Skip to main content
Top
Published in: BMC Endocrine Disorders 1/2019

Open Access 01-12-2019 | Insulins | Research article

Enhancement of hypothalamic-pituitary activity in male athletes: evidence of a novel hormonal mechanism of physical conditioning

Authors: Flavio A. Cadegiani, Claudio E. Kater

Published in: BMC Endocrine Disorders | Issue 1/2019

Login to get access

Abstract

Background

Exercise is known to induce multiple beneficial conditioning processes. Conversely, although exercise may generate several hormonal effects, an intrinsic hormonal conditioning process has not been reported. In the Endocrine and Metabolic Responses on Overtraining Syndrome (EROS) study, we observed inherent and independent conditioning processes of the hypothalamic-pituitary axes in athletes. Our objective is to describe the theory of the novel hormonal conditioning mechanism using the findings from the EROS study.

Methods

In this cross-sectional study, we selected 25 healthy athletes (ATL) and 12 non-physically active healthy controls (NPAC), 18–50 years old, males, with BMI 20–30 kg/m2, with similar baseline characteristics, who underwent gold-standard exercise-independent tests: cosyntropin stimulation test (CST) and insulin tolerance test (ITT), to evaluate cortisol response to CST, and ACTH, cortisol, GH, and prolactin responses to an ITT.

Results

Responses to ITT were significantly earlier and higher in ATL than NPAC for cortisol [Mean ± SD: 21.7 ± 3.1 vs 16.9 ± 4.1 μg/dL; p < 0.001], GH [Median (95% CI): 12.73 (1.1–38.1) vs 4.80 (0.33–27.36) μg/L; p = 0.015], and prolactin [24.3 (10.5–67.45) vs 10.50 (6.21–43.44) ng/mL; p = 0.002]. Cortisol response to CST was similar between ATL and NPAC. During ITT, cortisol, GH, and ACTH mean increase in ATL were 52.2, 265.2, and 18.6% higher than NPAC, respectively. Prolactin response was absent in NPAC, while present in ATL.

