Skip to main content
Top
Published in: BMC Oral Health 1/2018

Open Access 01-12-2018 | Research article

A novel in vivo method to evaluate trueness of digital impressions

Authors: Emad A. Albdour, Eman Shaheen, Myrthel Vranckx, Francesco Guido Mangano, Constantinus Politis, Reinhilde Jacobs

Published in: BMC Oral Health | Issue 1/2018

Login to get access

Abstract

Background

Intraoral scanners are devices for capturing digital impressions in dentistry. Until now, several in vitro studies have assessed the trueness of digital impressions, but in vivo studies are missing. Therefore, the purpose of this study was to introduce a new method to assess trueness of intraoral scanners and digital impressions in an in vivo clinical set-up.

Methods

A digital impression using an intraoral scanner (Trios® 3 Cart wired, 3Shape, Copenhagen, Denmark) and a conventional alginate impression (Cavex Impressional®, Cavex, Haarlem, the Netherlands) as clinical reference were made for two patients assigned for full mouth extraction. A total of 30 teeth were collected upon surgery after impressions making. The gypsum model created from conventional impression and extracted teeth were then scanned in a lab scanner (Activity 885®, SmartOptics, Bochum, Germany). Digital model of the intraoral scanner (DM), digital model of the conventional gypsum cast (CM) and those of the extracted natural teeth (NT) were imported to a reverse engineering software (3-matic®, Materialise, Leuven, Belgium) in which the three models were registered then DM and CM were compared to their corresponding teeth in NT by distance map calculations.

Results

DM had statistically insignificant better trueness when compared to CM for total dataset (p = 0.15), statistically insignificant better trueness for CM when mandibular arches analyzed alone (p = 0.56), while a significantly better DM trueness (p = 0.013) was found when only maxillary arches were compared.

