Skip to main content
Top
Published in: BMC Endocrine Disorders 1/2017

Open Access 01-12-2017 | Research article

Adequacy of control of cardiovascular risk factors in ambulatory patients with type 2 diabetes attending diabetes out-patients clinic at a county hospital, Kenya

Authors: Mercy W. Kimando, Frederick C. F. Otieno, Elijah N. Ogola, Kenn Mutai

Published in: BMC Endocrine Disorders | Issue 1/2017

Login to get access

Abstract

Background

Type 2 diabetes is associated with substantial cardiovascular morbidity and mortality arising from the high prevalence of cardiovascular risk factors such as hypertension, dyslipidaemia, obesity, poor glycaemic control and albuminuria. Adequacy of control of these risk factors determines the frequency and outcome of cardiovascular events in the patients. Current clinical practice guidelines emphasize primary prevention of cardiovascular disease in type 2 diabetes. There is scarce data from the developing countries, Kenya included, on clinical care of patients with type 2 diabetes in the regions that are far away from tertiary health facilities. So we determined the adequacy of control of the modifiable risk factors: glycaemic control, hypertension, dyslipidemia, obesity and albuminuria in the study patients from rural and peri-urban dwelling.

Methods

This was a cross-sectional study on 385 randomly selected ambulatory patients with type 2 diabetes without overt complications. They were on follow up for at least 6 months at the Out-patient diabetes clinic of Nyeri County Hospital, a public health facility located in the central region of Kenya.

Results

Females were 65.5%. The study subjects had a mean duration of diabetes of 9.4 years, IQR of 3.0–14 years. Their mean age was 63.3 years, IQR of 56-71 years.
Only 20.3% of our subjects had simultaneous optimal control of the three (3) main cardiovascular risk factors of hypertension, high LDL-C and hyperglycaemia at the time of the study. The prevalence of cardiovascular risk factors were as follows: HbA1c above 7% was 60.5% (95% CI, 55.6–65.5), hypertension, 49.6% of whom 76.6% (95% CI, 72.5–80.8) were poorly controlled. High LDL-Cholesterol above 2.0 mmol/L was found in 77.1% (95% CI 73.0–81.3) and Albuminuria occurred in 32.7% (95% CI 27.8–37.4). The prevalence of the other habits with cardiovascular disease risk were: excess alcohol intake at 26.5% (95% CI 27.8–37.4) and cigarette-smoking at 23.6%.
A modest 23.4% of the treated patients with hypertension attained target blood pressure of <140/90 mmHg. Out of a paltry 12.5% of the statin-treated patients and others not actively treated, only 22.9% had LDL-Cholesterol of target <2.0 mmol/L.
There were no obvious socio-demographic and clinical determinants of poor glycaemic control. However, old age above 50 yrs., longer duration with diabetes above 5 yrs. and advanced stages of CKD were significantly associated with hypertension. Female gender and age, statin non-use and socio-economic factor of employment were the significant determinants of high levels of serum LDL-cholesterol.

