Skip to main content
Top
Published in: BMC Urology 1/2017

Open Access 01-12-2017 | Research article

The EEF1A2 gene expression as risk predictor in localized prostate cancer

Authors: Thomas Stefan Worst, Frank Waldbillig, Abdallah Abdelhadi, Cleo-Aron Weis, Maria Gottschalt, Annette Steidler, Jost von Hardenberg, Maurice Stephan Michel, Philipp Erben

Published in: BMC Urology | Issue 1/2017

Login to get access

Abstract

Background

Besides clinical stage and Gleason score, risk-stratification of prostate cancer in the pretherapeutic setting mainly relies on the serum PSA level. Yet, this is associated with many uncertainties. With regard to therapy decision-making, additional markers are needed to allow an exact risk prediction. Eukaryotic translation elongation factor 1 alpha 2 (EEF1A2) was previously suggested as driver of tumor progression and potential biomarker. In the present study its functional and prognostic relevance in prostate cancer was investigated.

Methods

EEF1A2 expression was analyzed in two cohorts of patients (n = 40 and n = 59) with localized PCa. Additionally data from two large expression dataset (MSKCC, Cell, 2010 with n = 131 localized, n = 19 metastatic PCa and TCGA provisional data, n = 499) of PCa patients were reanalyzed. The expression of EEF1A2 was correlated with histopathology features and biochemical recurrence (BCR). To evaluate the influence of EEF1A2 on proliferation and migration of metastatic PC3 cells, siRNA interference was used. Statistical significance was tested with t-test, Mann-Whitney-test, Pearson correlation and log-rank test.

Results

qRT-PCR revealed EEF1A2 to be significantly overexpressed in PCa tissue, with an increase according to tumor stage in one cohort (p = 0.0443). In silico analyses in the MSKCC cohort confirmed the overexpression of EEF1A2 in localized PCa with high Gleason score (p = 0.0142) and in metastatic lesions (p = 0.0038). Patients with EEF1A2 overexpression had a significantly shorter BCR-free survival (p = 0.0028). EEF1A2 expression was not correlated with serum PSA levels. Similar results were seen in the TCGA cohort, where EEF1A2 overexpression only occurred in tumors with Gleason 7 or higher. Patients with elevated EEF1A2 expression had a significantly shorter BCR-free survival (p = 0.043). EEF1A2 knockdown significantly impaired the migration, but not the proliferation of metastatic PC3 cells.

