Skip to main content
Top
Published in: BMC Endocrine Disorders 1/2019

Open Access 01-12-2019 | Glucose Tolerance Test | Research article

Performance of HbA1c versus oral glucose tolerance test (OGTT) as a screening tool to diagnose dysglycemic status in high-risk Thai patients

Authors: Yotsapon Thewjitcharoen, Amia Jones Elizabeth, Siriwan Butadej, Soontaree Nakasatien, Phawinpon Chotwanvirat, Ekgaluck Wanothayaroj, Sirinate Krittiyawong, Tinapa Himathongkam, Thep Himathongkam

Published in: BMC Endocrine Disorders | Issue 1/2019

Login to get access

Abstract

Background

Dysglycemic status defined by prediabetes and diabetes is known to be related with future risk of diabetic complications and cardiovascular diseases. Herein, we aimed to determine the diagnostic accuracy of glycated hemoglobin (HbA1c) when compared with oral glucose tolerance test (OGTT) as a reference test in identifying dysglycemic status among high-risk Thai patients receiving care in an out-patient setting.

Methods

An 11-year retrospective cross-sectional study of high-risk Thai patients who underwent OGTT during 2007–2017 was analysed. The OGTT was used as a reference test to identify subjects of dysglycemic status. The diagnostic accuracy of HbA1c and the agreement between HbA1c and OGTT were examined. Validated Thai diabetes risk score, Thai cardiovascular risk score (Thai CV risk score), and visceral fat area (VFA) were also compared in each glycemic status from OGTT as surrogate markers for future diabetes and cardiovascular diseases.

Results

A total of 512 subjects (females 60.5%, mean age of 50.3 ± 12.7 years, BMI of 26.5 ± 4.6 kg/m2) were reviewed. Normal glucose tolerance (NGT) was found in 220 patients (43.0%), impaired glucose tolerance (IGT) in 191 patients (37.3%), and diabetes in 101 patients (19.7%). The prevalence of diabetes using OGTT was approximately two times higher than those defined by HbA1c (19.7% versus 11.1%). There were poor agreements between the classifications of prediabetes and diabetes defined by OGTT and HbA1c (Cohen’s Kappa 0.154 and 0.306, respectively). Using a cut-off value for HbA1c ≥6.5% as a threshold for HbA1c-defined criteria of diabetes, sensitivity was 32% (95% CI 23–41%) and specificity was 94% (95% CI 92–96%). The optimal cut-off HbA1c value for detecting diabetes by Youden’s index was at HbA1c 6.2%. Thai CV risk score was much higher among the OGTT-defined diabetes group when compared with the NGT group (median score 10 vs. 3, p-value < 0.001).