Conclusion

The majority of the study patients attending this government-funded health facility had high prevalence of cardiovascular risk factors that were inadequately controlled. Therefore patients with type 2 diabetes should be risk-stratified by their age, duration of diabetes and cardiovascular risk factor loading. Consequently, composite risk factor reduction strategies are needed in management of these patients to achieve the desired targets safely. This would be achieved through innovative care systems and modes of delivery which would translate into maximum benefit of primary cardiovascular disease prevention in those at high risk. It is a desirable quality objective to have a higher proportion of the patients who access care benefiting maximally more than the numbers we are achieving now.
Literature
1.
go back to reference Kuller LH, Velentgas P, Barzilay J, et al. Diabetes mellitus: sub-clinical cardiovascular disease and risk of incident cardiovascular disease and all-cause mortality. Arterioscler Thromb Vasc Biol. 2000;20:823–9.CrossRefPubMed Kuller LH, Velentgas P, Barzilay J, et al. Diabetes mellitus: sub-clinical cardiovascular disease and risk of incident cardiovascular disease and all-cause mortality. Arterioscler Thromb Vasc Biol. 2000;20:823–9.CrossRefPubMed
2.
go back to reference Almdal T, Scharling H, Jensen JS, Vestergaard H. The independent effect of type 2 diabetes mellitus on ischemic heart disease, stroke, and death: a population-based study of 13 000 men and women with 20 years of follow-up. Arch Intern Med. 2004;164:1422–6.CrossRefPubMed Almdal T, Scharling H, Jensen JS, Vestergaard H. The independent effect of type 2 diabetes mellitus on ischemic heart disease, stroke, and death: a population-based study of 13 000 men and women with 20 years of follow-up. Arch Intern Med. 2004;164:1422–6.CrossRefPubMed
3.
go back to reference Casagrande SS, Fradkin JE, Saydah SH, Rust KF, Cowie CC. The prevalence of meeting A1c, blood pressure and LDL goals among people with diabetes, 1988-2010. Diabetes Care. 2013;36:2271–9.CrossRef Casagrande SS, Fradkin JE, Saydah SH, Rust KF, Cowie CC. The prevalence of meeting A1c, blood pressure and LDL goals among people with diabetes, 1988-2010. Diabetes Care. 2013;36:2271–9.CrossRef
5.
go back to reference Yusuf S, Hawken S, Ounpuu S, Dans T, Avezum A, Lanas F, et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet. 2004;364:937–52.CrossRefPubMed Yusuf S, Hawken S, Ounpuu S, Dans T, Avezum A, Lanas F, et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet. 2004;364:937–52.CrossRefPubMed
6.
go back to reference Adeniyi OV, Yogeswaran P, Longo-Mbenza B, Goon DT, Ajayi AI, et al. Cross-sectional study of patients with type 2 diabetes in OR Tambo district, South Africa. BMJ Open. 2016;6:1–8.CrossRef Adeniyi OV, Yogeswaran P, Longo-Mbenza B, Goon DT, Ajayi AI, et al. Cross-sectional study of patients with type 2 diabetes in OR Tambo district, South Africa. BMJ Open. 2016;6:1–8.CrossRef
7.
go back to reference Paul A, Oparil S, Carter B. Report from the panel members appointed to the eighth joint National Committee (JNC 8). JAMA. 2014;311(5):507–20.CrossRef Paul A, Oparil S, Carter B. Report from the panel members appointed to the eighth joint National Committee (JNC 8). JAMA. 2014;311(5):507–20.CrossRef
8.
go back to reference Waist circumference and waist–hip ratio: report of a WHO expert consultation, Geneva, 8–11 December 2008. Chapter 2: Methods for measuring waist and hip circumference, page 5–7. © World Health Organization 2011. Waist circumference and waist–hip ratio: report of a WHO expert consultation, Geneva, 8–11 December 2008. Chapter 2: Methods for measuring waist and hip circumference, page 5–7. © World Health Organization 2011.
