Skip to main content
Top
Published in: BMC Endocrine Disorders 1/2018

Open Access 01-12-2018 | Research article

Stem cells and beta cell replacement therapy: a prospective health technology assessment study

Authors: Klemens Wallner, Rene G. Pedroza, Isaac Awotwe, James M. Piret, Peter A. Senior, A. M. James Shapiro, Christopher McCabe

Published in: BMC Endocrine Disorders | Issue 1/2018

Login to get access

Abstract

Background

Although current beta cell replacement therapy is effective in stabilizing glycemic control in highly selected patients with refractory type 1 diabetes, many hurdles are inherent to this and other donor-based transplantation methods. One solution could be moving to stem cell-derived transplant tissue. This study investigates a novel stem cell-derived graft and implant technology and explores the circumstances of its cost-effectiveness compared to intensive insulin therapy.

Methods

We used a manufacturing optimization model based on work by Simaria et al. to model cost of the stem cell-based transplant doses and integrated its results into a cost-effectiveness model of diabetes treatments. The disease model simulated marginal differences in clinical effects and costs between the new technology and our comparator intensive insulin therapy. The form of beta cell replacement therapy was as a series of retrievable subcutaneous implant devices which protect the enclosed pancreatic progenitors cells from the immune system. This approach was presumed to be as effective as state of the art islet transplantation, aside from immunosuppression drawbacks. We investigated two different cell culture methods and several production and delivery scenarios.

Results

We found the likely range of treatment costs for this form of graft tissue for beta cell replacement therapy. Additionally our results show this technology could be cost-effective compared to intensive insulin therapy, at a willingness-to-pay threshold of $100,000 per quality-adjusted life year. However, results also indicate that mass production has by far the best chance of providing affordable graft tissue, while overall there seems to be considerable room for cost reductions.