Conclusion

The overexpression of EEF1A2 is a frequent event in localized PCa and is associated with histopathology features and a shorter biochemical recurrence-free survival. Due to its independence from serum PSA levels, EEF1A2 could serve as valuable biomarker in risk-stratification of localized PCa.
Literature
1.
go back to reference Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.CrossRefPubMed Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.CrossRefPubMed
2.
go back to reference Ilic D, Neuberger MM, Djulbegovic M, Dahm P. Screening for prostate cancer. Cochrane Database Syst Rev Online. 2013;1:CD004720. Ilic D, Neuberger MM, Djulbegovic M, Dahm P. Screening for prostate cancer. Cochrane Database Syst Rev Online. 2013;1:CD004720.
3.
go back to reference Prensner JR, Rubin MA, Wei JT, Chinnaiyan AM. Beyond PSA: the next generation of prostate cancer biomarkers. Sci Transl Med. 2012;4:127rv3–3. Prensner JR, Rubin MA, Wei JT, Chinnaiyan AM. Beyond PSA: the next generation of prostate cancer biomarkers. Sci Transl Med. 2012;4:127rv3–3.
4.
go back to reference Heidenreich A, Bastian PJ, Bellmunt J, Bolla M, Joniau S, van der Kwast T, et al. EAU guidelines on prostate cancer. Part 1: screening, diagnosis, and local treatment with curative intent-update 2013. Eur Urol. 2014;65:124–37.CrossRefPubMed Heidenreich A, Bastian PJ, Bellmunt J, Bolla M, Joniau S, van der Kwast T, et al. EAU guidelines on prostate cancer. Part 1: screening, diagnosis, and local treatment with curative intent-update 2013. Eur Urol. 2014;65:124–37.CrossRefPubMed
5.
go back to reference Choudhury AD, Eeles R, Freedland SJ, Isaacs WB, Pomerantz MM, Schalken JA, et al. The role of genetic markers in the management of prostate cancer. Eur Urol. 2012;62:577–87.CrossRefPubMed Choudhury AD, Eeles R, Freedland SJ, Isaacs WB, Pomerantz MM, Schalken JA, et al. The role of genetic markers in the management of prostate cancer. Eur Urol. 2012;62:577–87.CrossRefPubMed
6.
go back to reference Armstrong AJ, Eisenberger MA, Halabi S, Oudard S, Nanus DM, Petrylak DP, et al. Biomarkers in the management and treatment of men with metastatic castration-resistant prostate cancer. Eur Urol. 2012;61:549–59.CrossRefPubMed Armstrong AJ, Eisenberger MA, Halabi S, Oudard S, Nanus DM, Petrylak DP, et al. Biomarkers in the management and treatment of men with metastatic castration-resistant prostate cancer. Eur Urol. 2012;61:549–59.CrossRefPubMed
9.
go back to reference Nakajima J, Okamoto N, Tohyama J, Kato M, Arai H, Funahashi O, et al. De novo EEF1A2 mutations in patients with characteristic facial features, intellectual disability, autistic behaviors and epilepsy. Clin Genet. 2015;87:356–61.CrossRefPubMed Nakajima J, Okamoto N, Tohyama J, Kato M, Arai H, Funahashi O, et al. De novo EEF1A2 mutations in patients with characteristic facial features, intellectual disability, autistic behaviors and epilepsy. Clin Genet. 2015;87:356–61.CrossRefPubMed
10.
go back to reference Kulkarni G, Turbin DA, Amiri A, Jeganathan S, Andrade-Navarro MA, Wu TD, et al. Expression of protein elongation factor eEF1A2 predicts favorable outcome in breast cancer. Breast Cancer Res Treat. 2007;102:31–41.CrossRefPubMed Kulkarni G, Turbin DA, Amiri A, Jeganathan S, Andrade-Navarro MA, Wu TD, et al. Expression of protein elongation factor eEF1A2 predicts favorable outcome in breast cancer. Breast Cancer Res Treat. 2007;102:31–41.CrossRefPubMed
11.
go back to reference Duanmin H, XC. eEF1A2 protein expression correlates with lymph node metastasis and decreased survival in pancreatic Ductal Adenocarcinoma. Hepato-Gastroenterology. 2012;60 Duanmin H, XC. eEF1A2 protein expression correlates with lymph node metastasis and decreased survival in pancreatic Ductal Adenocarcinoma. Hepato-Gastroenterology. 2012;60
12.