9.
go back to reference Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive summary of the third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III). JAMA. 2001;285:2486–97.CrossRef Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive summary of the third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III). JAMA. 2001;285:2486–97.CrossRef
10.
go back to reference World Health Organisation. Obesity: preventing and managing the global epidemic: report of a WHO consultation. Geneva: WHO Technical Report Series 894; 2000. World Health Organisation. Obesity: preventing and managing the global epidemic: report of a WHO consultation. Geneva: WHO Technical Report Series 894; 2000.
11.
go back to reference Rostoker G, Andrivet P, Pham I, Griuncelli M, Adnot S. A modified Cockcroft - Gault formula taking into account the body surface area gives a more accurate estimation of the glomerular filtration rate. J Nephrol. 2007;20(5):576–85.PubMed Rostoker G, Andrivet P, Pham I, Griuncelli M, Adnot S. A modified Cockcroft - Gault formula taking into account the body surface area gives a more accurate estimation of the glomerular filtration rate. J Nephrol. 2007;20(5):576–85.PubMed
12.
go back to reference Ayah R, Wanjiru R, Otieno CF, Joshi MD, et al. A population-based survey of prevalence of diabetes and correlates in an urban slum community in Nairobi, Kenya. BMC Public Health. 2013;13:371.CrossRefPubMedPubMedCentral Ayah R, Wanjiru R, Otieno CF, Joshi MD, et al. A population-based survey of prevalence of diabetes and correlates in an urban slum community in Nairobi, Kenya. BMC Public Health. 2013;13:371.CrossRefPubMedPubMedCentral
14.
go back to reference Schillinger D, Grumbach K, Piette J, et al. Associations of literacy with diabetes outcomes. JAMA. 2002;288:475–82.CrossRefPubMed Schillinger D, Grumbach K, Piette J, et al. Associations of literacy with diabetes outcomes. JAMA. 2002;288:475–82.CrossRefPubMed
15.
go back to reference Street RL Jr, Piziak VK, Carpentier WS, et al. Provider-patient communication and metabolic control. Diabetes Care. 1993;16:714–21.CrossRefPubMed Street RL Jr, Piziak VK, Carpentier WS, et al. Provider-patient communication and metabolic control. Diabetes Care. 1993;16:714–21.CrossRefPubMed
16.
go back to reference Brown AF, Ettner SL, Piette J, Weinberger M, Gregg E, Shapiro MF, Kartner AJ, et al. Socioeconomic position and health among persons with diabetes mellitus: a conceptual framework and review of literature. Epidemiologic Rev. 2004;26:63–77.CrossRef Brown AF, Ettner SL, Piette J, Weinberger M, Gregg E, Shapiro MF, Kartner AJ, et al. Socioeconomic position and health among persons with diabetes mellitus: a conceptual framework and review of literature. Epidemiologic Rev. 2004;26:63–77.CrossRef
17.
18.
go back to reference Grant RW, Cagliero E, Dubey AK, et al. Clinical inertia in the management of type 2 diabetes metabolic risk factors. Diabetic Med. 2004;21(2):150–5.CrossRefPubMed Grant RW, Cagliero E, Dubey AK, et al. Clinical inertia in the management of type 2 diabetes metabolic risk factors. Diabetic Med. 2004;21(2):150–5.CrossRefPubMed
19.
go back to reference Rubin RR, et al. Adherence to pharmacologic therapy in patients with type 2 diabetes mellitus. Am J of Med. 2005;118(Suppl5A):275–345. Rubin RR, et al. Adherence to pharmacologic therapy in patients with type 2 diabetes mellitus. Am J of Med. 2005;118(Suppl5A):275–345.