Conclusions

Our results show that digital impression technique is clinically as good as or better than the current reference standard for study models of orthognathic surgery patients.
Literature
1.
go back to reference Gjelvold B, Chrcanovic BR, Korduner EK, Collin-Bagewitz I, Kisch J. Intraoral digital impression technique compared to conventional impression technique. A randomized clinical trial. J Prosthodont. 2016;25(4):282–7.CrossRefPubMed Gjelvold B, Chrcanovic BR, Korduner EK, Collin-Bagewitz I, Kisch J. Intraoral digital impression technique compared to conventional impression technique. A randomized clinical trial. J Prosthodont. 2016;25(4):282–7.CrossRefPubMed
2.
go back to reference Patzelt SBM, Lamprinos C, Stampf S, Att W. The time efficiency of intraoral scanners. An in vitro comparative study J Am Dent Assoc. 2014;145(6):542–51.CrossRef Patzelt SBM, Lamprinos C, Stampf S, Att W. The time efficiency of intraoral scanners. An in vitro comparative study J Am Dent Assoc. 2014;145(6):542–51.CrossRef
3.
go back to reference Otto T, De Nisco S. Computer-aided direct ceramic restorations: a 10-year prospective clinical study of Cerec CAD/CAM inlays and onlays. Int J Prosthodont. 2002;15(2):122–8.PubMed Otto T, De Nisco S. Computer-aided direct ceramic restorations: a 10-year prospective clinical study of Cerec CAD/CAM inlays and onlays. Int J Prosthodont. 2002;15(2):122–8.PubMed
4.
go back to reference Mörmann WH. The evolution of the CEREC system. J Am Dent Assoc. 2006;137 Suppl(September):7S-13S. Mörmann WH. The evolution of the CEREC system. J Am Dent Assoc. 2006;137 Suppl(September):7S-13S.
5.
go back to reference Güth JF, Keul C, Stimmelmayr M, Beuer F, Edelhoff D. Accuracy of digital models obtained by direct and indirect data capturing. Clin Oral Investig. 2013;17(4):1201–8.CrossRefPubMed Güth JF, Keul C, Stimmelmayr M, Beuer F, Edelhoff D. Accuracy of digital models obtained by direct and indirect data capturing. Clin Oral Investig. 2013;17(4):1201–8.CrossRefPubMed
6.
go back to reference Fasbinder DJ. Computerized technology for restorative dentistry. Am J Dent. 2013;26(3):115–20.PubMed Fasbinder DJ. Computerized technology for restorative dentistry. Am J Dent. 2013;26(3):115–20.PubMed
7.
go back to reference Beuer F, Schweiger J, Edelhoff D. Digital dentistry: an overview of recent developments for CAD/CAM generated restorations. Br Dent J. 2008;204(9):505–11.CrossRefPubMed Beuer F, Schweiger J, Edelhoff D. Digital dentistry: an overview of recent developments for CAD/CAM generated restorations. Br Dent J. 2008;204(9):505–11.CrossRefPubMed
8.
9.
go back to reference Ender A, Mehl A. Accuracy of complete-arch dental impressions: a new method of measuring trueness and precision. J Prosthet Dent. 2013;109(2):121–8.CrossRefPubMed Ender A, Mehl A. Accuracy of complete-arch dental impressions: a new method of measuring trueness and precision. J Prosthet Dent. 2013;109(2):121–8.CrossRefPubMed
10.
go back to reference Rödiger M, Heinitz A, Bürgers R, Rinke S. Fitting accuracy of zirconia single crowns produced via digital and conventional impressions—a clinical comparative study. Clin Oral Investig. 2017;21(2):579–87.CrossRefPubMed Rödiger M, Heinitz A, Bürgers R, Rinke S. Fitting accuracy of zirconia single crowns produced via digital and conventional impressions—a clinical comparative study. Clin Oral Investig. 2017;21(2):579–87.CrossRefPubMed
11.
go back to reference Cho SH, Schaefer O, Thompson GA, Guentsch A. Comparison of accuracy and reproducibility of casts made by digital and conventional methods. J Prosthet Dent. 2015;113(4):310–5.CrossRefPubMed Cho SH, Schaefer O, Thompson GA, Guentsch A. Comparison of accuracy and reproducibility of casts made by digital and conventional methods. J Prosthet Dent. 2015;113(4):310–5.CrossRefPubMed
12.
go back to reference Imburgia M, Logozzo S, Hauschild U, Veronesi G, Mangano C, Mangano FG. Accuracy of four intraoral scanners in oral implantology: a comparative in vitro study. BMC Oral Health. 2017;17(1):92.CrossRefPubMedPubMedCentral Imburgia M, Logozzo S, Hauschild U, Veronesi G, Mangano C, Mangano FG. Accuracy of four intraoral scanners in oral implantology: a comparative in vitro study. BMC Oral Health. 2017;17(1):92.CrossRefPubMedPubMedCentral
13.
go back to reference Mangano FG, Veronesi G, Hauschild U, Mijiritsky E, Mangano C. Trueness and precision of four intraoral scanners in oral implantology: a comparative in vitro study. PLoS One. 2016;11(9):e0163107.CrossRefPubMedPubMedCentral Mangano FG, Veronesi G, Hauschild U, Mijiritsky E, Mangano C. Trueness and precision of four intraoral scanners in oral implantology: a comparative in vitro study. PLoS One. 2016;11(9):e0163107.CrossRefPubMedPubMedCentral
14.
go back to reference Luthardt RG, Walter MH, Weber A, Koch R, Rudolph H. Clinical parameters influencing the accuracy of 1- and 2-stage impressions: a randomized controlled trial. Int J Prosthodont. 2007;21:322–7. Luthardt RG, Walter MH, Weber A, Koch R, Rudolph H. Clinical parameters influencing the accuracy of 1- and 2-stage impressions: a randomized controlled trial. Int J Prosthodont. 2007;21:322–7.
15.
go back to reference Flügge TV, Schlager S, Nelson K, Nahles S, Metzger MC. Precision of intraoral digital dental impressions with iTero and extraoral digitization with the iTero and a model scanner. Am J Orthod Dentofac Orthop. 2013;144(3):471–8.CrossRef Flügge TV, Schlager S, Nelson K, Nahles S, Metzger MC. Precision of intraoral digital dental impressions with iTero and extraoral digitization with the iTero and a model scanner. Am J Orthod Dentofac Orthop. 2013;144(3):471–8.CrossRef
16.