go back to reference Xu C, Hu D, Zhu Q. eEF1A2 promotes cell migration, invasion and metastasis in pancreatic cancer by upregulating MMP-9 expression through Akt activation. Clin Exp Metastasis. 2013;30:933–44.CrossRefPubMed Xu C, Hu D, Zhu Q. eEF1A2 promotes cell migration, invasion and metastasis in pancreatic cancer by upregulating MMP-9 expression through Akt activation. Clin Exp Metastasis. 2013;30:933–44.CrossRefPubMed
13.
go back to reference Rehman I, Evans CA, Glen A, Cross SS, Eaton CL, Down J, et al. iTRAQ identification of candidate serum biomarkers associated with metastatic progression of human prostate cancer. PLoS One. 2012;7:e30885.CrossRefPubMedPubMedCentral Rehman I, Evans CA, Glen A, Cross SS, Eaton CL, Down J, et al. iTRAQ identification of candidate serum biomarkers associated with metastatic progression of human prostate cancer. PLoS One. 2012;7:e30885.CrossRefPubMedPubMedCentral
14.
go back to reference Sun Y, Du C, Wang B, Zhang Y, Liu X, Ren G. Up-regulation of eEF1A2 promotes proliferation and inhibits apoptosis in prostate cancer. Biochem Biophys Res Commun. 2014;450:1–6.CrossRefPubMed Sun Y, Du C, Wang B, Zhang Y, Liu X, Ren G. Up-regulation of eEF1A2 promotes proliferation and inhibits apoptosis in prostate cancer. Biochem Biophys Res Commun. 2014;450:1–6.CrossRefPubMed
15.
go back to reference Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, et al. Primer3--new capabilities and interfaces. Nucleic Acids Res. 2012;40:e115.CrossRefPubMedPubMedCentral Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, et al. Primer3--new capabilities and interfaces. Nucleic Acids Res. 2012;40:e115.CrossRefPubMedPubMedCentral
16.
go back to reference Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25:402–8.CrossRefPubMed Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25:402–8.CrossRefPubMed
17.
go back to reference Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2:401–4.CrossRefPubMed Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2:401–4.CrossRefPubMed
18.
go back to reference Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS, et al. Integrative genomic profiling of human prostate cancer. Cancer Cell. 2010;18:11–22.CrossRefPubMedPubMedCentral Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS, et al. Integrative genomic profiling of human prostate cancer. Cancer Cell. 2010;18:11–22.CrossRefPubMedPubMedCentral
19.
go back to reference Worst TS, Meyer Y, Gottschalt M, Weis C-A, von Hardenberg J, Frank C, et al. RAB27A, RAB27B and VPS36 are downregulated in advanced prostate cancer and show functional relevance in prostate cancer cells. Int J Oncol. 2017;50:920–32.CrossRefPubMed Worst TS, Meyer Y, Gottschalt M, Weis C-A, von Hardenberg J, Frank C, et al. RAB27A, RAB27B and VPS36 are downregulated in advanced prostate cancer and show functional relevance in prostate cancer cells. Int J Oncol. 2017;50:920–32.CrossRefPubMed
20.
go back to reference Ashby WJ, Zijlstra A. Established and novel methods of interrogating two-dimensional cell migration. Integr Biol Quant Biosci Nano Macro. 2012;4:1338–50. Ashby WJ, Zijlstra A. Established and novel methods of interrogating two-dimensional cell migration. Integr Biol Quant Biosci Nano Macro. 2012;4:1338–50.
21.
go back to reference Scaggiante B, Dapas B, Bonin S, Grassi M, Zennaro C, Farra R, et al. Dissecting the expression of EEF1A1/2 genes in human prostate cancer cells: the potential of EEF1A2 as a hallmark for prostate transformation and progression. Br J Cancer. 2012;106:166–73.CrossRefPubMed Scaggiante B, Dapas B, Bonin S, Grassi M, Zennaro C, Farra R, et al. Dissecting the expression of EEF1A1/2 genes in human prostate cancer cells: the potential of EEF1A2 as a hallmark for prostate transformation and progression. Br J Cancer. 2012;106:166–73.CrossRefPubMed
22.