20.
go back to reference Bailey CJ, Kodack M. Patient adherence to medication requirements for therapy of type 2 diabetes. Int J Clin Pract. 2011;65(3):314–22.CrossRefPubMed Bailey CJ, Kodack M. Patient adherence to medication requirements for therapy of type 2 diabetes. Int J Clin Pract. 2011;65(3):314–22.CrossRefPubMed
21.
go back to reference Gill G. Diabetes in Africa - puzzles and challenges. Indian J Endocrinol Metabol. 2014;18(3):249–51.CrossRef Gill G. Diabetes in Africa - puzzles and challenges. Indian J Endocrinol Metabol. 2014;18(3):249–51.CrossRef
22.
go back to reference Ratnekaran R, Cull CA, Thorne KI, Adler AI, Holman RR. Risk factors for renal dysfunction in type 2 diabetes: UKPDS 74. Diabetes. 2006;55:1832–8.CrossRef Ratnekaran R, Cull CA, Thorne KI, Adler AI, Holman RR. Risk factors for renal dysfunction in type 2 diabetes: UKPDS 74. Diabetes. 2006;55:1832–8.CrossRef
23.
go back to reference Zoppini G, Targher G, Chonchol M, Ortalda V, Negri C, Stoico V, et al. Predictors of estimated Glomerular filtration rate in patients with type 2 diabetes and preserved kidney function. Clin J Am Soc Nephrol. 2012;7:401–8.CrossRefPubMed Zoppini G, Targher G, Chonchol M, Ortalda V, Negri C, Stoico V, et al. Predictors of estimated Glomerular filtration rate in patients with type 2 diabetes and preserved kidney function. Clin J Am Soc Nephrol. 2012;7:401–8.CrossRefPubMed
24.
go back to reference Takagi M, Babazono T, Uchigata Y. Differences in risk factors for the onset of albuminuria and decrease in GFR in people with type 2 diabetes: implications for the pathogenesis of diabetic kidney disease. Diabetic Med. 2015;32:1352–60.CrossRef Takagi M, Babazono T, Uchigata Y. Differences in risk factors for the onset of albuminuria and decrease in GFR in people with type 2 diabetes: implications for the pathogenesis of diabetic kidney disease. Diabetic Med. 2015;32:1352–60.CrossRef
25.
go back to reference Davis TM, Millens H, Stratten JM, et al. Risk factors for stroke in type 2 diabetes mellitus: United Kingdom prospective diabetes study (UKPDS) 29. Arch Intern Med. 1999;159:1097–103.CrossRefPubMed Davis TM, Millens H, Stratten JM, et al. Risk factors for stroke in type 2 diabetes mellitus: United Kingdom prospective diabetes study (UKPDS) 29. Arch Intern Med. 1999;159:1097–103.CrossRefPubMed
26.
go back to reference Straus SE, Majumdar SR, McAlister FA. New evidence for stroke prevention. JAMA. 2002;288:1388–95.CrossRefPubMed Straus SE, Majumdar SR, McAlister FA. New evidence for stroke prevention. JAMA. 2002;288:1388–95.CrossRefPubMed
27.
go back to reference Lee MG, Jeong MH, Lee HK, Park HK, Sim DS, et al. Prognostic impact of diabetes mellitus and hypertension for mid-term outcome of patients with AMI who underwent PCI. Cardiology. 2012;60(4):257–63.CrossRef Lee MG, Jeong MH, Lee HK, Park HK, Sim DS, et al. Prognostic impact of diabetes mellitus and hypertension for mid-term outcome of patients with AMI who underwent PCI. Cardiology. 2012;60(4):257–63.CrossRef
28.
go back to reference Nguchu HK, Joshi MD, Otieno CF. Acute coronary syndromes amongst type 2 diabetics with ischaemic electrocardiograms presenting to accident and emergency Department of a Kenyan tertiary institution. East Afr Med J. 2009;86(10):463–8.PubMed Nguchu HK, Joshi MD, Otieno CF. Acute coronary syndromes amongst type 2 diabetics with ischaemic electrocardiograms presenting to accident and emergency Department of a Kenyan tertiary institution. East Afr Med J. 2009;86(10):463–8.PubMed
29.