Conclusions

Despite the practicality and validity of HbA1c as a diagnostic test, our study suggested that HbA1c as a screening tool for diabetes in high-risk Thai patients is much inferior to OGTT. With limitations of HbA1c, physicians should continue to advocate OGTT as a screening tool for the identification of dysglycemic status in high-risk Thai patients.
Literature
1.
go back to reference Cho NH, Shaw JE, Karuranga S, Huang Y, da Rocha Fernandes JD, Ohlrogge AW, et al. IDF diabetes atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract. 2018;138:271–81.CrossRef Cho NH, Shaw JE, Karuranga S, Huang Y, da Rocha Fernandes JD, Ohlrogge AW, et al. IDF diabetes atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract. 2018;138:271–81.CrossRef
3.
go back to reference American Diabetes Association (ADA). 2. Classification and Diagnosis of Diabetes: Standards of medical Care in Diabetes-2018. Diabetes Care. 2018;41(Suppl 1):S13–27.CrossRef American Diabetes Association (ADA). 2. Classification and Diagnosis of Diabetes: Standards of medical Care in Diabetes-2018. Diabetes Care. 2018;41(Suppl 1):S13–27.CrossRef
4.
go back to reference Mirasol R, Thai AC, Salahuddin AA, Tan K, Deerochanawong C, Mohamed M, et al. A consensus of key opinion leaders on the Management of pre-diabetes in the Asia-Pacific Region. J ASEAN Fed Endocr Soc. 2017;32:6–13. Mirasol R, Thai AC, Salahuddin AA, Tan K, Deerochanawong C, Mohamed M, et al. A consensus of key opinion leaders on the Management of pre-diabetes in the Asia-Pacific Region. J ASEAN Fed Endocr Soc. 2017;32:6–13.
5.
go back to reference Edelstein SL, Knowler WC, Bain RP, Andres R, Barrett-Connor EL, Dowse GK, et al. Predictors of progression from impaired glucose tolerance to NIDDM: an analysis of six prospective studies. Diabetes. 1997;46:701–10.CrossRef Edelstein SL, Knowler WC, Bain RP, Andres R, Barrett-Connor EL, Dowse GK, et al. Predictors of progression from impaired glucose tolerance to NIDDM: an analysis of six prospective studies. Diabetes. 1997;46:701–10.CrossRef
6.
go back to reference Buysschaert M, Medina JL, Bergman M, Shah A, Lonier J. Prediabetes and associated disorders. Endocrine. 2015;48:371–93.CrossRef Buysschaert M, Medina JL, Bergman M, Shah A, Lonier J. Prediabetes and associated disorders. Endocrine. 2015;48:371–93.CrossRef
7.
go back to reference Ford ES, Zhao G, Li C. Pre-diabetes and the risk for cardiovascular disease: a systematic review of the evidence. J Am Coll Cardiol. 2010;55:1310–7.CrossRef Ford ES, Zhao G, Li C. Pre-diabetes and the risk for cardiovascular disease: a systematic review of the evidence. J Am Coll Cardiol. 2010;55:1310–7.CrossRef
8.
go back to reference World Health Organization. Use of glycated Haemoglobin (HbA1c) in the diagnosis of diabetes mellitus: abbreviated report of a WHO consultation. Geneva: WHO Press; 2011. World Health Organization. Use of glycated Haemoglobin (HbA1c) in the diagnosis of diabetes mellitus: abbreviated report of a WHO consultation. Geneva: WHO Press; 2011.
9.
go back to reference Sacks DB. A1C versus glucose testing: a comparison. Diabetes Care. 2011;34:518–23.CrossRef Sacks DB. A1C versus glucose testing: a comparison. Diabetes Care. 2011;34:518–23.CrossRef
10.
go back to reference Malkani S, DeSilva T. Controversies on how diabetes is diagnosed. Curr Opin Endocrinol Diabetes Obes. 2012;19:97–103.CrossRef Malkani S, DeSilva T. Controversies on how diabetes is diagnosed. Curr Opin Endocrinol Diabetes Obes. 2012;19:97–103.CrossRef
11.
go back to reference Colagiuri S, Lee CM, Wong TY, Balkau B, Shaw JE, Borch-Johnsen K. DETECT-2 collaboration writing group: glycemic thresholds for diabetes-specific retinopathy: implications for diagnostic criteria for diabetes. Diabetes Care. 2011;34:145–50.CrossRef Colagiuri S, Lee CM, Wong TY, Balkau B, Shaw JE, Borch-Johnsen K. DETECT-2 collaboration writing group: glycemic thresholds for diabetes-specific retinopathy: implications for diagnostic criteria for diabetes. Diabetes Care. 2011;34:145–50.CrossRef
12.
