protection benefits of stabilized SnF2 dentifrice versus an arginine-sodium monofluorophosphate dentifrice: results from in vitro and in situ clinical studies. Clin Oral Investig. 2016;21:533–40.CrossRef West NX, He T, Macdonald EL, Seong J, Hellin N, Barker ML, et al. Erosion protection benefits of stabilized SnF2 dentifrice versus an arginine-sodium monofluorophosphate dentifrice: results from in vitro and in situ clinical studies. Clin Oral Investig. 2016;21:533–40.CrossRef
12.
go back to reference West NX, Seong J, Hellin N, Eynon H, Barker ML, He T. A clinical study to measure anti-erosion properties of a stabilized stannous fluoride dentifrice relative to a sodium fluoride/triclosan dentifrice. Int J Dent Hyg. 2017;15:113–9.CrossRef West NX, Seong J, Hellin N, Eynon H, Barker ML, He T. A clinical study to measure anti-erosion properties of a stabilized stannous fluoride dentifrice relative to a sodium fluoride/triclosan dentifrice. Int J Dent Hyg. 2017;15:113–9.CrossRef
13.
go back to reference Hooper S, Seong J, Macdonald E, Claydon N, Hellin N, Barker ML, et al. A randomised in situ trial, measuring the anti-erosive properties of a stannous-containing sodium fluoride dentifrice compared with a sodium fluoride/potassium nitrate dentifrice. Int Dent J. 2014;64(Suppl 1):35–42.CrossRef Hooper S, Seong J, Macdonald E, Claydon N, Hellin N, Barker ML, et al. A randomised in situ trial, measuring the anti-erosive properties of a stannous-containing sodium fluoride dentifrice compared with a sodium fluoride/potassium nitrate dentifrice. Int Dent J. 2014;64(Suppl 1):35–42.CrossRef
14.
go back to reference Ganss C, von Hinckeldey J, Tolle A, Schulze K, Klimek J, Schlueter N. Efficacy of the stannous ion and a biopolymer in toothpastes on enamel erosion/abrasion. J Dent. 2012;40:1036–43.CrossRef Ganss C, von Hinckeldey J, Tolle A, Schulze K, Klimek J, Schlueter N. Efficacy of the stannous ion and a biopolymer in toothpastes on enamel erosion/abrasion. J Dent. 2012;40:1036–43.CrossRef
15.
go back to reference Fowler CE, Gracia L, Edwards MI, Wilson R, Brown A, Rees GD. Inhibition of enamel erosion and promotion of lesion rehardening by fluoride: a white light interferometry and microindentation study. J Clin Dent. 2009;20:178–85.PubMed Fowler CE, Gracia L, Edwards MI, Wilson R, Brown A, Rees GD. Inhibition of enamel erosion and promotion of lesion rehardening by fluoride: a white light interferometry and microindentation study. J Clin Dent. 2009;20:178–85.PubMed
16.
go back to reference Creeth JE, Karwal R, Hara AT, Zero DT. A randomized in situ clinical study of fluoride dentifrices on enamel remineralization and resistance to demineralization: effects of zinc. Caries Res. 2018;52(1–2):129–38.CrossRef Creeth JE, Karwal R, Hara AT, Zero DT. A randomized in situ clinical study of fluoride dentifrices on enamel remineralization and resistance to demineralization: effects of zinc. Caries Res. 2018;52(1–2):129–38.CrossRef
17.
go back to reference Creeth JE, Parkinson CR, Burnett GR, Sanyal S, Lippert F, Zero DT, et al. Effects of a sodium fluoride- and phytate-containing dentifrice on remineralisation of enamel erosive lesions-an in situ randomised clinical study. Clin Oral Investig. 2018;22:2543–52.CrossRef Creeth JE, Parkinson CR, Burnett GR, Sanyal S, Lippert F, Zero DT, et al. Effects of a sodium fluoride- and phytate-containing dentifrice on remineralisation of enamel erosive lesions-an in situ randomised clinical study. Clin Oral Investig. 2018;22:2543–52.CrossRef
18.
go back to reference Layer TM. Formulation considerations for developing toothpastes suitable for those at risk from erosive tooth wear. J Clin Dent. 2009;20(6 Spec Iss):199–202.PubMed Layer TM. Formulation considerations for developing toothpastes suitable for those at risk from erosive tooth wear. J Clin Dent. 2009;20(6 Spec Iss):199–202.PubMed
20.
go back to reference Hara AT, Kelly SA, González-Cabezas C, Eckert GJ, Barlow AP, Mason SC, et al. Influence of fluoride availability of dentifrices on eroded enamel remineralization in situ. Caries Res. 2009;43:57–63.CrossRef Hara AT, Kelly SA, González-Cabezas C, Eckert GJ, Barlow AP, Mason SC, et al. Influence of fluoride availability of dentifrices on eroded enamel remineralization in situ. Caries Res. 2009;43:57–63.CrossRef
21.
go back to reference Zero DT, Fu J, Anne KM, Cassata S, McCormack SM, Gwinner LM. An improved intra-oral enamel demineralization test model for the study of dental caries. J Dent Res. 1992;71(Spec No):871–878. Zero DT, Fu J, Anne KM, Cassata S, McCormack SM, Gwinner LM. An improved intra-oral enamel demineralization test model for the study of dental caries. J Dent Res. 1992;71(Spec No):871–878.
