Skip to main content
Top
Published in: BMC Endocrine Disorders 1/2018

Open Access 01-12-2018 | Research article

Comparison of glycemic control and β-cell function in new onset T2DM patients with PCOS of metformin and saxagliptin monotherapy or combination treatment

Authors: Tao Tao, Peihong Wu, Yuying Wang, Wei Liu

Published in: BMC Endocrine Disorders | Issue 1/2018

Login to get access

Abstract

Background

Impaired insulin activity in women with polycystic ovary syndrome might differ from that seen in type 2 diabetes mellitus without polycystic ovary syndrome. This study was designed to compare the effects of treatment with metformin, saxagliptin, and their combination in newly diagnosed women with type 2 diabetes mellitus and polycystic ovary syndrome in China.

Methods

A total of 75 newly diagnosed patients from Shanghai, China with type 2 diabetes mellitus and polycystic ovary syndrome were included in this randomized, parallel, open-label study. All patients received treatment for 24 weeks with metformin, saxagliptin, or their combination. Patients were allocated to one of three treatment groups by a computer-generated code that facilitated equal patient distribution of 25 patients per group. The primary outcome was a change in glycemic control and β-cell function.

Results

A total of 63 patients completed the study (n = 21, for each group). The reduction in hemoglobin A1c was significant in the combination group, compared to the monotherapy groups (saxagliptin vs. combination treatment vs. metformin: − 1.1 vs. -1.3 vs. -1.1%, P = 0.016), whereas it was comparable between the metformin and saxagliptin groups (P > 0.05). Saxagliptin, metformin, and the combination treatment significantly reduced the homeostasis model assessment- insulin resistance index and increased the deposition index (P < 0.01 for all). However, no significant change was observed in the homeostasis model assessment- β-cell function among the metformin and combination groups, and no significant changes were observed in the insulinogenic index among all three groups (P > 0.05 for all). In addition, saxagliptin and metformin treatments significantly reduced body mass index and high-sensitivity C-reactive protein levels (P < 0.01 for both).

Conclusions

Saxagliptin and metformin were comparably effective in regulating weight loss, glycemic control, and β-cell function, improving lipid profiles, and reducing inflammation in newly diagnosed type 2 diabetes mellitus patients with polycystic ovary syndrome.