go back to reference Gallagher EJ, Le Roith D, Bloomgarden Z. Review of hemoglobin A(1c) in the management of diabetes. J Diabetes. 2009;1:9–17.CrossRef Gallagher EJ, Le Roith D, Bloomgarden Z. Review of hemoglobin A(1c) in the management of diabetes. J Diabetes. 2009;1:9–17.CrossRef
13.
go back to reference Davidson MB, Schriger DL. Effect of age and race/ethnicity on HbA1c levels in people without known diabetes mellitus: implications for the diagnosis of diabetes. Diabetes Res Clin Pract. 2010;87:415–21.CrossRef Davidson MB, Schriger DL. Effect of age and race/ethnicity on HbA1c levels in people without known diabetes mellitus: implications for the diagnosis of diabetes. Diabetes Res Clin Pract. 2010;87:415–21.CrossRef
14.
go back to reference Aekplakorn W, Tantayotai V, Numsangkul S, Sripho W, Tatsato N, Burapasiriwat T, et al. Detecting prediabetes and diabetes: agreement between fasting plasma glucose and Oral glucose tolerance test in Thai adults. J Diabetes Res. 2015;2015:396505.CrossRef Aekplakorn W, Tantayotai V, Numsangkul S, Sripho W, Tatsato N, Burapasiriwat T, et al. Detecting prediabetes and diabetes: agreement between fasting plasma glucose and Oral glucose tolerance test in Thai adults. J Diabetes Res. 2015;2015:396505.CrossRef
15.
go back to reference Aekplakorn W, Bunnag P, Woodward M, Sritara P, Cheepudomwit S, Yamwong S, et al. A risk score for predicting incident diabetes in the Thai population. Diabetes Care. 2006;29:1872–7.CrossRef Aekplakorn W, Bunnag P, Woodward M, Sritara P, Cheepudomwit S, Yamwong S, et al. A risk score for predicting incident diabetes in the Thai population. Diabetes Care. 2006;29:1872–7.CrossRef
16.
go back to reference Vathesatogkit P, Woodward M, Tanomsup S, Ratanachaiwong W, Vanavanan S, Yamwong S, et al. Cohort profile: the electricity generating authority of Thailand study. Int J Epidemiol. 2012;41:359–65.CrossRef Vathesatogkit P, Woodward M, Tanomsup S, Ratanachaiwong W, Vanavanan S, Yamwong S, et al. Cohort profile: the electricity generating authority of Thailand study. Int J Epidemiol. 2012;41:359–65.CrossRef
18.
go back to reference Cohen JF, Korevaar DA, Altman DG, Bruns DE, Gatsonis CA, Hooft L, et al. STARD 2015 guidelines for reporting diagnostic accuracy studies: explanation and elaboration. BMJ Open. 2016;6:e012799.CrossRef Cohen JF, Korevaar DA, Altman DG, Bruns DE, Gatsonis CA, Hooft L, et al. STARD 2015 guidelines for reporting diagnostic accuracy studies: explanation and elaboration. BMJ Open. 2016;6:e012799.CrossRef
19.
go back to reference Ferrannini E, Gastaldelli A, Miyazaki Y, Matsuda M, Mari A, DeFronzo RA. Beta-cell function in subjects spanning the range from normal glucose tolerance to overt diabetes: a new analysis. J Clin Endocrinol Metab. 2005;90:493–500.CrossRef Ferrannini E, Gastaldelli A, Miyazaki Y, Matsuda M, Mari A, DeFronzo RA. Beta-cell function in subjects spanning the range from normal glucose tolerance to overt diabetes: a new analysis. J Clin Endocrinol Metab. 2005;90:493–500.CrossRef
20.
go back to reference Tuomilehto J, Lindstrom J, Eriksson JG, Valle TT, Hamalainen H, Ilanne-Parikka P, et al. Finnish diabetes prevention study group: prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med. 2001;344:1343–50.CrossRef Tuomilehto J, Lindstrom J, Eriksson JG, Valle TT, Hamalainen H, Ilanne-Parikka P, et al. Finnish diabetes prevention study group: prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med. 2001;344:1343–50.CrossRef
21.
go back to reference Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA, et al. Diabetes prevention program research group: reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346:393–403.CrossRef Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA, et al. Diabetes prevention program research group: reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346:393–403.CrossRef
22.
