Skip to main content
Top
Published in: BMC Endocrine Disorders 1/2015

Open Access 01-12-2015 | Research article

AMPD1 regulates mTORC1-p70 S6 kinase axis in the control of insulin sensitivity in skeletal muscle

Authors: Andreas AK Tandelilin, Tetsuaki Hirase, Athanasius W Hudoyo, Jidong Cheng, Keiko Toyama, Hiroko Morisaki, Takayuki Morisaki

Published in: BMC Endocrine Disorders | Issue 1/2015

Login to get access

Abstract

Background

Insulin resistance triggered by excess fat is a key pathogenic factor that promotes type 2 diabetes. Understanding molecular mechanisms of insulin resistance may lead to the identification of a novel therapeutic target for type 2 diabetes. AMPD1, an isoform of AMP deaminase (AMPD), is suggested to play roles in the regulation of glucose metabolism through controlling AMP-activated protein kinase (AMPK) activation. We reported that the diet-induced insulin resistance was improved in AMPD1-deficient mice compared to wild type mice. To further delineate this observation, we studied changes of insulin signaling in skeletal muscle of wild type (WT) and AMPD1-deficient mice.

Methods

Phosphorylation levels of kinases and expression levels of mTOR components were quantified by immunoblotting using protein extracts from tissues. The interaction between mTOR and Raptor was determined by immunoblotting of mTOR immunoprecipitates with anti-Raptor antibody. Gene expression was studied by quantitative PCR using RNA extracted from tissues.

Results

Phosphorylation levels of AMPK, Akt and p70 S6 kinase in skeletal muscle were higher in AMPD1-deficient mice compared to WT mice after high fat diet challenge, while they did not show such difference in normal chow diet. Also, no significant changes in phosphorylation levels of AMPK, Akt or p70 S6 kinase were observed in liver and white adipose tissue between WT and AMPD1-deficient mice. The expression levels of mTOR, Raptor and Rictor tended to be increased by AMPD1 deficiency compared to WT after high fat diet challenge. AMPD1 deficiency increased Raptor-bound mTOR in skeletal muscle compared to WT after high fat diet challenge. Gene expression of peroxisome proliferator-activated receptor-γ coactivator 1α and β, downstream targets of p70 S6 kinase, in skeletal muscles was not changed significantly by AMPD1 deficiency compared to the wild type after high fat diet challenge.

