Skip to main content
Top
Published in: BMC Endocrine Disorders 1/2016

Open Access 01-12-2016 | Case report

Successful every-other-day liothyronine therapy for severe resistance to thyroid hormone beta with a novel THRB mutation; case report

Authors: Yoshihiro Maruo, Asami Mori, Yoriko Morioka, Chihiro Sawai, Yu Mimura, Katsuyuki Matui, Yoshihiro Takeuchi

Published in: BMC Endocrine Disorders | Issue 1/2016

Login to get access

Abstract

Background

Resistance to thyroid hormone beta (RTHβ) is a rare and usually dominantly inherited syndrome caused by mutations of the thyroid hormone receptor β gene (THRB). In severe cases, it is rarely challenging to control manifestations using daily therapeutic replacement of thyroid hormone.

Case presentation

The present case study concerns an 8-year-old Japanese girl with a severe phenotype of RTH (TSH, fT3, and fT4 were 34.0 mU/L, >25.0 pg/mL and, >8.0 ng/dL, respectively), caused by a novel heterozygous frameshift mutation in exon 10 of the thyroid hormone receptor beta gene (THRB), c.1347-1357 del actcttccccc : p.E449DfsX11. RTH was detected at the neonatal screening program. At 4 years of age, the patient continued to suffer from mental retardation, hyperactivity, insomnia, and reduced resting energy expenditure (REE), despite daily thyroxine (L-T4) therapy. Every-other-day high-dose liothyronine (L-T3) therapy improved her symptoms and increased her REE, without thyrotoxicosis.

