Skip to main content
Top
Published in: BMC Oral Health 1/2017

Open Access 01-12-2017 | Research article

Does erosion progress differently on teeth already presenting clinical signs of erosive tooth wear than on sound teeth? An in vitro pilot trial

Authors: Thiago Saads Carvalho, Tommy Baumann, Adrian Lussi

Published in: BMC Oral Health | Issue 1/2017

Login to get access

Abstract

Background

Erosive tooth wear (ETW) is clinically characterized by a loss of tooth surface, and different enamel depths may have different susceptibility to demineralization. Therefore, the aim of this in vitro pilot study was to assess if the progression of erosive demineralization is faster on teeth already presenting signs of ETW when compared to originally sound teeth.

Methods

We selected 23 central incisors: 14 were clinically sound (Sound) and 9 presented clinical signs of early erosive tooth wear (ETW-teeth). The teeth were embedded in resin, leaving an uncovered window of native enamel (6.69 ± 2.30 mm2) on the incisal half of the labial surface. We measured enamel surface reflection intensity (SRI) initially and after each consecutive erosive challenge (1 % citric acid, total of 4, 8, 12, 16, 20 and 24 min). Calcium released to the citric acid was measured with an atomic absorption spectrometer.

Results

We observed higher initial SRI values in ETW-teeth than in Sound teeth (p = 0.007). During in vitro erosive demineralization, we observed that erosion on originally Sound teeth progressed significantly slower (p = 0.033) than on ETW-teeth: SRI decreased by 75 % (from 100 to 25 %) on Sound teeth, and by 89 % (from 100 to 11 %) on ETW-teeth. Calcium release increased during erosion, but presented no significant differences (p = 0.643) between originally Sound (0.031 μmol/mm2) and ETW-teeth (0.032 μmol/mm2). There was satisfactory correlation between calcium release and rSRI values (r s  = −0.66).