go back to reference Christopher J, Elosua R. Cardiovascular risk factors. Insights from Framingham heart study. Rev Esp Cardiol. 2008;61(3):299–310.CrossRef Christopher J, Elosua R. Cardiovascular risk factors. Insights from Framingham heart study. Rev Esp Cardiol. 2008;61(3):299–310.CrossRef
30.
go back to reference Matthews KA, Meilahn E, Kuller LH, Kelsehy SF, Caggiula AW, Wing RR. Menopause and risk factors for coronary heart disease. N Engl J Med. 1989;321:641–6.CrossRefPubMed Matthews KA, Meilahn E, Kuller LH, Kelsehy SF, Caggiula AW, Wing RR. Menopause and risk factors for coronary heart disease. N Engl J Med. 1989;321:641–6.CrossRefPubMed
31.
go back to reference Otieno CF, Vaghela V, Mwendwa F, Amayo EO, Ogola EN. Cardiovascular risk factors in patients with type 2 diabetes mellitus in Kenya: levels of control attained at the outpatient diabetic clinic of Kenyatta National Hospital, Nairobi. East Afr Med J. 2005;82(12):S184–90.PubMed Otieno CF, Vaghela V, Mwendwa F, Amayo EO, Ogola EN. Cardiovascular risk factors in patients with type 2 diabetes mellitus in Kenya: levels of control attained at the outpatient diabetic clinic of Kenyatta National Hospital, Nairobi. East Afr Med J. 2005;82(12):S184–90.PubMed
32.
go back to reference Berthold HK, Gouni-Berthold I, Bohm M, Krone W. Patterns and predictors of statin prescription in patients with type 2 diabetes. Cardio Diabetol. 2009;8:25.CrossRef Berthold HK, Gouni-Berthold I, Bohm M, Krone W. Patterns and predictors of statin prescription in patients with type 2 diabetes. Cardio Diabetol. 2009;8:25.CrossRef
34.
go back to reference Whiting D, Hayes L, Unwin N. Diabetes in Africa. Challenges to care for diabetes in Africa. J Cardiovasc Risk. 2003;10:103–10.CrossRefPubMed Whiting D, Hayes L, Unwin N. Diabetes in Africa. Challenges to care for diabetes in Africa. J Cardiovasc Risk. 2003;10:103–10.CrossRefPubMed
35.
go back to reference UKPDS Group. Intensive blood glucose control with sulfonylurea or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes. UKPDS 33. Lancet. 1998;352(9131):837–53.CrossRef UKPDS Group. Intensive blood glucose control with sulfonylurea or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes. UKPDS 33. Lancet. 1998;352(9131):837–53.CrossRef
36.
go back to reference The ADVANCE Collaborative Group. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. New Engl J Med. 2008;358(24):2560–972.CrossRef The ADVANCE Collaborative Group. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. New Engl J Med. 2008;358(24):2560–972.CrossRef
37.
go back to reference ALLHAT Collaborative Research Group. Major outcomes in high-risk hypertensive patients randomized to ACEis or calcium channel blockers versus diuretic therapy. The ALLHAT study. JAMA. 2002;288(23):2981–97.CrossRef ALLHAT Collaborative Research Group. Major outcomes in high-risk hypertensive patients randomized to ACEis or calcium channel blockers versus diuretic therapy. The ALLHAT study. JAMA. 2002;288(23):2981–97.CrossRef
38.
go back to reference Collins R. Heart protection study collaborative group: MRC/BHF heart protection study of cholesterol-lowering with simvastatin in 20,536 high-risk individuals: a randomized placebo controlled trial. Lancet. 2002;360:7–22.CrossRef Collins R. Heart protection study collaborative group: MRC/BHF heart protection study of cholesterol-lowering with simvastatin in 20,536 high-risk individuals: a randomized placebo controlled trial. Lancet. 2002;360:7–22.CrossRef
39.