Conclusions

We found sufficient evidence to propose the existence of a diffuse enhancement of the hypothalamic-pituitary activity in athletes, not restricted to any axis, showing an intrinsic and independent process of “hormonal conditioning” in athletes, similar to those observed in the cardiovascular and neuromuscular systems. This novel conditioning process may be the missing link for understanding the improved responses observed in athletes to harmful situations, traumas, infections, inflammations, and psychiatric conditions.
Literature
1.
go back to reference Liu Y, Shu XO, Wen W, Saito E, Rahman MS, Tsugane S, Tamakoshi A, Xiang YB, Yuan JM, Gao YT, Tsuji I, Kanemura S, Nagata C, Shin MH, Pan WH, Koh WP, Sawada N, Cai H, Li HL, Tomata Y, Sugawara Y, Wada K, Ahn YO, Yoo KY, Ashan H, Chia KS, Boffetta P, Inoue M, Kang D, Potter JD, Zheng W. Association of leisure-time physical activity with total and cause-specific mortality: a pooled analysis of nearly a half million adults in the Asia cohort consortium. Int J Epidemiol. 2018;27. Liu Y, Shu XO, Wen W, Saito E, Rahman MS, Tsugane S, Tamakoshi A, Xiang YB, Yuan JM, Gao YT, Tsuji I, Kanemura S, Nagata C, Shin MH, Pan WH, Koh WP, Sawada N, Cai H, Li HL, Tomata Y, Sugawara Y, Wada K, Ahn YO, Yoo KY, Ashan H, Chia KS, Boffetta P, Inoue M, Kang D, Potter JD, Zheng W. Association of leisure-time physical activity with total and cause-specific mortality: a pooled analysis of nearly a half million adults in the Asia cohort consortium. Int J Epidemiol. 2018;27.
2.
go back to reference Carlson SA, Adams EK, Yang Z, Fulton JE. Percentage of deaths associated with inadequate physical activity in the United States. Prev Chronic Dis. 2018;15:E38.PubMedPubMedCentral Carlson SA, Adams EK, Yang Z, Fulton JE. Percentage of deaths associated with inadequate physical activity in the United States. Prev Chronic Dis. 2018;15:E38.PubMedPubMedCentral
3.
go back to reference Karjalainen JJ, Kiviniemi AM, Hautala AJ, Piira OP, Lepojärvi ES, Perkiömäki JS, Junttila MJ, Huikuri HV, Tulppo MP. Effects of physical activity and exercise training on cardiovascular risk in coronary artery disease patients with and without type 2 diabetes. Diabetes Care. 2015;38(4):706–15.PubMed Karjalainen JJ, Kiviniemi AM, Hautala AJ, Piira OP, Lepojärvi ES, Perkiömäki JS, Junttila MJ, Huikuri HV, Tulppo MP. Effects of physical activity and exercise training on cardiovascular risk in coronary artery disease patients with and without type 2 diabetes. Diabetes Care. 2015;38(4):706–15.PubMed
4.
go back to reference Piepoli MF, Villani GQ. Lifestyle modification in secondary prevention. Eur J Prev Cardiol. 2017 Jun;24(3_suppl):101–7.CrossRef Piepoli MF, Villani GQ. Lifestyle modification in secondary prevention. Eur J Prev Cardiol. 2017 Jun;24(3_suppl):101–7.CrossRef
5.
go back to reference McKenzie F, McKenzie F, Biessy C, Ferrari P, Freisling H, Rinaldi S, Chajès V, Dahm CC, Overvad K, Dossus L, Lagiou P, Trichopoulos D, Trichopoulou A, Bueno-de-Mesquita HB, May A, Peeters PH, Weiderpass E, Sanchez MJ, Navarro C, Ardanaz E, Ericson U, Wirfält E, Travis RC, Romieu I. Healthy lifestyle and risk of Cancer in the European prospective investigation into Cancer and nutrition cohort study. Medicine (Baltimore). 2016;95(16):e2850.CrossRef McKenzie F, McKenzie F, Biessy C, Ferrari P, Freisling H, Rinaldi S, Chajès V, Dahm CC, Overvad K, Dossus L, Lagiou P, Trichopoulos D, Trichopoulou A, Bueno-de-Mesquita HB, May A, Peeters PH, Weiderpass E, Sanchez MJ, Navarro C, Ardanaz E, Ericson U, Wirfält E, Travis RC, Romieu I. Healthy lifestyle and risk of Cancer in the European prospective investigation into Cancer and nutrition cohort study. Medicine (Baltimore). 2016;95(16):e2850.CrossRef
6.
go back to reference Warburton DER, Bredin SSD. Health benefits of physical activity: a systematic review of current systematic reviews. Curr Opin Cardiol. 2017;32(5):541–56.CrossRef Warburton DER, Bredin SSD. Health benefits of physical activity: a systematic review of current systematic reviews. Curr Opin Cardiol. 2017;32(5):541–56.CrossRef
7.
go back to reference Loprinzi PD, Addoh O, Wong Sarver N, Espinoza I, Mann JR. Cross-sectional association of exercise, strengthening activities, and cardiorespiratory fitness on generalized anxiety, panic and depressive symptoms. Postgrad Med. 2017;129(7):676–85.CrossRef Loprinzi PD, Addoh O, Wong Sarver N, Espinoza I, Mann JR. Cross-sectional association of exercise, strengthening activities, and cardiorespiratory fitness on generalized anxiety, panic and depressive symptoms. Postgrad Med. 2017;129(7):676–85.CrossRef
8.
