Skip to main content
Top
Published in: Clinical Oral Investigations 7/2013

01-09-2013 | Original Article

Accuracy of digital and conventional impression techniques and workflow

Authors: Paul Seelbach, Cora Brueckel, Bernd Wöstmann

Published in: Clinical Oral Investigations | Issue 7/2013

Login to get access

Abstract

Objectives

Digital impression techniques are advertised as an alternative to conventional impressioning. The purpose of this in vitro study was to compare the accuracy of full ceramic crowns obtained from intraoral scans with Lava C.O.S. (3M ESPE), CEREC (Sirona), and iTero (Straumann) with conventional impression techniques.

Materials and methods

A model of a simplified molar was fabricated. Ten 2-step and 10 single-step putty-wash impressions were taken using silicone impression material and poured with type IV plaster. For both techniques 10 crowns were made of two materials (Lava zirconia, Cera E cast crowns). Then, 10 digital impressions (Lava C.O.S.) were taken and Lava zirconia crowns manufactured, 10 full ceramic crowns were fabricated with CEREC (Empress CAD) and 10 full ceramic crowns were made with iTero (Copran Zr-i). The accessible marginal inaccuracy (AMI) and the internal fit (IF) were measured.

Results

For AMI, the following results were obtained (mean ± SD): overall groups, 44 ± 26 μm; single-step putty-wash impression (Lava zirconia), 33 ± 19 μm; single-step putty-wash impression (Cera-E), 38 ± 25 μm; two-step putty-wash impression (Lava zirconia), 60 ± 30 μm; two-step putty-wash impression (Cera-E), 68 ± 29 μm; Lava C.O.S., 48 ± 25 μm; CEREC, 30 ± 17 μm; and iTero, 41 ± 16 μm. With regard to IF, errors were assessed as follows (mean ± SD): overall groups, 49 ± 25 μm; single-step putty-wash impression (Lava zirconia), 36 ± 5 μm; single-step putty-wash impression (Cera-E), 44 ± 22 μm; two-step putty-wash impression (Lava zirconia), 35 ± 7 μm; two-step putty-wash impression (Cera-E), 56 ± 36 μm; Lava C.O.S., 29 ± 7 μm; CEREC, 88 ± 20 μm; and iTero, 50 ± 2 μm.

Conclusions

Within the limitations of this in vitro study, it can be stated that digital impression systems allow the fabrication of fixed prosthetic restorations with similar accuracy as conventional impression methods.