go back to reference Kawamura M, Endo C, Sakurada A, Hoshi F, Notsuda H, Kondo T. The prognostic significance of eukaryotic elongation factor 1 alpha-2 in non-small cell lung cancer. Anticancer Res. 2014;34:651–8.PubMed Kawamura M, Endo C, Sakurada A, Hoshi F, Notsuda H, Kondo T. The prognostic significance of eukaryotic elongation factor 1 alpha-2 in non-small cell lung cancer. Anticancer Res. 2014;34:651–8.PubMed
23.
go back to reference Anand N, Murthy S, Amann G, Wernick M, Porter LA, Cukier IH, et al. Protein elongation factor EEF1A2 is a putative oncogene in ovarian cancer. Nat Genet. 2002;31:301–5.PubMed Anand N, Murthy S, Amann G, Wernick M, Porter LA, Cukier IH, et al. Protein elongation factor EEF1A2 is a putative oncogene in ovarian cancer. Nat Genet. 2002;31:301–5.PubMed
24.
go back to reference Migliaccio N, Martucci NM, Ruggiero I, Sanges C, Ohkubo S, Lamberti A, et al. Ser/Thr kinases and polyamines in the regulation of non-canonical functions of elongation factor 1A. Amino Acids. 2016;48:2339–52.CrossRefPubMed Migliaccio N, Martucci NM, Ruggiero I, Sanges C, Ohkubo S, Lamberti A, et al. Ser/Thr kinases and polyamines in the regulation of non-canonical functions of elongation factor 1A. Amino Acids. 2016;48:2339–52.CrossRefPubMed
25.
go back to reference Pellegrino R, Calvisi DF, Neumann O, Kolluru V, Wesely J, Chen X, et al. EEF1A2 inactivates p53 by way of PI3K/AKT/mTOR-dependent stabilization of MDM4 in hepatocellular carcinoma. Hepatol Baltim Md. 2014;59:1886–99.CrossRef Pellegrino R, Calvisi DF, Neumann O, Kolluru V, Wesely J, Chen X, et al. EEF1A2 inactivates p53 by way of PI3K/AKT/mTOR-dependent stabilization of MDM4 in hepatocellular carcinoma. Hepatol Baltim Md. 2014;59:1886–99.CrossRef
27.
go back to reference Zhu AX, Abrams TA, Miksad R, Blaszkowsky LS, Meyerhardt JA, Zheng H, et al. Phase 1/2 study of everolimus in advanced hepatocellular carcinoma. Cancer. 2011;117:5094–102.CrossRefPubMedPubMedCentral Zhu AX, Abrams TA, Miksad R, Blaszkowsky LS, Meyerhardt JA, Zheng H, et al. Phase 1/2 study of everolimus in advanced hepatocellular carcinoma. Cancer. 2011;117:5094–102.CrossRefPubMedPubMedCentral
28.
go back to reference Armstrong AJ, Shen T, Halabi S, Kemeny G, Bitting RL, Kartcheske P, et al. A phase II trial of temsirolimus in men with castration-resistant metastatic prostate cancer. Clin Genitourin Cancer. 2013;11:397–406.CrossRefPubMed Armstrong AJ, Shen T, Halabi S, Kemeny G, Bitting RL, Kartcheske P, et al. A phase II trial of temsirolimus in men with castration-resistant metastatic prostate cancer. Clin Genitourin Cancer. 2013;11:397–406.CrossRefPubMed
29.
go back to reference Emmenegger U, Booth CM, Berry S, Sridhar SS, Winquist E, Bandali N, et al. Temsirolimus maintenance therapy after Docetaxel induction in castration-resistant prostate cancer. Oncologist. 2015;20:1351–2.CrossRefPubMedPubMedCentral Emmenegger U, Booth CM, Berry S, Sridhar SS, Winquist E, Bandali N, et al. Temsirolimus maintenance therapy after Docetaxel induction in castration-resistant prostate cancer. Oncologist. 2015;20:1351–2.CrossRefPubMedPubMedCentral
30.
go back to reference Statz CM, Patterson SE, Mockus SM. mTOR Inhibitors in Castration-Resistant Prostate Cancer: A Systematic Review. Target Oncol. 2017;12:47-59. Statz CM, Patterson SE, Mockus SM. mTOR Inhibitors in Castration-Resistant Prostate Cancer: A Systematic Review. Target Oncol. 2017;12:47-59.
Metadata
Title
The EEF1A2 gene expression as risk predictor in localized prostate cancer
Authors
Thomas Stefan Worst
Frank Waldbillig
Abdallah Abdelhadi
Cleo-Aron Weis
Maria Gottschalt
Annette Steidler
Jost von Hardenberg
Maurice Stephan Michel
Philipp Erben
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Urology / Issue 1/2017
Electronic ISSN: 1471-2490
DOI
https://doi.org/10.1186/s12894-017-0278-3

Other articles of this Issue 1/2017

BMC Urology 1/2017 Go to the issue