go back to reference Machado S, Filho ASS, Wilbert M, Barbieri G, Almeida V, Gurgel A, Rosa CV, Lins V, Paixão A, Santana K, Ramos G, Neto GM, Paes F, Rocha N, Murillo-Rodriguez E. Physical exercise as stabilizer for Alzheimer’S disease cognitive decline: current status. Clin Pract Epidemiol Ment Health. 2017;13:181–4.CrossRef Machado S, Filho ASS, Wilbert M, Barbieri G, Almeida V, Gurgel A, Rosa CV, Lins V, Paixão A, Santana K, Ramos G, Neto GM, Paes F, Rocha N, Murillo-Rodriguez E. Physical exercise as stabilizer for Alzheimer’S disease cognitive decline: current status. Clin Pract Epidemiol Ment Health. 2017;13:181–4.CrossRef
9.
go back to reference Alex C, Lindgren M, Shapiro PA, McKinley PS, Brondolo EN, Myers MM, Zhao Y, Sloan RP. Aerobic exercise and strength training effects on cardiovascular sympathetic function in healthy adults: a randomized controlled trial. Psychosom Med. 2013;75(4):375–81.CrossRef Alex C, Lindgren M, Shapiro PA, McKinley PS, Brondolo EN, Myers MM, Zhao Y, Sloan RP. Aerobic exercise and strength training effects on cardiovascular sympathetic function in healthy adults: a randomized controlled trial. Psychosom Med. 2013;75(4):375–81.CrossRef
10.
go back to reference Lindgren M, Alex C, Shapiro PA, McKinley PS, Brondolo EN, Myers MM, Choi CJ, Lopez-Pintado S, Sloan R. Effects of aerobic conditioning on cardiovascular sympathetic response to and recovery from challenge. Psychophysiology. 2013;50(10):963–73.PubMedPubMedCentral Lindgren M, Alex C, Shapiro PA, McKinley PS, Brondolo EN, Myers MM, Choi CJ, Lopez-Pintado S, Sloan R. Effects of aerobic conditioning on cardiovascular sympathetic response to and recovery from challenge. Psychophysiology. 2013;50(10):963–73.PubMedPubMedCentral
11.
go back to reference McGlory C, Phillips SM. Exercise and the regulation of skeletal muscle hypertrophy. Prog Mol Biol Transl Sci. 2015;135:153–73.CrossRef McGlory C, Phillips SM. Exercise and the regulation of skeletal muscle hypertrophy. Prog Mol Biol Transl Sci. 2015;135:153–73.CrossRef
12.
go back to reference Szuhany KL, Bugatti M, Otto MW. A meta-analytic review of the effects of exercise on brain-derived neurotrophic factor. J Psychiatr Res. 2015;60:56–64.CrossRef Szuhany KL, Bugatti M, Otto MW. A meta-analytic review of the effects of exercise on brain-derived neurotrophic factor. J Psychiatr Res. 2015;60:56–64.CrossRef
13.
go back to reference Douglas JA, King JA, McFarlane E. Appetite, appetite hormone and energy intake responses to two consecutive days of aerobic exercise in healthy young men. Appetite. 2015;92:57–65.CrossRef Douglas JA, King JA, McFarlane E. Appetite, appetite hormone and energy intake responses to two consecutive days of aerobic exercise in healthy young men. Appetite. 2015;92:57–65.CrossRef
14.
go back to reference Crewther B, Keogh J, Cronin J, Cook C. Possible stimuli for strength and power adaptation: acute hormonal responses. Sports Med. 2006;36(3):215–38.CrossRef Crewther B, Keogh J, Cronin J, Cook C. Possible stimuli for strength and power adaptation: acute hormonal responses. Sports Med. 2006;36(3):215–38.CrossRef
15.
go back to reference Durand RJ, Castracane VD, Hollander DB, Tryniecki JL, Bamman MM, O'Neal S, Hayes LD, Grace FM, Baker JS, Sculthorpe N. Exercise-induced responses in salivary testosterone, cortisol, and their ratios in men: a meta-analysis. Sports Med. 2015;45(5):713–26.CrossRef Durand RJ, Castracane VD, Hollander DB, Tryniecki JL, Bamman MM, O'Neal S, Hayes LD, Grace FM, Baker JS, Sculthorpe N. Exercise-induced responses in salivary testosterone, cortisol, and their ratios in men: a meta-analysis. Sports Med. 2015;45(5):713–26.CrossRef
16.
go back to reference Shaner AA, Vingren JL, Hatfield DL, Budnar RG Jr, Duplanty AA, Hill DW. The acute hormonal response to free weight and machine weight resistance exercise. J Strength Cond Res. 2014;28(4):1032–40.CrossRef Shaner AA, Vingren JL, Hatfield DL, Budnar RG Jr, Duplanty AA, Hill DW. The acute hormonal response to free weight and machine weight resistance exercise. J Strength Cond Res. 2014;28(4):1032–40.CrossRef
17.
go back to reference Meeusen R, Piacentini MF, Busschaert B, Buyse L, De Schutter G, Stray-Gundersen J. Hormonal responses in athletes: the use of a two bout exercise protocol to detect subtle differences in (over) training status. Eur J Appl Physiol. 2004;91(2–3):140–6.CrossRef Meeusen R, Piacentini MF, Busschaert B, Buyse L, De Schutter G, Stray-Gundersen J. Hormonal responses in athletes: the use of a two bout exercise protocol to detect subtle differences in (over) training status. Eur J Appl Physiol. 2004;91(2–3):140–6.CrossRef
18.
go back to reference Meeusen R, Nederhof E, Buyse L, Roelands B, De Schutter G, Piacentini MF. Diagnosing overtraining in athletes using the two-bout exercise protocol. Br J Sports Med. 2010;44(9):642–8.CrossRef Meeusen R, Nederhof E, Buyse L, Roelands B, De Schutter G, Piacentini MF. Diagnosing overtraining in athletes using the two-bout exercise protocol. Br J Sports Med. 2010;44(9):642–8.CrossRef
19.