go back to reference Pan XR, Li GW, Hu YH, Wang JX, Yang WY, An ZX, et al. Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance. The Da Qing IGT and diabetes study. Diabetes Care. 1997;20:537–44.CrossRef Pan XR, Li GW, Hu YH, Wang JX, Yang WY, An ZX, et al. Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance. The Da Qing IGT and diabetes study. Diabetes Care. 1997;20:537–44.CrossRef
23.
go back to reference Chotwanvirat P, Thewjitcharoen Y, Parksook W, Krittiyawong S, Hutaphat K, Nakasatien S, et al. Development of New Lemon-Lime Flavored Beverage for OGTT: Acceptability and Reproducibility. J Med Assoc Thail. 2016;99:497–504. Chotwanvirat P, Thewjitcharoen Y, Parksook W, Krittiyawong S, Hutaphat K, Nakasatien S, et al. Development of New Lemon-Lime Flavored Beverage for OGTT: Acceptability and Reproducibility. J Med Assoc Thail. 2016;99:497–504.
24.
go back to reference Tabák AG, Herder C, Rathmann W, Brunner EJ, Kivimäki M. Prediabetes: a high-risk state for diabetes development. Lancet. 2012;379:2279–90.CrossRef Tabák AG, Herder C, Rathmann W, Brunner EJ, Kivimäki M. Prediabetes: a high-risk state for diabetes development. Lancet. 2012;379:2279–90.CrossRef
25.
go back to reference Abdul-Ghani MA, Williams K, DeFronzo RA, Stern M. What is the best predictor of future type 2 diabetes? Diabetes Care. 2007;30:1544–8.CrossRef Abdul-Ghani MA, Williams K, DeFronzo RA, Stern M. What is the best predictor of future type 2 diabetes? Diabetes Care. 2007;30:1544–8.CrossRef
26.
go back to reference Karuranga S, Wiebke Ohlrogge A. The time bomb of IGT. Diabetes Res Clin Pract. 2018;138:288–90.CrossRef Karuranga S, Wiebke Ohlrogge A. The time bomb of IGT. Diabetes Res Clin Pract. 2018;138:288–90.CrossRef
27.
go back to reference American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2010;33(Suppl1):S62–9.CrossRef American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2010;33(Suppl1):S62–9.CrossRef
28.
go back to reference International Expert Committee Report on the Role of the A1C assay in the diagnosis of diabetes. Diabetes Care 2009;32:1327–1334. International Expert Committee Report on the Role of the A1C assay in the diagnosis of diabetes. Diabetes Care 2009;32:1327–1334.
29.
go back to reference Rohlfing C, Wiedmeyer HM, Little R, Grotz VL, Tennill A, England J, et al. Biological variation of glycohemoglobin. Clin Chem. 2002;48:1116–8.PubMed Rohlfing C, Wiedmeyer HM, Little R, Grotz VL, Tennill A, England J, et al. Biological variation of glycohemoglobin. Clin Chem. 2002;48:1116–8.PubMed
30.
go back to reference Nasir NM, Thevarajah M, Yean CY. Hemoglobin variants detected by hemoglobin A1c (HbA1c) analysis and the effects on HbA1c measurements. Int J Diabetes Dev Ctries. 2010;30:86–90.CrossRef Nasir NM, Thevarajah M, Yean CY. Hemoglobin variants detected by hemoglobin A1c (HbA1c) analysis and the effects on HbA1c measurements. Int J Diabetes Dev Ctries. 2010;30:86–90.CrossRef
31.
go back to reference Fucharoen S, Weatherall DJ. Progress Toward the Control and Management of the Thalassemias. Hematol Oncol Clin North Am. 2016;30:359–71.CrossRef Fucharoen S, Weatherall DJ. Progress Toward the Control and Management of the Thalassemias. Hematol Oncol Clin North Am. 2016;30:359–71.CrossRef
32.
go back to reference Shimodaira M, Okaniwa S, Hanyu N, Nakayama T. Optimal Hemoglobin A1c Levels for Screening of Diabetes and Prediabetes in the Japanese Population. J Diabetes Res. 2015;2015:932057.CrossRef Shimodaira M, Okaniwa S, Hanyu N, Nakayama T. Optimal Hemoglobin A1c Levels for Screening of Diabetes and Prediabetes in the Japanese Population. J Diabetes Res. 2015;2015:932057.CrossRef
33.
go back to reference Chai JH, Ma S, Heng D, Yoong J, Lim WY, Toh SA, et al. Impact of analytical and biological variations on classification of diabetes using fasting plasma glucose, oral glucose tolerance test and HbA1c. Sci Rep. 2017;7:13721.CrossRef Chai JH, Ma S, Heng D, Yoong J, Lim WY, Toh SA, et al. Impact of analytical and biological variations on classification of diabetes using fasting plasma glucose, oral glucose tolerance test and HbA1c. Sci Rep. 2017;7:13721.CrossRef
34.
