Skip to main content
Top
Published in: BMC Musculoskeletal Disorders 1/2021

Open Access 01-12-2021 | Affective Disorder | Research article

The association between keloid and osteoporosis: real-world evidence

Authors: Chun-Ching Lu, Hao Qin, Zi-Hao Zhang, Cong-Liang Zhang, Ying-Yi Lu, Chieh-Hsin Wu

Published in: BMC Musculoskeletal Disorders | Issue 1/2021

Login to get access

Abstract

Background

Keloids are characterized by disturbance of fibroblast proliferation and apoptosis, deposition of collagen, and upregulation of dermal inflammation cells. This benign dermal fibro-proliferative scarring condition is a recognized skin inflammation disorder. Chronic inflammation is a well-known contributor to bone loss and its sequelae, osteoporosis. They both shared a similar pathogenesis through chronic inflammation. We assessed whether keloids increase osteoporosis risk through using National Health Insurance Research Database.

Methods

The 42,985 enrolled patients included 8597 patients with keloids but no history of osteoporosis; 34,388 controls without keloids were identified from the general population and matched at a one-to-four ratio by age, gender. Kaplan-Meier method was applied to determine cumulative incidence of osteoporosis. Cox proportional hazard regression analysis was performed after adjustment of covariates to estimate the effect of keloids on osteoporosis risk.

Results

Of the 8597 patients with keloids, 178 (2.07%) patients were diagnosed with osteoporosis while in the 34,388 controls, 587 (1.71%) were diagnosed with osteoporosis. That is, the keloids patients had 2.64-fold higher risk of osteoporosis compared to controls after adjustment for age, gender, Charlson Comorbidity Index and related comorbidities. The association between keloids and osteoporosis was strongest in patients younger than 50 years (hazard ratio = 7.06%) and in patients without comorbidities (hazard ratio = 4.98%). In the keloids patients, a high incidence of osteoporosis was also associated with advanced age, high Charlson Comorbidity Index score, hyperlipidemia, chronic liver disease, stroke, and depression.