go back to reference Urhausen A, Gabriel HH, Kindermann W. Impaired pituitary hormonal response to exhaustive exercise in overtrained endurance athletes. Med Sci Sports Exerc. 1998;30(3):407–14.CrossRef Urhausen A, Gabriel HH, Kindermann W. Impaired pituitary hormonal response to exhaustive exercise in overtrained endurance athletes. Med Sci Sports Exerc. 1998;30(3):407–14.CrossRef
20.
go back to reference Cadegiani FA, Kater CE. Hypothalamic-pituitary-adrenal (HPA) axis functioning in overtraining syndrome: findings from endocrine and metabolic responses on overtraining syndrome (EROS) - EROS-HPA axis. Sports Med Open Sports Med Open. 2017;3(1):45.CrossRef Cadegiani FA, Kater CE. Hypothalamic-pituitary-adrenal (HPA) axis functioning in overtraining syndrome: findings from endocrine and metabolic responses on overtraining syndrome (EROS) - EROS-HPA axis. Sports Med Open Sports Med Open. 2017;3(1):45.CrossRef
21.
go back to reference Cadegiani FA, Kater CE. Growth hormone (GH) and prolactin responses to a non-exercise stress test in athletes with overtraining syndrome: results from the endocrine and metabolic responses on overtraining syndrome (EROS) - EROS-STRESS. J Sci Med Sport. 2018;21(7):648–53.CrossRef Cadegiani FA, Kater CE. Growth hormone (GH) and prolactin responses to a non-exercise stress test in athletes with overtraining syndrome: results from the endocrine and metabolic responses on overtraining syndrome (EROS) - EROS-STRESS. J Sci Med Sport. 2018;21(7):648–53.CrossRef
22.
go back to reference Cadegiani FA, Kater CE. Body composition, metabolism, sleep, psychological and eating patterns of overtraining syndrome: results of the EROS study (EROS-PROFILE). J Sports Sci. 2018;36(16):1902–10.CrossRef Cadegiani FA, Kater CE. Body composition, metabolism, sleep, psychological and eating patterns of overtraining syndrome: results of the EROS study (EROS-PROFILE). J Sports Sci. 2018;36(16):1902–10.CrossRef
23.
go back to reference Cadegiani FA, Kater CE. Basal hormones and biochemical markers as predictors of overtraining syndrome: results from the endocrine and metabolic responses on overtraining syndrome (EROS) study — EROS-BASAL. J Athl Training In press. Cadegiani FA, Kater CE. Basal hormones and biochemical markers as predictors of overtraining syndrome: results from the endocrine and metabolic responses on overtraining syndrome (EROS) study — EROS-BASAL. J Athl Training In press.
24.
go back to reference Bornstein SR, Allolio B, Arlt W, Barthel A, Don-Wauchope A, Hammer GD, Husebye ES, Merke DP, Murad MH, Stratakis CA, Torpy DJ. Diagnosis and treatment of primary adrenal insufficiency: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2016;101(2):364–89.CrossRef Bornstein SR, Allolio B, Arlt W, Barthel A, Don-Wauchope A, Hammer GD, Husebye ES, Merke DP, Murad MH, Stratakis CA, Torpy DJ. Diagnosis and treatment of primary adrenal insufficiency: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2016;101(2):364–89.CrossRef
25.
go back to reference Yuen KC, Tritos NA, Samson SL, Hoffman AR, Katznelson L. American Association of Clinical Endocrinologists and American College of endocrinology disease state clinical review: update on growth hormone stimulation testing and proposed revised cut-point for the glucagon stimulation test in the diagnosis of adult growth hormone deficiency. Endocr Pract. 2016;22(10):1235–44.CrossRef Yuen KC, Tritos NA, Samson SL, Hoffman AR, Katznelson L. American Association of Clinical Endocrinologists and American College of endocrinology disease state clinical review: update on growth hormone stimulation testing and proposed revised cut-point for the glucagon stimulation test in the diagnosis of adult growth hormone deficiency. Endocr Pract. 2016;22(10):1235–44.CrossRef
26.
go back to reference Cadegiani FA, Kater CE. Adrenal fatigue does not exist: a systematic review. BMC Endocr Disord. 2016;16(1):48.CrossRef Cadegiani FA, Kater CE. Adrenal fatigue does not exist: a systematic review. BMC Endocr Disord. 2016;16(1):48.CrossRef
27.
go back to reference Mangine GT, Hoffman JR, Gonzalez AM, Townsend JR, Wells AJ, Jajtner AR, Beyer KS, Boone CH, Wang R, Miramonti AA, LaMonica MB, Fukuda DH, Witta EL, Ratamess NA, Stout JR. Exercise-induced hormone elevations are related to muscle growth. J Strength Cond Res. 2017;31(1):45–53.CrossRef Mangine GT, Hoffman JR, Gonzalez AM, Townsend JR, Wells AJ, Jajtner AR, Beyer KS, Boone CH, Wang R, Miramonti AA, LaMonica MB, Fukuda DH, Witta EL, Ratamess NA, Stout JR. Exercise-induced hormone elevations are related to muscle growth. J Strength Cond Res. 2017;31(1):45–53.CrossRef
Metadata
Title
Enhancement of hypothalamic-pituitary activity in male athletes: evidence of a novel hormonal mechanism of physical conditioning
Authors
Flavio A. Cadegiani
Claudio E. Kater
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Endocrine Disorders / Issue 1/2019
Electronic ISSN: 1472-6823
DOI
https://doi.org/10.1186/s12902-019-0443-7

Other articles of this Issue 1/2019

BMC Endocrine Disorders 1/2019 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.