go back to reference ACCORD Study Group, Cushman WC, Evans GW, Byington RP, et al. Effects of intensive blood-pressure control in type 2 diabetes mellitus. N Engl J Med. 2010;362:1575–85.CrossRef ACCORD Study Group, Cushman WC, Evans GW, Byington RP, et al. Effects of intensive blood-pressure control in type 2 diabetes mellitus. N Engl J Med. 2010;362:1575–85.CrossRef
40.
go back to reference Margolis KL, O’Connor PJ, Morgan TM, Buse JB, et al. Outcomes of combined cardiovascular risk management strategies in type 2 diabetes mellitus. Diab Care. 2014;37:1721–8.CrossRef Margolis KL, O’Connor PJ, Morgan TM, Buse JB, et al. Outcomes of combined cardiovascular risk management strategies in type 2 diabetes mellitus. Diab Care. 2014;37:1721–8.CrossRef
41.
go back to reference Drake TC, Hsu FC, Hire D, Chen S-H, Cohen RM, McDuffie R, Nylen E, O’Connor P, Rehman S, Seaquist RS. Factors associated with failure to achieve a glycated haemoglobin target of <8.0% in the action to control cardiovascular risk in diabetes (ACCORD) trial. Diabetes Obes Metab. 2016;18:92–5.CrossRefPubMed Drake TC, Hsu FC, Hire D, Chen S-H, Cohen RM, McDuffie R, Nylen E, O’Connor P, Rehman S, Seaquist RS. Factors associated with failure to achieve a glycated haemoglobin target of <8.0% in the action to control cardiovascular risk in diabetes (ACCORD) trial. Diabetes Obes Metab. 2016;18:92–5.CrossRefPubMed
42.
go back to reference Gaede P, Lund-Andersen H, Parving HH, Pederson O. Effect of multi-factorial intervention on mortality in type 2 diabetes. N Engl J Med. 2008;358:580–91.CrossRefPubMed Gaede P, Lund-Andersen H, Parving HH, Pederson O. Effect of multi-factorial intervention on mortality in type 2 diabetes. N Engl J Med. 2008;358:580–91.CrossRefPubMed
43.
go back to reference Gaede P, Oellgaard J, Carstensen B, Lund-Andersen H, Parving HH, Pederson O. Years of life gained by multifactorial intervention in patients with type 2 diabetes and microalbuminuria: 21 years follow-up on Steno-2 randomised trial. Diabetologia 2016; MID:27531506. DOI:10.1007/s00125-016-4065-6. Gaede P, Oellgaard J, Carstensen B, Lund-Andersen H, Parving HH, Pederson O. Years of life gained by multifactorial intervention in patients with type 2 diabetes and microalbuminuria: 21 years follow-up on Steno-2 randomised trial. Diabetologia 2016; MID:27531506. DOI:10.​1007/​s00125-016-4065-6.
44.
go back to reference Bittner V, Bertolet M, Barraza Felix R, et al. Comprehensive cardiovascular risk factor control improves survival - the BARI-2D trial. J Am Coll Cardiol. 2015;66(7):765–73.CrossRefPubMedPubMedCentral Bittner V, Bertolet M, Barraza Felix R, et al. Comprehensive cardiovascular risk factor control improves survival - the BARI-2D trial. J Am Coll Cardiol. 2015;66(7):765–73.CrossRefPubMedPubMedCentral
45.
go back to reference Moreno-Palanco MA, Ibanez-Sanz P, Pablo CC, Pizzaro-Portillo A, Rodriguez-Salvanes F, Suarez-Fernandez C. Impact of comprehensive and intensive treatment of risk factors concerning cardiovascular mortality in secondary prevention: MIRVAS study. Rev Esp Cardiol. 2011;64(3):179–85.CrossRefPubMed Moreno-Palanco MA, Ibanez-Sanz P, Pablo CC, Pizzaro-Portillo A, Rodriguez-Salvanes F, Suarez-Fernandez C. Impact of comprehensive and intensive treatment of risk factors concerning cardiovascular mortality in secondary prevention: MIRVAS study. Rev Esp Cardiol. 2011;64(3):179–85.CrossRefPubMed
46.
go back to reference McLarren JM, Sattar N. The importance of a comprehensive multifactorial treatment approach in type 2 diabetes. Medicographia. 2016;38(1):20–7. McLarren JM, Sattar N. The importance of a comprehensive multifactorial treatment approach in type 2 diabetes. Medicographia. 2016;38(1):20–7.
47.