Trial registration

ChiCTR-IPR-17011120 (retrospectively registered on 2017–04-12).
Appendix
Available only for authorised users
Literature
1.
go back to reference Ehrmann DA, Kasza K, Azziz R, Legro RS, Ghazzi MN, PCOS/Troglitazone Study Group. Effects of race and family history of type 2 diabetes on metabolic status of women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2005;90:66–71.CrossRefPubMed Ehrmann DA, Kasza K, Azziz R, Legro RS, Ghazzi MN, PCOS/Troglitazone Study Group. Effects of race and family history of type 2 diabetes on metabolic status of women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2005;90:66–71.CrossRefPubMed
2.
go back to reference Legro RS, Kunselman AR, Dodson WC, Dunaif A. Prevalence and predictors of risk for type 2 diabetes mellitus and impaired glucose tolerance in polycystic ovary syndrome: a prospective, controlled study in 254 affected women. J Clin Endocrinol Metab. 1999;84:165–9.PubMed Legro RS, Kunselman AR, Dodson WC, Dunaif A. Prevalence and predictors of risk for type 2 diabetes mellitus and impaired glucose tolerance in polycystic ovary syndrome: a prospective, controlled study in 254 affected women. J Clin Endocrinol Metab. 1999;84:165–9.PubMed
3.
go back to reference Reaven GM. Banting lecture 1988. Role of insulin resistance in human disease. Diabetes. 1988;37:1595–607.CrossRefPubMed Reaven GM. Banting lecture 1988. Role of insulin resistance in human disease. Diabetes. 1988;37:1595–607.CrossRefPubMed
4.
go back to reference Dunaif A, Xia J, Book CB, Schenker E, Tang Z. Excessive insulin receptor serine phosphorylation in cultured fibroblasts and in skeletal muscle. A potential mechanism for insulin resistance in the polycystic ovary syndrome. J Clin Invest. 1995;96:801–10.CrossRefPubMedPubMedCentral Dunaif A, Xia J, Book CB, Schenker E, Tang Z. Excessive insulin receptor serine phosphorylation in cultured fibroblasts and in skeletal muscle. A potential mechanism for insulin resistance in the polycystic ovary syndrome. J Clin Invest. 1995;96:801–10.CrossRefPubMedPubMedCentral
5.
go back to reference Tao T, Li SX, Zhao AM, Mao XY, Liu W. Early impaired β-cell function in Chinese women with polycystic ovary syndrome. Int J Clin Exp Pathol. 2012;5:777–86.PubMedPubMedCentral Tao T, Li SX, Zhao AM, Mao XY, Liu W. Early impaired β-cell function in Chinese women with polycystic ovary syndrome. Int J Clin Exp Pathol. 2012;5:777–86.PubMedPubMedCentral
7.
go back to reference DeFronzo RA. Pathogenesis of type 2 diabetes: implications for metformin. Drugs. 1999;58(Suppl 1):29–30. discussion 75-82CrossRefPubMed DeFronzo RA. Pathogenesis of type 2 diabetes: implications for metformin. Drugs. 1999;58(Suppl 1):29–30. discussion 75-82CrossRefPubMed
8.
go back to reference Diamanti-Kandarakis E, Christakou CD, Kandaraki E, Economou FN. Metformin: an old medication of new fashion: evolving new molecular mechanisms and clinical implications in polycystic ovary syndrome. Eur J Endocrinol. 2010;162:193–212.CrossRefPubMed Diamanti-Kandarakis E, Christakou CD, Kandaraki E, Economou FN. Metformin: an old medication of new fashion: evolving new molecular mechanisms and clinical implications in polycystic ovary syndrome. Eur J Endocrinol. 2010;162:193–212.CrossRefPubMed
9.
go back to reference Nestler JE. Metformin for the treatment of the polycystic ovary syndrome. N Engl J Med. 2008;358:47–54.CrossRefPubMed Nestler JE. Metformin for the treatment of the polycystic ovary syndrome. N Engl J Med. 2008;358:47–54.CrossRefPubMed
10.
go back to reference Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28:412–9.CrossRefPubMed Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28:412–9.CrossRefPubMed
11.
go back to reference Seltzer HS, Allen EW, Herron AL Jr, Brennan MT. Insulin secretion in response to glycemic stimulus: relation of delayed initial release to carbohydrate intolerance in mild diabetes mellitus. J Clin Invest. 1967;46:323–35.CrossRefPubMedPubMedCentral Seltzer HS, Allen EW, Herron AL Jr, Brennan MT. Insulin secretion in response to glycemic stimulus: relation of delayed initial release to carbohydrate intolerance in mild diabetes mellitus. J Clin Invest. 1967;46:323–35.CrossRefPubMedPubMedCentral
12.
go back to reference Drivsholm T, Hansen T, Urhammer SA, Palacios RT, Volund A, Borch-Johnsen K, et al. Assessment of insulin sensitivity and beta-cell function from an oral glucose tolerance test. Diabetologia. 1999;42(Suppl 1):A185. Drivsholm T, Hansen T, Urhammer SA, Palacios RT, Volund A, Borch-Johnsen K, et al. Assessment of insulin sensitivity and beta-cell function from an oral glucose tolerance test. Diabetologia. 1999;42(Suppl 1):A185.
13.