22.
go back to reference Lussi A, Jäggi T, Schärer S. The influence of different factors on in vitro enamel erosion. Caries Res. 1993;27:387–93.CrossRef Lussi A, Jäggi T, Schärer S. The influence of different factors on in vitro enamel erosion. Caries Res. 1993;27:387–93.CrossRef
23.
go back to reference Gelhard TB, ten Cate JM, Arends J. Rehardening of artificial enamel lesions in vivo. Caries Res. 1979;13:80–3.CrossRef Gelhard TB, ten Cate JM, Arends J. Rehardening of artificial enamel lesions in vivo. Caries Res. 1979;13:80–3.CrossRef
24.
go back to reference Corpron RE, Clark JW, Tsai A, More FG, Merrill DF, Kowalski CJ, et al. Intraoral effects of a fluoride-releasing device on acid-softened enamel. J Am Dent Assoc. 1986;113:383–8.CrossRef Corpron RE, Clark JW, Tsai A, More FG, Merrill DF, Kowalski CJ, et al. Intraoral effects of a fluoride-releasing device on acid-softened enamel. J Am Dent Assoc. 1986;113:383–8.CrossRef
25.
go back to reference Sakkab NY, Cilley WA, Haberman JP. Fluoride in deciduous teeth from an anti-caries clinical study. J Dent Res. 1984;63:1201–5.CrossRef Sakkab NY, Cilley WA, Haberman JP. Fluoride in deciduous teeth from an anti-caries clinical study. J Dent Res. 1984;63:1201–5.CrossRef
26.
go back to reference Lippert F. Mechanistic observations on the role of the stannous ion in caries lesion de- and remineralization. Caries Res. 2016;50:378–82.CrossRef Lippert F. Mechanistic observations on the role of the stannous ion in caries lesion de- and remineralization. Caries Res. 2016;50:378–82.CrossRef
27.
go back to reference Lippert F, Newby EE, Lynch RJ, Chauhan VK, Schemehorn BR. Laboratory assessment of the anticaries potential of a new dentifrice. J Clin Dent. 2009;20:45–9.PubMed Lippert F, Newby EE, Lynch RJ, Chauhan VK, Schemehorn BR. Laboratory assessment of the anticaries potential of a new dentifrice. J Clin Dent. 2009;20:45–9.PubMed
28.
go back to reference Avila DM, Zanatta RF, Scaramucci T, Aoki IV, Torres CR, Borges AB. Influence of bioadhesive polymers on the protective effect of fluoride against erosion. J Dent. 2017;56:45–52.CrossRef Avila DM, Zanatta RF, Scaramucci T, Aoki IV, Torres CR, Borges AB. Influence of bioadhesive polymers on the protective effect of fluoride against erosion. J Dent. 2017;56:45–52.CrossRef
29.
go back to reference Friberger P. The effect of pH upon fluoride uptake in intact enamel. Scand J Dent Res. 1975;83:339–44.PubMed Friberger P. The effect of pH upon fluoride uptake in intact enamel. Scand J Dent Res. 1975;83:339–44.PubMed
30.
go back to reference Brighenti FL, Delbem AC, Buzalaf MA, Oliveira FA, Ribeiro DB, Sassaki KT. In vitro evaluation of acidified toothpastes with low fluoride content. Caries Res. 2006;40:239–44.CrossRef Brighenti FL, Delbem AC, Buzalaf MA, Oliveira FA, Ribeiro DB, Sassaki KT. In vitro evaluation of acidified toothpastes with low fluoride content. Caries Res. 2006;40:239–44.CrossRef
Metadata
Title
In situ efficacy of an experimental toothpaste on enamel rehardening and prevention of demineralisation: a randomised, controlled trial
Authors
Jonathan E. Creeth
Gary R. Burnett
Audrey Souverain
Paola Gomez-Pereira
Domenick T. Zero
Frank Lippert
Anderson T. Hara
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Oral Health / Issue 1/2020
Electronic ISSN: 1472-6831
DOI
https://doi.org/10.1186/s12903-020-01081-y

Other articles of this Issue 1/2020

BMC Oral Health 1/2020 Go to the issue