go back to reference Ray KK, Seshasai SRK, Wijesuriya S, Sivakumaran R, Nethercott S, et al. Effect of intensive control ofglucose on cardiovascular outcomes and death in patients with diabetes mellitus: a meta-analysis of randomised controlled trials. Lancet. 2009;373(9677):1765–72.CrossRefPubMed Ray KK, Seshasai SRK, Wijesuriya S, Sivakumaran R, Nethercott S, et al. Effect of intensive control ofglucose on cardiovascular outcomes and death in patients with diabetes mellitus: a meta-analysis of randomised controlled trials. Lancet. 2009;373(9677):1765–72.CrossRefPubMed
48.
go back to reference Ferguson LD, Sattar N. Reducing cardiovascular disease risk in type 2 diabetes: is the focus on glycaemia warranted? Diabetes Obes Metabol. 2013;15(5):387–91.CrossRef Ferguson LD, Sattar N. Reducing cardiovascular disease risk in type 2 diabetes: is the focus on glycaemia warranted? Diabetes Obes Metabol. 2013;15(5):387–91.CrossRef
49.
go back to reference Wong ND, Zhao Y, Patel R, Patao C, Malik S, Bertoni AG, Correa A, Folsom AR, Kachroo S, Mukherjee J, Taylor H, Selvin E. Cardiovascular risk factor targets and cardiovascular disease event risk in diabetes: a pooling project of the atherosclerosis risk in communities study, multi-ethnic study of atherosclerosis, and Jackson heart study. Diabetes Care. 2016;39(5):668–76.CrossRefPubMedPubMedCentral Wong ND, Zhao Y, Patel R, Patao C, Malik S, Bertoni AG, Correa A, Folsom AR, Kachroo S, Mukherjee J, Taylor H, Selvin E. Cardiovascular risk factor targets and cardiovascular disease event risk in diabetes: a pooling project of the atherosclerosis risk in communities study, multi-ethnic study of atherosclerosis, and Jackson heart study. Diabetes Care. 2016;39(5):668–76.CrossRefPubMedPubMedCentral
52.
go back to reference Okafor CI, Ofoegbu EN. Control of cardio-metabolic risk factors among Nigerians living with type 2 diabetes mellitus. Nigerian J Clin Practice. 2012;15(1):15–8.CrossRef Okafor CI, Ofoegbu EN. Control of cardio-metabolic risk factors among Nigerians living with type 2 diabetes mellitus. Nigerian J Clin Practice. 2012;15(1):15–8.CrossRef
54.
go back to reference Hosseinpoor AR, Parker LA, D’Espaignet ET, Chatterji S. Socio-economic inequality in smoking in low-income and middle-income countries: results from the world health survey. PLoS One. 2012;7:e42843.CrossRefPubMedPubMedCentral Hosseinpoor AR, Parker LA, D’Espaignet ET, Chatterji S. Socio-economic inequality in smoking in low-income and middle-income countries: results from the world health survey. PLoS One. 2012;7:e42843.CrossRefPubMedPubMedCentral
55.
56.
go back to reference BeLue R, Okoror TA, Iwelunmor J, Taylor KD, Degboe AN, et al. An overview of cardiovascular risk factor burden in sub-Saharan African countries. A socio-cultural perspective. Glob Health. 2009;5:10. doi:10.1186/1744-8603-5-10.CrossRef BeLue R, Okoror TA, Iwelunmor J, Taylor KD, Degboe AN, et al. An overview of cardiovascular risk factor burden in sub-Saharan African countries. A socio-cultural perspective. Glob Health. 2009;5:10. doi:10.​1186/​1744-8603-5-10.CrossRef
Metadata
Title
Adequacy of control of cardiovascular risk factors in ambulatory patients with type 2 diabetes attending diabetes out-patients clinic at a county hospital, Kenya
Authors
Mercy W. Kimando
Frederick C. F. Otieno
Elijah N. Ogola
Kenn Mutai
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Endocrine Disorders / Issue 1/2017
Electronic ISSN: 1472-6823
DOI
https://doi.org/10.1186/s12902-017-0223-1

Other articles of this Issue 1/2017

BMC Endocrine Disorders 1/2017 Go to the issue