go back to reference Cohen RM, Haggerty S, Herman WH. HbA1c for the diagnosis of diabetes and prediabetes: is it time for a mid-course correction? J Clin Endocrinol Metab. 2010;95:5203–6.CrossRef Cohen RM, Haggerty S, Herman WH. HbA1c for the diagnosis of diabetes and prediabetes: is it time for a mid-course correction? J Clin Endocrinol Metab. 2010;95:5203–6.CrossRef
35.
go back to reference Meijnikman AS, De Block CEM, Dirinck E, Verrijken A, Mertens I, Corthouts B, et al. Not performing an OGTT results in significant underdiagnosis of (pre)diabetes in a high risk adult Caucasian population. Int J Obes. 2017;41:1615–20.CrossRef Meijnikman AS, De Block CEM, Dirinck E, Verrijken A, Mertens I, Corthouts B, et al. Not performing an OGTT results in significant underdiagnosis of (pre)diabetes in a high risk adult Caucasian population. Int J Obes. 2017;41:1615–20.CrossRef
36.
go back to reference Zhang YH, Ma WJ, Thomas GN, Xu YJ, Lao XQ, Xu XJ, et al. Diabetes and pre-diabetes as determined by glycated haemoglobin A1c and glucose levels in a developing southern Chinese population. PLoS One. 2012;7:e37260.CrossRef Zhang YH, Ma WJ, Thomas GN, Xu YJ, Lao XQ, Xu XJ, et al. Diabetes and pre-diabetes as determined by glycated haemoglobin A1c and glucose levels in a developing southern Chinese population. PLoS One. 2012;7:e37260.CrossRef
37.
go back to reference Li J, Ma H, Na L, Jiang S, Lv L, Li G, et al. Increased hemoglobin A1c threshold for prediabetes remarkably improving the agreement between A1c and oral glucose tolerance test criteria in obese population. J Clin Endocrinol Metab. 2015;100:1997–2005.CrossRef Li J, Ma H, Na L, Jiang S, Lv L, Li G, et al. Increased hemoglobin A1c threshold for prediabetes remarkably improving the agreement between A1c and oral glucose tolerance test criteria in obese population. J Clin Endocrinol Metab. 2015;100:1997–2005.CrossRef
38.
go back to reference Camacho JE, Shah VO, Schrader R, Wong CS, Burge MR. Performance of A1C versus OGTT for the diagnosis of prediabetes in a community-based screening. Endocr Pract. 2016;22:1288–95.CrossRef Camacho JE, Shah VO, Schrader R, Wong CS, Burge MR. Performance of A1C versus OGTT for the diagnosis of prediabetes in a community-based screening. Endocr Pract. 2016;22:1288–95.CrossRef
39.
go back to reference Ho-Pham LT, Do TT, Campbell LV, Nguyen TV. HbA1c-Based Classification Reveals Epidemic of Diabetes and Prediabetes in Vietnam. Diabetes Care. 2016;39:e93–4.CrossRef Ho-Pham LT, Do TT, Campbell LV, Nguyen TV. HbA1c-Based Classification Reveals Epidemic of Diabetes and Prediabetes in Vietnam. Diabetes Care. 2016;39:e93–4.CrossRef
40.
go back to reference Jagannathan R, Sevick MA, Fink D, Dankner R, Chetrit A, Roth J, et al. The 1-hour post-load glucose level is more effective than HbA1c for screening dysglycemia. Acta Diabetol. 2016;53:543–50.CrossRef Jagannathan R, Sevick MA, Fink D, Dankner R, Chetrit A, Roth J, et al. The 1-hour post-load glucose level is more effective than HbA1c for screening dysglycemia. Acta Diabetol. 2016;53:543–50.CrossRef
41.
go back to reference Paddock E, Looker HC, Piaggi P, Knowler WC, Krakoff J, Chang DC. One-hour plasma glucose compared with two-hour plasma glucose in relation to diabetic retinopathy in American Indians. Diabetes Care. 2018;41:1212–7.CrossRef Paddock E, Looker HC, Piaggi P, Knowler WC, Krakoff J, Chang DC. One-hour plasma glucose compared with two-hour plasma glucose in relation to diabetic retinopathy in American Indians. Diabetes Care. 2018;41:1212–7.CrossRef
Metadata
Title
Performance of HbA1c versus oral glucose tolerance test (OGTT) as a screening tool to diagnose dysglycemic status in high-risk Thai patients
Authors
Yotsapon Thewjitcharoen
Amia Jones Elizabeth
Siriwan Butadej
Soontaree Nakasatien
Phawinpon Chotwanvirat
Ekgaluck Wanothayaroj
Sirinate Krittiyawong
Tinapa Himathongkam
Thep Himathongkam
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Endocrine Disorders / Issue 1/2019
Electronic ISSN: 1472-6823
DOI
https://doi.org/10.1186/s12902-019-0339-6

Other articles of this Issue 1/2019

BMC Endocrine Disorders 1/2019 Go to the issue