Conclusion

The optical reflectometer distinguished originally sound teeth from those with signs of ETW, and the results suggest that acid demineralization progresses differently on teeth already presenting clinical signs of ETW than on sound teeth.
Appendix
Available only for authorised users
Literature
1.
go back to reference Shellis RP, Barbour ME, Jesani A, Lussi A. Effects of buffering properties and undissociated acid concentration on dissolution of dental enamel in relation to ph and acid type. Caries Res. 2013;47(6):601–11.CrossRefPubMed Shellis RP, Barbour ME, Jesani A, Lussi A. Effects of buffering properties and undissociated acid concentration on dissolution of dental enamel in relation to ph and acid type. Caries Res. 2013;47(6):601–11.CrossRefPubMed
2.
go back to reference Carvalho TS, Colon P, Ganss C, Huysmans MC, Lussi A, Schlueter N, et al. Consensus report of the european federation of conservative dentistry: Erosive tooth wear--diagnosis and management. Clin Oral Investig. 2015;19(7):1557–61.CrossRefPubMed Carvalho TS, Colon P, Ganss C, Huysmans MC, Lussi A, Schlueter N, et al. Consensus report of the european federation of conservative dentistry: Erosive tooth wear--diagnosis and management. Clin Oral Investig. 2015;19(7):1557–61.CrossRefPubMed
3.
go back to reference Lussi A, Schlueter N, Rakhmatullina E, Ganss C. Dental erosion--an overview with emphasis on chemical and histopathological aspects. Caries Res. 2011;45 Suppl 1:2–12.CrossRefPubMed Lussi A, Schlueter N, Rakhmatullina E, Ganss C. Dental erosion--an overview with emphasis on chemical and histopathological aspects. Caries Res. 2011;45 Suppl 1:2–12.CrossRefPubMed
5.
go back to reference Ganss C, Klimek J, Schwarz N. A comparative profilometric in vitro study of the susceptibility of polished and natural human enamel and dentine surfaces to erosive demineralization. Arch Oral Biol. 2000;45(10):897–902.CrossRefPubMed Ganss C, Klimek J, Schwarz N. A comparative profilometric in vitro study of the susceptibility of polished and natural human enamel and dentine surfaces to erosive demineralization. Arch Oral Biol. 2000;45(10):897–902.CrossRefPubMed
7.
go back to reference Theuns HM, Driessens FC, van Dijk JW, Groeneveld A. Experimental evidence for a gradient in the solubility and in the rate of dissolution of human enamel. Caries Res. 1986;20(1):24–31.CrossRefPubMed Theuns HM, Driessens FC, van Dijk JW, Groeneveld A. Experimental evidence for a gradient in the solubility and in the rate of dissolution of human enamel. Caries Res. 1986;20(1):24–31.CrossRefPubMed
8.
go back to reference Rakhmatullina E, Bossen A, Bachofner KK, Meier C, Lussi A. Optical pen-size reflectometer for monitoring of early dental erosion in native and polished enamels. J Biomed Opt. 2013;18(11):117009.CrossRefPubMed Rakhmatullina E, Bossen A, Bachofner KK, Meier C, Lussi A. Optical pen-size reflectometer for monitoring of early dental erosion in native and polished enamels. J Biomed Opt. 2013;18(11):117009.CrossRefPubMed
9.
go back to reference Carvalho TS, Baumann T, Lussi A. In vitro salivary pellicles from adults and children have different protective effects against erosion. Clin Oral Investig. 2016. Carvalho TS, Baumann T, Lussi A. In vitro salivary pellicles from adults and children have different protective effects against erosion. Clin Oral Investig. 2016.
10.
go back to reference Lussi A, Bossen A, Höschele C, Beyeler B, Megert B, Meier C, et al. Effects of enamel abrasion, salivary pellicle, and measurement angle on the optical assessment of dental erosion. J Biomed Opt. 2012;17:97009–1.CrossRefPubMed Lussi A, Bossen A, Höschele C, Beyeler B, Megert B, Meier C, et al. Effects of enamel abrasion, salivary pellicle, and measurement angle on the optical assessment of dental erosion. J Biomed Opt. 2012;17:97009–1.CrossRefPubMed
11.
go back to reference Brevik SC, Lussi A, Rakhmatullina E. A new optical detection method to assess the erosion inhibition by in vitro salivary pellicle layer. J Dent. 2013;41(5):428–35.CrossRefPubMed Brevik SC, Lussi A, Rakhmatullina E. A new optical detection method to assess the erosion inhibition by in vitro salivary pellicle layer. J Dent. 2013;41(5):428–35.CrossRefPubMed
12.
go back to reference Rakhmatullina E, Bossen A, Höschele C, Wang X, Beyeler B, Meier C, et al. Application of the specular and diffuse reflection analysis for in vitro diagnostics of dental erosion: Correlation with enamel softening, roughness, and calcium release. J Biomed Opt. 2011;16:107002.CrossRefPubMedPubMedCentral Rakhmatullina E, Bossen A, Höschele C, Wang X, Beyeler B, Meier C, et al. Application of the specular and diffuse reflection analysis for in vitro diagnostics of dental erosion: Correlation with enamel softening, roughness, and calcium release. J Biomed Opt. 2011;16:107002.CrossRefPubMedPubMedCentral
13.
go back to reference Carvalho TS, Assunção CM, Jost F, Bürgin WB, Rodrigues JA, Lussi A. In vitro validation of a hand-held optical reflectometer to measure clinically observed erosive tooth wear. Lasers in Medical Science. 2016. Carvalho TS, Assunção CM, Jost F, Bürgin WB, Rodrigues JA, Lussi A. In vitro validation of a hand-held optical reflectometer to measure clinically observed erosive tooth wear. Lasers in Medical Science. 2016.