go back to reference Kahn SE, Prigeon RL, Mcculloch DK, Boyko EJ, Bergman RN, Schwartz MW, et al. Quantification of the relationship between insulin sensitivity and beta-cell function in human-subjects. Evidence for a hyperbolic function. Diabetes. 1993;42:1663–72.CrossRefPubMed Kahn SE, Prigeon RL, Mcculloch DK, Boyko EJ, Bergman RN, Schwartz MW, et al. Quantification of the relationship between insulin sensitivity and beta-cell function in human-subjects. Evidence for a hyperbolic function. Diabetes. 1993;42:1663–72.CrossRefPubMed
14.
go back to reference Vrbikova J, Hill M, Bendlova B, Grimmichova T, Dvorakova K, Vondra K, et al. Incretin levels in polycystic ovary syndrome. Eur J Endocrinol. 2008;159:121–7.CrossRefPubMed Vrbikova J, Hill M, Bendlova B, Grimmichova T, Dvorakova K, Vondra K, et al. Incretin levels in polycystic ovary syndrome. Eur J Endocrinol. 2008;159:121–7.CrossRefPubMed
15.
go back to reference Gama R, Norris F, Wright J, Morgan L, Hampton S, Watkins S, Marks V. The entero-insular axis in polycystic ovarian syndrome. Ann Clin Biochem. 1996;33(Pt 3):190–5.PubMed Gama R, Norris F, Wright J, Morgan L, Hampton S, Watkins S, Marks V. The entero-insular axis in polycystic ovarian syndrome. Ann Clin Biochem. 1996;33(Pt 3):190–5.PubMed
16.
go back to reference Pontikis C, Yavropoulou MP, Toulis KA, Kotsa K, Kazakos K, Papazisi A, et al. The incretin effect and secretion in obese and lean women with polycystic ovary syndrome: a pilot study. J Women's Health (Larchmt). 2011;20:971–6.CrossRef Pontikis C, Yavropoulou MP, Toulis KA, Kotsa K, Kazakos K, Papazisi A, et al. The incretin effect and secretion in obese and lean women with polycystic ovary syndrome: a pilot study. J Women's Health (Larchmt). 2011;20:971–6.CrossRef
17.
go back to reference Meier JJ. GLP-1 receptor agonists for individualized treatment of type 2 diabetes mellitus. Nat Rev Endocrinol. 2012;8:728–42.CrossRefPubMed Meier JJ. GLP-1 receptor agonists for individualized treatment of type 2 diabetes mellitus. Nat Rev Endocrinol. 2012;8:728–42.CrossRefPubMed
18.
go back to reference Farilla L, Bulotta A, Hirshberg B, Li Calzi S, Khoury N, Noushmehr H, et al. Glucagon-like peptide 1 inhibits cell apoptosis and improves glucose responsiveness of freshly isolated human islets. Endocrinology. 2003;144:5149–58.CrossRefPubMed Farilla L, Bulotta A, Hirshberg B, Li Calzi S, Khoury N, Noushmehr H, et al. Glucagon-like peptide 1 inhibits cell apoptosis and improves glucose responsiveness of freshly isolated human islets. Endocrinology. 2003;144:5149–58.CrossRefPubMed
19.
go back to reference Crepaldi G, Carruba M, Comaschi M, Del Prato S, Frajese G, Paolisso G. Dipeptidyl peptidase 4 (DPP-4) inhibitors and their role in type 2 diabetes management. J Endocrinol Investig. 2007;30:610–4.CrossRef Crepaldi G, Carruba M, Comaschi M, Del Prato S, Frajese G, Paolisso G. Dipeptidyl peptidase 4 (DPP-4) inhibitors and their role in type 2 diabetes management. J Endocrinol Investig. 2007;30:610–4.CrossRef
20.
go back to reference Elkind-Hirsch KE, Paterson MS, Seidemann EL, Gutowski HC. Short-term therapy with combination dipeptidyl peptidase-4 inhibitor saxagliptin/metformin extended release (XR) is superior to saxagliptin or metformin XR monotherapy in prediabetic women with polycystic ovary syndrome: a single-blind, randomized, pilot study. Fertil Steril. 2017;107:253–60.e1.CrossRefPubMed Elkind-Hirsch KE, Paterson MS, Seidemann EL, Gutowski HC. Short-term therapy with combination dipeptidyl peptidase-4 inhibitor saxagliptin/metformin extended release (XR) is superior to saxagliptin or metformin XR monotherapy in prediabetic women with polycystic ovary syndrome: a single-blind, randomized, pilot study. Fertil Steril. 2017;107:253–60.e1.CrossRefPubMed
21.
go back to reference Yabe D, Seino Y, Fukushima M. Seino S. β cell dysfunction versus insulin resistance in the pathogenesis of type 2 diabetes in east Asians. Curr Diab Rep. 2015;15:602.CrossRefPubMed Yabe D, Seino Y, Fukushima M. Seino S. β cell dysfunction versus insulin resistance in the pathogenesis of type 2 diabetes in east Asians. Curr Diab Rep. 2015;15:602.CrossRefPubMed
22.
go back to reference De Sousa SM, Norman RJ. Metabolic syndrome, diet and exercise. Best Pract Res Clin Obstet Gynaecol. 2016;37:140–51.CrossRef De Sousa SM, Norman RJ. Metabolic syndrome, diet and exercise. Best Pract Res Clin Obstet Gynaecol. 2016;37:140–51.CrossRef
Metadata
Title
Comparison of glycemic control and β-cell function in new onset T2DM patients with PCOS of metformin and saxagliptin monotherapy or combination treatment
Authors
Tao Tao
Peihong Wu
Yuying Wang
Wei Liu
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Endocrine Disorders / Issue 1/2018
Electronic ISSN: 1472-6823
DOI
https://doi.org/10.1186/s12902-018-0243-5

Other articles of this Issue 1/2018

BMC Endocrine Disorders 1/2018 Go to the issue