Conclusions

Osteoporosis risk was higher in patients with keloids compared to controls, especially in young subjects and subjects without comorbidities.
Literature
2.
3.
go back to reference Wolfram D, Tzankov A, Pulzl P, Piza-Katzer H. Hypertrophic scars and keloids--a review of their pathophysiology, risk factors, and therapeutic management. Dermatol Surg. 2009;35:171–81.PubMedCrossRef Wolfram D, Tzankov A, Pulzl P, Piza-Katzer H. Hypertrophic scars and keloids--a review of their pathophysiology, risk factors, and therapeutic management. Dermatol Surg. 2009;35:171–81.PubMedCrossRef
4.
go back to reference Halim AS, Emami A, Salahshourifar I, Kannan TP. Keloid scarring: understanding the genetic basis, advances, and prospects. Arch Plast Surg. 2012;39:184–9.PubMedPubMedCentralCrossRef Halim AS, Emami A, Salahshourifar I, Kannan TP. Keloid scarring: understanding the genetic basis, advances, and prospects. Arch Plast Surg. 2012;39:184–9.PubMedPubMedCentralCrossRef
5.
go back to reference Gauglitz GG, Korting HC, Pavicic T, Ruzicka T, Jeschke MG. Hypertrophic scarring and keloids: pathomechanisms and current and emerging treatment strategies. Mol Med. 2011;17:113–25.PubMedCrossRef Gauglitz GG, Korting HC, Pavicic T, Ruzicka T, Jeschke MG. Hypertrophic scarring and keloids: pathomechanisms and current and emerging treatment strategies. Mol Med. 2011;17:113–25.PubMedCrossRef
6.
go back to reference Chen Y, Gao JH, Yan X, Song M, Liu XJ. Location of predisposing gene for one Han Chinese keloid pedigree. Zhonghua Zheng Xing Wai Ke Za Zhi. 2007;23:137–40.PubMed Chen Y, Gao JH, Yan X, Song M, Liu XJ. Location of predisposing gene for one Han Chinese keloid pedigree. Zhonghua Zheng Xing Wai Ke Za Zhi. 2007;23:137–40.PubMed
7.
go back to reference Pavone V, Testa G, Giardina SMC, Vescio A, Restivo DA, et al. Pharmacological therapy of osteoporosis: a systematic current review of literature. Front Pharmacol. 2017;8:803.PubMedPubMedCentralCrossRef Pavone V, Testa G, Giardina SMC, Vescio A, Restivo DA, et al. Pharmacological therapy of osteoporosis: a systematic current review of literature. Front Pharmacol. 2017;8:803.PubMedPubMedCentralCrossRef
8.
go back to reference Zhao W, Shen G, Ren H, Liang D, Yu X, et al. Therapeutic potential of microRNAs in osteoporosis function by regulating the biology of cells related to bone homeostasis. J Cell Physiol. 2018;233:9191–208.PubMedCrossRef Zhao W, Shen G, Ren H, Liang D, Yu X, et al. Therapeutic potential of microRNAs in osteoporosis function by regulating the biology of cells related to bone homeostasis. J Cell Physiol. 2018;233:9191–208.PubMedCrossRef
9.
go back to reference NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis, and Therapy. Osteoporosis prevention, diagnosis, and therapy. JAMA. 2001;285:785-95. NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis, and Therapy. Osteoporosis prevention, diagnosis, and therapy. JAMA. 2001;285:785-95.
10.
go back to reference Johnell O, Kanis JA. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int. 2006;17:1726–33.PubMedCrossRef Johnell O, Kanis JA. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int. 2006;17:1726–33.PubMedCrossRef
11.
go back to reference Ray NF, Chan JK, Thamer M, Melton LJ 3rd. Medical expenditures for the treatment of osteoporotic fractures in the United States in 1995: report from the National Osteoporosis Foundation. J Bone Miner Res. 1997;12:24–35.PubMedCrossRef Ray NF, Chan JK, Thamer M, Melton LJ 3rd. Medical expenditures for the treatment of osteoporotic fractures in the United States in 1995: report from the National Osteoporosis Foundation. J Bone Miner Res. 1997;12:24–35.PubMedCrossRef
12.
go back to reference Lyles CR, Schafer AL, Seligman HK. Income, food insecurity, and osteoporosis among older adults in the 2007-2008 National Health and nutrition examination survey (NHANES). J Health Care Poor Underserved. 2014;25:1530–41.PubMedCrossRef Lyles CR, Schafer AL, Seligman HK. Income, food insecurity, and osteoporosis among older adults in the 2007-2008 National Health and nutrition examination survey (NHANES). J Health Care Poor Underserved. 2014;25:1530–41.PubMedCrossRef
13.
go back to reference Xie Z, He Y, Sun Y, Lin Z, Yang M, et al. Association between pulmonary fibrosis and osteoporosis in the elderly people: a case-control study. Medicine (Baltimore). 2016;95:e5239.CrossRef Xie Z, He Y, Sun Y, Lin Z, Yang M, et al. Association between pulmonary fibrosis and osteoporosis in the elderly people: a case-control study. Medicine (Baltimore). 2016;95:e5239.CrossRef
14.
go back to reference Bagabir R, Byers RJ, Chaudhry IH, Muller W, Paus R, et al. Site-specific immunophenotyping of keloid disease demonstrates immune upregulation and the presence of lymphoid aggregates. Br J Dermatol. 2012;167:1053–66.PubMedCrossRef Bagabir R, Byers RJ, Chaudhry IH, Muller W, Paus R, et al. Site-specific immunophenotyping of keloid disease demonstrates immune upregulation and the presence of lymphoid aggregates. Br J Dermatol. 2012;167:1053–66.PubMedCrossRef