Conclusion

In a case of severe RTH, every-other-day L-T3 administration enhanced REE and psychomotor development, without promoting symptoms of thyrotoxicosis. Every-other-day L-T3 administration may be an effective strategy for the treatment of severe RTH.
Literature
1.
go back to reference Refetoff S, Bassett JH, Beck-Peccoz P, Bernal J, Brent G, Chatterjee K, et al. Classification and proposed nomenclature for inherited defects of thyroid hormone action, cell transport, and metabolism. Thyroid. 2014;24:407–9.PubMedPubMedCentralCrossRef Refetoff S, Bassett JH, Beck-Peccoz P, Bernal J, Brent G, Chatterjee K, et al. Classification and proposed nomenclature for inherited defects of thyroid hormone action, cell transport, and metabolism. Thyroid. 2014;24:407–9.PubMedPubMedCentralCrossRef
2.
go back to reference Refetoff S, Weiss RE, Usala SJ. The syndromes of resistance to thyroid hormome. Endocr Rev. 1993;14:348–99.PubMed Refetoff S, Weiss RE, Usala SJ. The syndromes of resistance to thyroid hormome. Endocr Rev. 1993;14:348–99.PubMed
3.
go back to reference Wu SY, Cohen RN, Simsek E, Senses DA, Yar NE, Noel J, et al. A Novel thyroid hormone receptor-β mutation that fails to bind nuclear receptor corepressor in apatien as an apparent cause of severe, predominantly a pituitary resistance to thyroid hormome. J Clin Endocrinol Metab. 2006;19:1887–95.CrossRef Wu SY, Cohen RN, Simsek E, Senses DA, Yar NE, Noel J, et al. A Novel thyroid hormone receptor-β mutation that fails to bind nuclear receptor corepressor in apatien as an apparent cause of severe, predominantly a pituitary resistance to thyroid hormome. J Clin Endocrinol Metab. 2006;19:1887–95.CrossRef
4.
go back to reference Ono S, Schwartz ID, Mueller O, Root AW, Usala SJ, Beruc BB. Homozygosity for a dominant negative thyroid hormone receptor gene responsible for generalized resistance to thyroid hormone. J Clin Endocrinol Metab. 1991;73:990–4.PubMedCrossRef Ono S, Schwartz ID, Mueller O, Root AW, Usala SJ, Beruc BB. Homozygosity for a dominant negative thyroid hormone receptor gene responsible for generalized resistance to thyroid hormone. J Clin Endocrinol Metab. 1991;73:990–4.PubMedCrossRef
5.
go back to reference Ferrara AM, Onigata K, Ercan O, Woodhead H, Weiss RE, Refetoff S. Homozygous thyroid hormone receptor β-gene mutations in resistance to thyroid hormone: three new cases and review of the literature. J Clin Endocrinol Metab. 2012;97:1328–36.PubMedPubMedCentralCrossRef Ferrara AM, Onigata K, Ercan O, Woodhead H, Weiss RE, Refetoff S. Homozygous thyroid hormone receptor β-gene mutations in resistance to thyroid hormone: three new cases and review of the literature. J Clin Endocrinol Metab. 2012;97:1328–36.PubMedPubMedCentralCrossRef
6.
go back to reference Hauser P, Zametkin AJ, Martinez P, Vitiello B, Matochik JA, Mixson AJ, et al. Attention deficit-hyperactivity disorder in people with generalized resistance to thyroid hormone. N Engl J Med. 1993;328:997–1001.PubMedCrossRef Hauser P, Zametkin AJ, Martinez P, Vitiello B, Matochik JA, Mixson AJ, et al. Attention deficit-hyperactivity disorder in people with generalized resistance to thyroid hormone. N Engl J Med. 1993;328:997–1001.PubMedCrossRef
7.
go back to reference Weiss RE, Stein MA, Refetoff S. Behavioral effects of liothyronine (L-T3) in children with attention deficit hyperactivity disorder in the presence and absence of resistance to thyroid hormone. Thyroid. 1997;7:389–93.PubMedCrossRef Weiss RE, Stein MA, Refetoff S. Behavioral effects of liothyronine (L-T3) in children with attention deficit hyperactivity disorder in the presence and absence of resistance to thyroid hormone. Thyroid. 1997;7:389–93.PubMedCrossRef
8.
go back to reference Kato J, Koike A, Hoshimoto-Iwamoto M, Nagayama O, Sakurada K, Sato A. Yet al. Relation between oscillatory breathing and cardiopulmonary function during exercise in cardiac patients. Circ J. 2013;77:661–6.PubMedCrossRef Kato J, Koike A, Hoshimoto-Iwamoto M, Nagayama O, Sakurada K, Sato A. Yet al. Relation between oscillatory breathing and cardiopulmonary function during exercise in cardiac patients. Circ J. 2013;77:661–6.PubMedCrossRef
9.
go back to reference Lam CW, On-kei Chan A, Tong SF, Shek CC, Cheung Tui S. DNA-based diagnosis of thyroid hormone resisitance syndrome. Clinica Chimica Acta. 2005;358:55–9.CrossRef Lam CW, On-kei Chan A, Tong SF, Shek CC, Cheung Tui S. DNA-based diagnosis of thyroid hormone resisitance syndrome. Clinica Chimica Acta. 2005;358:55–9.CrossRef
10.
go back to reference Maruo Y, Verma IC, Matsui K, Takahashi H, Mimura Y. Conformational change of UGT1A1 by a novel missense mutation (p.L131P) causing Crigler-Najjar syndrome type I. J Pediatr Gastroenterol Nutr. 2008;46:308–11.PubMedCrossRef Maruo Y, Verma IC, Matsui K, Takahashi H, Mimura Y. Conformational change of UGT1A1 by a novel missense mutation (p.L131P) causing Crigler-Najjar syndrome type I. J Pediatr Gastroenterol Nutr. 2008;46:308–11.PubMedCrossRef
11.
go back to reference Anselmo J, Refetoff S. Regression of a large goiter in a patient with resistance to thyroid hormone by every other day treatment with triiodothyronine. Thyroid. 2004;14:71–4.PubMedCrossRef Anselmo J, Refetoff S. Regression of a large goiter in a patient with resistance to thyroid hormone by every other day treatment with triiodothyronine. Thyroid. 2004;14:71–4.PubMedCrossRef
12.
go back to reference Canadas KT, Rivkees SA, Udelsman R, Breuer CK. Resistance to thyroid hormone associated with a novel mutation of the thyroid β receptor gene in a four-year-old female. Int J Pediatr Endocrinol. 2011;2011:3.PubMedPubMedCentralCrossRef Canadas KT, Rivkees SA, Udelsman R, Breuer CK. Resistance to thyroid hormone associated with a novel mutation of the thyroid β receptor gene in a four-year-old female. Int J Pediatr Endocrinol. 2011;2011:3.PubMedPubMedCentralCrossRef
Metadata
Title
Successful every-other-day liothyronine therapy for severe resistance to thyroid hormone beta with a novel THRB mutation; case report
Authors
Yoshihiro Maruo
Asami Mori
Yoriko Morioka
Chihiro Sawai
Yu Mimura
Katsuyuki Matui
Yoshihiro Takeuchi
Publication date
01-12-2016
Publisher
BioMed Central
Published in
BMC Endocrine Disorders / Issue 1/2016
Electronic ISSN: 1472-6823
DOI
https://doi.org/10.1186/s12902-015-0081-7

Other articles of this Issue 1/2016

BMC Endocrine Disorders 1/2016 Go to the issue