go back to reference Ender A, Mehl A. Accuracy in dental medicine, a new way to measure trueness and precision. J Vis Exp. 2014;86:e51374. Ender A, Mehl A. Accuracy in dental medicine, a new way to measure trueness and precision. J Vis Exp. 2014;86:e51374.
17.
go back to reference DeLong R, Knorr S, Anderson GC, Hodges J, Pintado MR. Accuracy of contacts calculated from 3D images of occlusal surfaces. J Dent. 2007;35(6):528–34.CrossRefPubMedPubMedCentral DeLong R, Knorr S, Anderson GC, Hodges J, Pintado MR. Accuracy of contacts calculated from 3D images of occlusal surfaces. J Dent. 2007;35(6):528–34.CrossRefPubMedPubMedCentral
18.
go back to reference Endo T, Finger WJ. Dimensional accuracy of a new polyether impression material. Quintessence Int. 2006;37(1):47–51.PubMed Endo T, Finger WJ. Dimensional accuracy of a new polyether impression material. Quintessence Int. 2006;37(1):47–51.PubMed
19.
go back to reference Chen SY, Liang WM, Chen FN. Factors affecting the accuracy of elastometric impression materials. J Dent. 2004;32(8):603–9.CrossRefPubMed Chen SY, Liang WM, Chen FN. Factors affecting the accuracy of elastometric impression materials. J Dent. 2004;32(8):603–9.CrossRefPubMed
20.
go back to reference Ceyhan JA, Johnson GH, Lepe X, Phillips KM. A clinical study comparing the three-dimensional accuracy of a working die generated from two dual-arch trays and a complete-arch custom tray. J Prosthet Dent. 2003;90(3):228–34.CrossRefPubMed Ceyhan JA, Johnson GH, Lepe X, Phillips KM. A clinical study comparing the three-dimensional accuracy of a working die generated from two dual-arch trays and a complete-arch custom tray. J Prosthet Dent. 2003;90(3):228–34.CrossRefPubMed
21.
go back to reference Boeddinghaus M, Breloer ES, Rehmann P, Wöstmann B. Accuracy of single-tooth restorations based on intraoral digital and conventional impressions in patients. Clin Oral Investig. 2015;19(8):2027–34.CrossRefPubMed Boeddinghaus M, Breloer ES, Rehmann P, Wöstmann B. Accuracy of single-tooth restorations based on intraoral digital and conventional impressions in patients. Clin Oral Investig. 2015;19(8):2027–34.CrossRefPubMed
22.
go back to reference Persson ASK, Odén A, Andersson M, Sandborgh-Englund G. Digitization of simulated clinical dental impressions: virtual three-dimensional analysis of exactness. Dent Mater. 2009;25(7):929–36.CrossRefPubMed Persson ASK, Odén A, Andersson M, Sandborgh-Englund G. Digitization of simulated clinical dental impressions: virtual three-dimensional analysis of exactness. Dent Mater. 2009;25(7):929–36.CrossRefPubMed
23.
go back to reference Vecsei B, Joós-Kovács G, Borbély J, Hermann P. Comparison of the accuracy of direct and indirect three-dimensional digitizing processes for CAD/CAM systems – an in vitro study. J Prosthodont Res. 2017;61(2):177–84.CrossRefPubMed Vecsei B, Joós-Kovács G, Borbély J, Hermann P. Comparison of the accuracy of direct and indirect three-dimensional digitizing processes for CAD/CAM systems – an in vitro study. J Prosthodont Res. 2017;61(2):177–84.CrossRefPubMed
24.
go back to reference Gan N, Xiong Y, Jiao T. Accuracy of intraoral digital impressions for whole upper jaws, including full dentitions and palatal soft tissues. PLoS One. 2016;11(7):1–15. Gan N, Xiong Y, Jiao T. Accuracy of intraoral digital impressions for whole upper jaws, including full dentitions and palatal soft tissues. PLoS One. 2016;11(7):1–15.
25.
go back to reference Seelbach P, Brueckel C, Wöstmann B. Accuracy of digital and conventional impression techniques and workflow. Clin Oral Investig. 2013;17(7):1759–64.CrossRefPubMed Seelbach P, Brueckel C, Wöstmann B. Accuracy of digital and conventional impression techniques and workflow. Clin Oral Investig. 2013;17(7):1759–64.CrossRefPubMed
26.
go back to reference Patzelt SBM, Vonau S, Stampf S, Att W. Assessing the feasibility and accuracy of digitizing edentulous jaws. J Am Dent Assoc. 2013;144(8):914–20.CrossRefPubMed Patzelt SBM, Vonau S, Stampf S, Att W. Assessing the feasibility and accuracy of digitizing edentulous jaws. J Am Dent Assoc. 2013;144(8):914–20.CrossRefPubMed
27.
go back to reference Patzelt SBM, Emmanouilidi A, Stampf S, Strub JR, Att W. Accuracy of full-arch scans using intraoral scanners. Clin Oral Investig. 2014;18(6):1687–94.CrossRefPubMed Patzelt SBM, Emmanouilidi A, Stampf S, Strub JR, Att W. Accuracy of full-arch scans using intraoral scanners. Clin Oral Investig. 2014;18(6):1687–94.CrossRefPubMed
28.
go back to reference Hack GD, SBM P. Evaluation of the Accuracy of Six Intraoral Scanning Devices. An in-vitro Investigation. 2015;10(4):1–5. Hack GD, SBM P. Evaluation of the Accuracy of Six Intraoral Scanning Devices. An in-vitro Investigation. 2015;10(4):1–5.
29.
go back to reference Franceschini G. A comparative analysis of intraoral 3d digital scanners for restorative dentistry. Internet J Med Technol. 2011;5(1):1–18. Franceschini G. A comparative analysis of intraoral 3d digital scanners for restorative dentistry. Internet J Med Technol. 2011;5(1):1–18.
30.
go back to reference Hamalian TA, Nasr E, Chidiac JJ. Impression materials in fixed prosthodontics: influence of choice on clinical procedure. J Prosthodont. 2011;20(2):153–60.CrossRefPubMed Hamalian TA, Nasr E, Chidiac JJ. Impression materials in fixed prosthodontics: influence of choice on clinical procedure. J Prosthodont. 2011;20(2):153–60.CrossRefPubMed
Metadata
Title
A novel in vivo method to evaluate trueness of digital impressions
Authors
Emad A. Albdour
Eman Shaheen
Myrthel Vranckx
Francesco Guido Mangano
Constantinus Politis
Reinhilde Jacobs
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Oral Health / Issue 1/2018
Electronic ISSN: 1472-6831
DOI
https://doi.org/10.1186/s12903-018-0580-9

Other articles of this Issue 1/2018

BMC Oral Health 1/2018 Go to the issue