Conclusion

These data suggest that AMPD1 deficiency activates AMPK/Akt/mTORC1/p70 S6 kinase axis in skeletal muscle after high fat diet challenge, but not in normal chow diet. These changes may contribute to improve insulin resistance.
Literature
1.
go back to reference Kahn SE, Cooper ME, Prato SD. Pathophysiology and treatment of type 2 diabetes: perspectives on the past, present, and future. Lancet. 2014;383:1068–83.CrossRefPubMed Kahn SE, Cooper ME, Prato SD. Pathophysiology and treatment of type 2 diabetes: perspectives on the past, present, and future. Lancet. 2014;383:1068–83.CrossRefPubMed
2.
3.
go back to reference Norman B, Sabina RL. Myoadenylate deaminase deficiency. In: Valle D, Beaudet AL, Vogelstein B, Kinzler KW, Antonarakis SE, Ballabio A, editors. The online metabolic & molecular bases of inherited disease. New York: McGraw-Hill; 2010. doi:10.1036/ommbid.138. Norman B, Sabina RL. Myoadenylate deaminase deficiency. In: Valle D, Beaudet AL, Vogelstein B, Kinzler KW, Antonarakis SE, Ballabio A, editors. The online metabolic & molecular bases of inherited disease. New York: McGraw-Hill; 2010. doi:10.1036/ommbid.138.
4.
go back to reference Hardie DG, Ross FA, Hawley SA. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol. 2012;13:251–62.CrossRefPubMed Hardie DG, Ross FA, Hawley SA. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol. 2012;13:251–62.CrossRefPubMed
5.
go back to reference Safranow K, Czyzycka E, Binczak-Kuleta A, Rzeuski R, Skowronek J, Wojtarowicz A, et al. Association of C34T AMPD1 gene polymorphism with features of metabolic syndrome in patients with coronary artery disease or heart failure. Scand J Clin Lab Invest. 2009;69:102–12.CrossRefPubMed Safranow K, Czyzycka E, Binczak-Kuleta A, Rzeuski R, Skowronek J, Wojtarowicz A, et al. Association of C34T AMPD1 gene polymorphism with features of metabolic syndrome in patients with coronary artery disease or heart failure. Scand J Clin Lab Invest. 2009;69:102–12.CrossRefPubMed
6.
go back to reference Safranow K, Suchy J, Jakubowska K, Olszewska M, Bińczak-Kuleta A, Kurzawski G, et al. AMPD1 gene mutations are associated with obesity and diabetes in Polish patients with cardiovascular diseases. J Appl Genet. 2011;52:67–76.CrossRefPubMed Safranow K, Suchy J, Jakubowska K, Olszewska M, Bińczak-Kuleta A, Kurzawski G, et al. AMPD1 gene mutations are associated with obesity and diabetes in Polish patients with cardiovascular diseases. J Appl Genet. 2011;52:67–76.CrossRefPubMed
7.
go back to reference Cheng J, Morisaki H, Sugimoto N, Dohi A, Shintani T, Kimura E, et al. Effect of isolated AMP deaminase deficiency on skeletal muscle function. Mol Genet Metab Rep. 2014;1:51–9.CrossRef Cheng J, Morisaki H, Sugimoto N, Dohi A, Shintani T, Kimura E, et al. Effect of isolated AMP deaminase deficiency on skeletal muscle function. Mol Genet Metab Rep. 2014;1:51–9.CrossRef
8.
go back to reference Cheng J, Morisaki H, Toyama K, Sugimoto N, Shintani T, Tandelilin A, et al. AMPD1: a novel therapeutic target for reversing insulin resistance. BMC Endocr Disord. 2014;14:96.CrossRefPubMedPubMedCentral Cheng J, Morisaki H, Toyama K, Sugimoto N, Shintani T, Tandelilin A, et al. AMPD1: a novel therapeutic target for reversing insulin resistance. BMC Endocr Disord. 2014;14:96.CrossRefPubMedPubMedCentral
9.
go back to reference Shimobayashi M, Hall MN. Making new contacts: the mTOR network in metabolism and signaling crosstalk. Nat Rev Mol Cell Biol. 2014;15:155–62.CrossRefPubMed Shimobayashi M, Hall MN. Making new contacts: the mTOR network in metabolism and signaling crosstalk. Nat Rev Mol Cell Biol. 2014;15:155–62.CrossRefPubMed
10.
go back to reference Kim DH, Sarbassov DD, Ali SM, King JE, Latek RR, Erdjument-Bromage H, et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell. 2002;110:163–75.CrossRefPubMed Kim DH, Sarbassov DD, Ali SM, King JE, Latek RR, Erdjument-Bromage H, et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell. 2002;110:163–75.CrossRefPubMed
11.
go back to reference Handschin C, Spiegelman B. Peroxisome proliferator-activated receptor-γ coactivator 1 coactivators, energy homeostasis and metabolism. Endocr Rev. 2006;27:728–35.CrossRefPubMed Handschin C, Spiegelman B. Peroxisome proliferator-activated receptor-γ coactivator 1 coactivators, energy homeostasis and metabolism. Endocr Rev. 2006;27:728–35.CrossRefPubMed
12.
go back to reference Turner N, Cooney GJ, Kraegen EW, Bruce CR. Fatty acid metabolism, energy expenditure and insulin resistance in muscle. J Endocrinol. 2014;220:T61–79.CrossRefPubMed Turner N, Cooney GJ, Kraegen EW, Bruce CR. Fatty acid metabolism, energy expenditure and insulin resistance in muscle. J Endocrinol. 2014;220:T61–79.CrossRefPubMed
13.
go back to reference Admyre T, Amrot-Fors L, Andersson M, Bauer M, Bjursell M, Drmota T, et al. Inhibition of AMP deaminase activity does not improve glucose control in rodent models of insulin resistance or diabetes. Chem Biol. 2014;21:1486–96.CrossRefPubMed Admyre T, Amrot-Fors L, Andersson M, Bauer M, Bjursell M, Drmota T, et al. Inhibition of AMP deaminase activity does not improve glucose control in rodent models of insulin resistance or diabetes. Chem Biol. 2014;21:1486–96.CrossRefPubMed
15.
go back to reference Erion MD, Kasibhatla SR, Bookser BC, van Poelje PD, Reddy MR, Gruber HE, et al. Discovery of AMP mimetics that exhibit high inhibitory potency and specificity for AMP deaminase. J Am Chem Soc. 1999;121:308–19.CrossRef Erion MD, Kasibhatla SR, Bookser BC, van Poelje PD, Reddy MR, Gruber HE, et al. Discovery of AMP mimetics that exhibit high inhibitory potency and specificity for AMP deaminase. J Am Chem Soc. 1999;121:308–19.CrossRef
16.
go back to reference Boström P, Wu J, Jedrychowski MP, Korde A, Ye L, Lo JC, et al. A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature. 2012;481:463–8.CrossRefPubMedPubMedCentral Boström P, Wu J, Jedrychowski MP, Korde A, Ye L, Lo JC, et al. A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature. 2012;481:463–8.CrossRefPubMedPubMedCentral
Metadata
Title
AMPD1 regulates mTORC1-p70 S6 kinase axis in the control of insulin sensitivity in skeletal muscle
Authors
Andreas AK Tandelilin
Tetsuaki Hirase
Athanasius W Hudoyo
Jidong Cheng
Keiko Toyama
Hiroko Morisaki
Takayuki Morisaki
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Endocrine Disorders / Issue 1/2015
Electronic ISSN: 1472-6823
DOI
https://doi.org/10.1186/s12902-015-0010-9

Other articles of this Issue 1/2015

BMC Endocrine Disorders 1/2015 Go to the issue