14.
go back to reference Nekrashevych Y, Stosser L. Protective influence of experimentally formed salivary pellicle on enamel erosion. An in vitro study. Caries Res. 2003;37(3):225–31.CrossRefPubMed Nekrashevych Y, Stosser L. Protective influence of experimentally formed salivary pellicle on enamel erosion. An in vitro study. Caries Res. 2003;37(3):225–31.CrossRefPubMed
15.
go back to reference Meurman JH, Frank RM. Progression and surface ultrastructure of in vitro caused erosive lesions in human and bovine enamel. Caries Res. 1991;25(2):81–7.CrossRefPubMed Meurman JH, Frank RM. Progression and surface ultrastructure of in vitro caused erosive lesions in human and bovine enamel. Caries Res. 1991;25(2):81–7.CrossRefPubMed
16.
go back to reference Wiegand A, Köwing L, Attin T. Impact of brushing force on abrasion of acid-softened and sound enamel. Arch Oral Biol. 2007;52:1043–7.CrossRefPubMed Wiegand A, Köwing L, Attin T. Impact of brushing force on abrasion of acid-softened and sound enamel. Arch Oral Biol. 2007;52:1043–7.CrossRefPubMed
17.
go back to reference Carvalho TS, Lussi A. Susceptibility of enamel to initial erosion in relation to tooth type, tooth surface and enamel depth. Caries Res. 2015;49(2):109–15.CrossRefPubMed Carvalho TS, Lussi A. Susceptibility of enamel to initial erosion in relation to tooth type, tooth surface and enamel depth. Caries Res. 2015;49(2):109–15.CrossRefPubMed
18.
go back to reference Weatherell JA, Robinson C, Hallsworth AS. Variations in the chemical composition of human enamel. J Dent Res. 1974;53(2):180–92.CrossRefPubMed Weatherell JA, Robinson C, Hallsworth AS. Variations in the chemical composition of human enamel. J Dent Res. 1974;53(2):180–92.CrossRefPubMed
19.
go back to reference Robinson C, Weatherell JA, Hallsworth AS. Variatoon in composition of dental enamel within thin ground tooth sections. Caries Res. 1971;5(1):44–57.CrossRefPubMed Robinson C, Weatherell JA, Hallsworth AS. Variatoon in composition of dental enamel within thin ground tooth sections. Caries Res. 1971;5(1):44–57.CrossRefPubMed
20.
go back to reference Meurman JH, ten Cate JM. Pathogenesis and modifying factors of dental erosion. Eur J Oral Sci. 1996;104(2 (Pt 2)):199–206.CrossRefPubMed Meurman JH, ten Cate JM. Pathogenesis and modifying factors of dental erosion. Eur J Oral Sci. 1996;104(2 (Pt 2)):199–206.CrossRefPubMed
21.
go back to reference Sovik JB, Vieira AR, Tveit AB, Mulic A. Enamel formation genes associated with dental erosive wear. Caries Res. 2015;49(3):236–42.CrossRefPubMed Sovik JB, Vieira AR, Tveit AB, Mulic A. Enamel formation genes associated with dental erosive wear. Caries Res. 2015;49(3):236–42.CrossRefPubMed
22.
go back to reference Blum AE, Lasaga AC. Monte carlo simulations of surface reaction rate laws. In: Stumm W, editor. Aquatic surface chemistry: Chemical processes at the particle-water interface. New York: Wiley; 1987. p. 255–92. Blum AE, Lasaga AC. Monte carlo simulations of surface reaction rate laws. In: Stumm W, editor. Aquatic surface chemistry: Chemical processes at the particle-water interface. New York: Wiley; 1987. p. 255–92.
23.
go back to reference Weatherell JA, Robinson C, Hiller CR. Distribution of carbonate in thin sections of dental enamel. Caries Res. 1968;2(1):1–9.CrossRefPubMed Weatherell JA, Robinson C, Hiller CR. Distribution of carbonate in thin sections of dental enamel. Caries Res. 1968;2(1):1–9.CrossRefPubMed
24.
go back to reference Robinson C, Weatherell JA, Hallsworth AS. Distribution of magnesium in mature human enamel. Caries Res. 1981;15(1):70–7.CrossRefPubMed Robinson C, Weatherell JA, Hallsworth AS. Distribution of magnesium in mature human enamel. Caries Res. 1981;15(1):70–7.CrossRefPubMed
25.
go back to reference Schlueter N, Hara A, Shellis RP, Ganss C. Methods for the measurement and characterization of erosion in enamel and dentine. Caries Res. 2011;45 Suppl 1:13–23.CrossRefPubMed Schlueter N, Hara A, Shellis RP, Ganss C. Methods for the measurement and characterization of erosion in enamel and dentine. Caries Res. 2011;45 Suppl 1:13–23.CrossRefPubMed
26.
go back to reference Hara AT, Livengood SV, Lippert F, Eckert GJ, Ungar PS. Dental surface texture characterization based on erosive tooth wear processes. J Dent Res. 2016;95(5):537–42.CrossRefPubMed Hara AT, Livengood SV, Lippert F, Eckert GJ, Ungar PS. Dental surface texture characterization based on erosive tooth wear processes. J Dent Res. 2016;95(5):537–42.CrossRefPubMed
Metadata
Title
Does erosion progress differently on teeth already presenting clinical signs of erosive tooth wear than on sound teeth? An in vitro pilot trial
Authors
Thiago Saads Carvalho
Tommy Baumann
Adrian Lussi
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Oral Health / Issue 1/2017
Electronic ISSN: 1472-6831
DOI
https://doi.org/10.1186/s12903-016-0231-y

Other articles of this Issue 1/2017

BMC Oral Health 1/2017 Go to the issue