Clinical relevance

Digital impression techniques can be regarded as a clinical alternative to conventional impressions for fixed dental restorations.
Literature
1.
go back to reference Samet N, Shohat M, Livny A, Weiss EI (2005) A clinical evaluation of fixed partial denture impressions. J Prosthet Dent 94(2):112–117PubMedCrossRef Samet N, Shohat M, Livny A, Weiss EI (2005) A clinical evaluation of fixed partial denture impressions. J Prosthet Dent 94(2):112–117PubMedCrossRef
2.
go back to reference Mehl A, Ender A, Mormann W, Attin T (2009) Accuracy testing of a new intraoral 3D camera. Int J Comput Dent 12(1):11–28PubMed Mehl A, Ender A, Mormann W, Attin T (2009) Accuracy testing of a new intraoral 3D camera. Int J Comput Dent 12(1):11–28PubMed
3.
go back to reference Syrek A, Reich G, Ranftl D, Klein C, Cerny B, Brodesser J (2010) Clinical evaluation of all-ceramic crowns fabricated from intraoral digital impressions based on the principle of active wavefront sampling. J Dent 38(7):553–559PubMedCrossRef Syrek A, Reich G, Ranftl D, Klein C, Cerny B, Brodesser J (2010) Clinical evaluation of all-ceramic crowns fabricated from intraoral digital impressions based on the principle of active wavefront sampling. J Dent 38(7):553–559PubMedCrossRef
4.
go back to reference Mormann WH, Brandestini M, Lutz F (1987) The Cerec system: computer-assisted preparation of direct ceramic inlays in 1 setting. Quintessenz 38(3):457–470PubMed Mormann WH, Brandestini M, Lutz F (1987) The Cerec system: computer-assisted preparation of direct ceramic inlays in 1 setting. Quintessenz 38(3):457–470PubMed
5.
go back to reference Lee KB, Park CW, Kim KH, Kwon TY (2008) Marginal and internal fit of all-ceramic crowns fabricated with two different CAD/CAM systems. Dent Mater J 27(3):422–426PubMedCrossRef Lee KB, Park CW, Kim KH, Kwon TY (2008) Marginal and internal fit of all-ceramic crowns fabricated with two different CAD/CAM systems. Dent Mater J 27(3):422–426PubMedCrossRef
6.
go back to reference Tinschert J, Natt G, Spiekermann H, Anusavice K (2001) Marginal fit of alumina- and zirconia-based fixed partial dentures produced by a CAD/CAM system. Oper Dent 26(4):367–374PubMed Tinschert J, Natt G, Spiekermann H, Anusavice K (2001) Marginal fit of alumina- and zirconia-based fixed partial dentures produced by a CAD/CAM system. Oper Dent 26(4):367–374PubMed
7.
go back to reference Suarez MJ, Gonzalez de Villaumbrosia P, Pradies G, Lozano JF (2003) Comparison of the marginal fit of Procera AllCeram crowns with two finish lines. Int J Prosthodont 16(3):229–232PubMed Suarez MJ, Gonzalez de Villaumbrosia P, Pradies G, Lozano JF (2003) Comparison of the marginal fit of Procera AllCeram crowns with two finish lines. Int J Prosthodont 16(3):229–232PubMed
8.
go back to reference Bindl A, Mormann WH (2005) Marginal and internal fit of all-ceramic CAD/CAM crown-copings on chamfer preparations. J Oral Rehabil 32(6):441–447PubMedCrossRef Bindl A, Mormann WH (2005) Marginal and internal fit of all-ceramic CAD/CAM crown-copings on chamfer preparations. J Oral Rehabil 32(6):441–447PubMedCrossRef
9.
go back to reference Schaefer O, Watts DC, Sigusch BW, Kuepper H, Guentsch A (2012) Marginal and internal fit of pressed lithium disilicate partial crowns in vitro: a three-dimensional analysis of accuracy and reproducibility. Dent Mater 28(3):320–326PubMedCrossRef Schaefer O, Watts DC, Sigusch BW, Kuepper H, Guentsch A (2012) Marginal and internal fit of pressed lithium disilicate partial crowns in vitro: a three-dimensional analysis of accuracy and reproducibility. Dent Mater 28(3):320–326PubMedCrossRef
10.
go back to reference Grasso JE, Nalbandian J, Sanford C, Bailit H (1985) Effect of restoration quality on periodontal health. J Prosthet Dent 53(1):14–19PubMedCrossRef Grasso JE, Nalbandian J, Sanford C, Bailit H (1985) Effect of restoration quality on periodontal health. J Prosthet Dent 53(1):14–19PubMedCrossRef
11.
go back to reference Holmes JR, Bayne SC, Holland GA, Sulik WD (1989) Considerations in measurement of marginal fit. J Prosthet Dent 62(4):405–408PubMedCrossRef Holmes JR, Bayne SC, Holland GA, Sulik WD (1989) Considerations in measurement of marginal fit. J Prosthet Dent 62(4):405–408PubMedCrossRef
12.
go back to reference Luthardt RG, Loos R, Quaas S (2005) Accuracy of intraoral data acquisition in comparison to the conventional impression. Int J Comput Dent 8(4):283–294PubMed Luthardt RG, Loos R, Quaas S (2005) Accuracy of intraoral data acquisition in comparison to the conventional impression. Int J Comput Dent 8(4):283–294PubMed
13.
go back to reference Bindl A, Windisch S, Mormann WH (1999) Full-ceramic CAD/CIM anterior crowns and copings. Int J Comput Dent 2(2):97–111PubMed Bindl A, Windisch S, Mormann WH (1999) Full-ceramic CAD/CIM anterior crowns and copings. Int J Comput Dent 2(2):97–111PubMed
14.
go back to reference da Costa JB (2010) Evaluation of different methods of optical impression making on the marginal gap of onlays created with CEREC 3D. Oper Dent 35(3):324–329PubMedCrossRef da Costa JB (2010) Evaluation of different methods of optical impression making on the marginal gap of onlays created with CEREC 3D. Oper Dent 35(3):324–329PubMedCrossRef
15.
go back to reference Ender A, Mehl A (2011) Full arch scans: conventional versus digital impressions—an in vitro study. Int J Comput Dent 14(1):11–21PubMed Ender A, Mehl A (2011) Full arch scans: conventional versus digital impressions—an in vitro study. Int J Comput Dent 14(1):11–21PubMed
18.
go back to reference Kachalia PR, Geissberger MJ (2010) Dentistry a la carte: in-office CAD/CAM technology. J Calif Dent Assoc 38(5):323–330PubMed Kachalia PR, Geissberger MJ (2010) Dentistry a la carte: in-office CAD/CAM technology. J Calif Dent Assoc 38(5):323–330PubMed
19.
go back to reference Idris B, Houston F, Claffey N (1995) Comparison of the dimensional accuracy of one- and two-step techniques with the use of putty/wash addition silicone impression materials. J Prosthet Dent 74(5):535–541PubMedCrossRef Idris B, Houston F, Claffey N (1995) Comparison of the dimensional accuracy of one- and two-step techniques with the use of putty/wash addition silicone impression materials. J Prosthet Dent 74(5):535–541PubMedCrossRef
20.
go back to reference Wostmann B, Blosser T, Gouentenoudis M, Balkenhol M, Ferger P (2005) Influence of margin design on the fit of high-precious alloy restorations in patients. J Dent 33(7):611–618PubMedCrossRef Wostmann B, Blosser T, Gouentenoudis M, Balkenhol M, Ferger P (2005) Influence of margin design on the fit of high-precious alloy restorations in patients. J Dent 33(7):611–618PubMedCrossRef
Metadata
Title
Accuracy of digital and conventional impression techniques and workflow
Authors
Paul Seelbach
Cora Brueckel
Bernd Wöstmann
Publication date
01-09-2013
Publisher
Springer Berlin Heidelberg
Published in
Clinical Oral Investigations / Issue 7/2013
Print ISSN: 1432-6981
Electronic ISSN: 1436-3771
DOI
https://doi.org/10.1007/s00784-012-0864-4

Other articles of this Issue 7/2013

Clinical Oral Investigations 7/2013 Go to the issue