Conclusions

Such a technology can improve treatment access and quality of life for patients through increased graft supply and protection. Stem cell-based implants can be a feasible way of treating a wide range of patients with type 1 diabetes.
Appendix
Available only for authorised users
Literature
7.
go back to reference ClinicalTrials.gov. Identifier NCT02239354, A Safety, Tolerability, and Efficacy Study of VC-01TM Combination Product in Subjects With Type I Diabetes Mellitus. ClinicalTrials.gov. Bethesda (MD): National Library of Medicine (US), 2016. ClinicalTrials.gov. Identifier NCT02239354, A Safety, Tolerability, and Efficacy Study of VC-01TM Combination Product in Subjects With Type I Diabetes Mellitus. ClinicalTrials.gov. Bethesda (MD): National Library of Medicine (US), 2016.
11.
15.
go back to reference Agulnick AD, Ambruzs DM, Moorman MA, Bhoumik A, Cesario RM, Payne JK, et al. Insulin-producing endocrine cells differentiated in vitro from human embryonic stem cells function in macroencapsulation devices in vivo. Stem Cells Transl Med. 2015; https://doi.org/10.5966/sctm.2015-0079. Agulnick AD, Ambruzs DM, Moorman MA, Bhoumik A, Cesario RM, Payne JK, et al. Insulin-producing endocrine cells differentiated in vitro from human embryonic stem cells function in macroencapsulation devices in vivo. Stem Cells Transl Med. 2015; https://​doi.​org/​10.​5966/​sctm.​2015-0079.
18.
go back to reference Karimi-Busheri F, Rasouli-Nia A, Weinfeld M. Key issues related to cryopreservation and storage of stem cells and cancer stem cells: protecting biological integrity. In: Karimi-Busheri F, Weinfeld M, editors. Biobanking and cryopreservation of stem cells. Cham: Springer International Publishing; 2016.CrossRef Karimi-Busheri F, Rasouli-Nia A, Weinfeld M. Key issues related to cryopreservation and storage of stem cells and cancer stem cells: protecting biological integrity. In: Karimi-Busheri F, Weinfeld M, editors. Biobanking and cryopreservation of stem cells. Cham: Springer International Publishing; 2016.CrossRef
19.
go back to reference Hourd P, Chandra A, Medcalf N, Williams DJ. Regulatory challenges for the manufacture and scale-out of autologous cell therapies (June 30, 2014). In: The Stem Cell Research Community, editor. StemBook. StemBook, 2014. Hourd P, Chandra A, Medcalf N, Williams DJ. Regulatory challenges for the manufacture and scale-out of autologous cell therapies (June 30, 2014). In: The Stem Cell Research Community, editor. StemBook. StemBook, 2014.
21.
24.
25.
go back to reference O’Reilly D, Hopkins R, Blackhouse G, Clarke P, Hux J, Guan J, et al. Development of an Ontario diabetes economic model (ODEM) and application to a multidisciplinary primary care diabetes management program. (Report prepared for the Ontario Ministry of Health and Long-term Care). Hamilton, Ontario: Program for Assessment of Technology in Health (PATH); 2006. O’Reilly D, Hopkins R, Blackhouse G, Clarke P, Hux J, Guan J, et al. Development of an Ontario diabetes economic model (ODEM) and application to a multidisciplinary primary care diabetes management program. (Report prepared for the Ontario Ministry of Health and Long-term Care). Hamilton, Ontario: Program for Assessment of Technology in Health (PATH); 2006.
28.
go back to reference Tengs TO, Wallace A. One thousand health-related quality-of-life estimates. Med Care. 2000;38:583–637.CrossRefPubMed Tengs TO, Wallace A. One thousand health-related quality-of-life estimates. Med Care. 2000;38:583–637.CrossRefPubMed
29.
go back to reference Palmer AJ, Roze S, Valentine WJ, Minshall ME, Foos V, Lurati FM, et al. The CORE diabetes model: projecting long-term clinical outcomes, costs and cost-effectiveness of interventions in diabetes mellitus (types 1 and 2) to support clinical and reimbursement decision-making. Curr Med Res Opin. 2004; https://doi.org/10.1185/030079904X1980. Palmer AJ, Roze S, Valentine WJ, Minshall ME, Foos V, Lurati FM, et al. The CORE diabetes model: projecting long-term clinical outcomes, costs and cost-effectiveness of interventions in diabetes mellitus (types 1 and 2) to support clinical and reimbursement decision-making. Curr Med Res Opin. 2004; https://​doi.​org/​10.​1185/​030079904X1980.
30.
go back to reference Canadian Agency for Drugs and Technologies in Health (CADTH). Guidelines for the economic evaluation of health technologies. 3rd ed. Ottawa: Canadian Agency for Drugs and Technologies in Health; 2006. Canadian Agency for Drugs and Technologies in Health (CADTH). Guidelines for the economic evaluation of health technologies. 3rd ed. Ottawa: Canadian Agency for Drugs and Technologies in Health; 2006.
31.
go back to reference Briggs A, Sculpher M, Claxton K. Decision modelling for health economic evaluation. Handbooks in health economic evaluation. 1st ed. New York and Oxford: Oxford University Press; 2006. Briggs A, Sculpher M, Claxton K. Decision modelling for health economic evaluation. Handbooks in health economic evaluation. 1st ed. New York and Oxford: Oxford University Press; 2006.
33.
go back to reference Institute of Health Economics. Islet transplantation for the treatment of type 1 diabetes. Edmonton, AB: Institute of Health Economics; 2013. Institute of Health Economics. Islet transplantation for the treatment of type 1 diabetes. Edmonton, AB: Institute of Health Economics; 2013.
35.
go back to reference Canadian Institute for Health Information. Canadian Organ Replacement Register Annual Report: Treatment of End-Stage Organ Failure in Canada, 2003 to 2012. Canadian Organ Replacement Register Annual Report. 2014. Canadian Institute for Health Information. Canadian Organ Replacement Register Annual Report: Treatment of End-Stage Organ Failure in Canada, 2003 to 2012. Canadian Organ Replacement Register Annual Report. 2014.
36.
go back to reference Canadian Institute for Health Information. Appendix B — Canadian Transplant Hospitals, Renal Programs and Independent Health Facilities Providing Dialysis to Chronic Renal Failure Patients as Reported to CORR. Canadian Organ Replacement Register Annual Report. 2015. Canadian Institute for Health Information. Appendix B — Canadian Transplant Hospitals, Renal Programs and Independent Health Facilities Providing Dialysis to Chronic Renal Failure Patients as Reported to CORR. Canadian Organ Replacement Register Annual Report. 2015.
47.
go back to reference International Union of Pure and Applied Chemistry (IUPAC). In: AD MN, Wilkinson A, editors. Compendium of Chemical Terminology, (the “Gold Book”). 2nd ed. Oxford: Blackwell Scientific Publications; 1997. XML on-line corrected version: http://goldbook.iupac.org (2006-) created by M. Nic, J. Jirat, B. Kosata; updates compiled by A. Jenkins. https://doi.org/10.1351/goldbook. International Union of Pure and Applied Chemistry (IUPAC). In: AD MN, Wilkinson A, editors. Compendium of Chemical Terminology, (the “Gold Book”). 2nd ed. Oxford: Blackwell Scientific Publications; 1997. XML on-line corrected version: http://​goldbook.​iupac.​org (2006-) created by M. Nic, J. Jirat, B. Kosata; updates compiled by A. Jenkins. https://​doi.​org/​10.​1351/​goldbook.
Metadata
Title
Stem cells and beta cell replacement therapy: a prospective health technology assessment study
Authors
Klemens Wallner
Rene G. Pedroza
Isaac Awotwe
James M. Piret
Peter A. Senior
A. M. James Shapiro
Christopher McCabe
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Endocrine Disorders / Issue 1/2018
Electronic ISSN: 1472-6823
DOI
https://doi.org/10.1186/s12902-018-0233-7

Other articles of this Issue 1/2018

BMC Endocrine Disorders 1/2018 Go to the issue