15.
go back to reference La Montagna G, Vatti M, Valentini G, Tirri G. Osteopenia in systemic sclerosis. Evidence of a participating role of earlier menopause. Clin Rheumatol. 1991;10:18–22.PubMedCrossRef La Montagna G, Vatti M, Valentini G, Tirri G. Osteopenia in systemic sclerosis. Evidence of a participating role of earlier menopause. Clin Rheumatol. 1991;10:18–22.PubMedCrossRef
16.
go back to reference Di Munno O, Mazzantini M, Massei P, Ferdeghini M, Pitaro N, et al. Reduced bone mass and normal calcium metabolism in systemic sclerosis with and without calcinosis. Clin Rheumatol. 1995;14:407–12.PubMedCrossRef Di Munno O, Mazzantini M, Massei P, Ferdeghini M, Pitaro N, et al. Reduced bone mass and normal calcium metabolism in systemic sclerosis with and without calcinosis. Clin Rheumatol. 1995;14:407–12.PubMedCrossRef
17.
go back to reference Wu CY, Lu YY, Lu CC, Su YF, Tsai TH, et al. Osteoporosis in adult patients with atopic dermatitis: A nationwide population-based study. PLoS One. 2017;12:e0171667.PubMedPubMedCentralCrossRef Wu CY, Lu YY, Lu CC, Su YF, Tsai TH, et al. Osteoporosis in adult patients with atopic dermatitis: A nationwide population-based study. PLoS One. 2017;12:e0171667.PubMedPubMedCentralCrossRef
18.
go back to reference Lu YY, Lu CC, Yu WW, Zhang L, Wang QR, et al. Keloid risk in patients with atopic dermatitis: a nationwide retrospective cohort study in Taiwan. BMJ Open. 2018;8:e022865.PubMedPubMedCentralCrossRef Lu YY, Lu CC, Yu WW, Zhang L, Wang QR, et al. Keloid risk in patients with atopic dermatitis: a nationwide retrospective cohort study in Taiwan. BMJ Open. 2018;8:e022865.PubMedPubMedCentralCrossRef
19.
go back to reference Sun LM, Wang KH, Lee YC. Keloid incidence in Asian people and its comorbidity with other fibrosis-related diseases: a nationwide population-based study. Arch Dermatol Res. 2014;306:803–8.PubMedCrossRef Sun LM, Wang KH, Lee YC. Keloid incidence in Asian people and its comorbidity with other fibrosis-related diseases: a nationwide population-based study. Arch Dermatol Res. 2014;306:803–8.PubMedCrossRef
20.
go back to reference Humbert PG, Dupond JL, Rochefort A, Vasselet R, Lucas A, et al. Localized scleroderma--response to 1,25-dihydroxyvitamin D3. Clin Exp Dermatol. 1990;15:396–8.PubMedCrossRef Humbert PG, Dupond JL, Rochefort A, Vasselet R, Lucas A, et al. Localized scleroderma--response to 1,25-dihydroxyvitamin D3. Clin Exp Dermatol. 1990;15:396–8.PubMedCrossRef
22.
go back to reference Lee DE, Trowbridge RM, Ayoub NT, Agrawal DK. High-mobility group box Protein-1, matrix Metalloproteinases, and vitamin D in keloids and hypertrophic scars. Plast Reconstr Surg Glob Open. 2015;3:e425.PubMedPubMedCentralCrossRef Lee DE, Trowbridge RM, Ayoub NT, Agrawal DK. High-mobility group box Protein-1, matrix Metalloproteinases, and vitamin D in keloids and hypertrophic scars. Plast Reconstr Surg Glob Open. 2015;3:e425.PubMedPubMedCentralCrossRef
23.
go back to reference Zhang GY, Cheng T, Luan Q, Liao T, Nie CL, et al. Vitamin D: a novel therapeutic approach for keloid, an in vitro analysis. Br J Dermatol. 2011;164:729–37.PubMedCrossRef Zhang GY, Cheng T, Luan Q, Liao T, Nie CL, et al. Vitamin D: a novel therapeutic approach for keloid, an in vitro analysis. Br J Dermatol. 2011;164:729–37.PubMedCrossRef
24.
go back to reference Yu D, Shang Y, Luo S, Hao L. The TaqI gene polymorphisms of VDR and the circulating 1,25-dihydroxyvitamin D levels confer the risk for the keloid scarring in Chinese cohorts. Cell Physiol Biochem. 2013;32:39–45.PubMedCrossRef Yu D, Shang Y, Luo S, Hao L. The TaqI gene polymorphisms of VDR and the circulating 1,25-dihydroxyvitamin D levels confer the risk for the keloid scarring in Chinese cohorts. Cell Physiol Biochem. 2013;32:39–45.PubMedCrossRef
25.
go back to reference Gong ZH, Ji JF, Yang J, Xiang T, Zhou CK, et al. Association of plasminogen activator inhibitor-1 and vitamin D receptor expression with the risk of keloid disease in a Chinese population. Kaohsiung J Med Sci. 2017;33:24–9.PubMedCrossRef Gong ZH, Ji JF, Yang J, Xiang T, Zhou CK, et al. Association of plasminogen activator inhibitor-1 and vitamin D receptor expression with the risk of keloid disease in a Chinese population. Kaohsiung J Med Sci. 2017;33:24–9.PubMedCrossRef
26.
go back to reference Seeman E, Delmas PD. Bone quality--the material and structural basis of bone strength and fragility. N Engl J Med. 2006;354:2250–61.PubMedCrossRef Seeman E, Delmas PD. Bone quality--the material and structural basis of bone strength and fragility. N Engl J Med. 2006;354:2250–61.PubMedCrossRef
27.
go back to reference Graat-Verboom L, Smeenk FW, van den Borne BE, Spruit MA, Jansen FH, et al. Progression of osteoporosis in patients with COPD: a 3-year follow up study. Respir Med. 2012;106:861–70.PubMedCrossRef Graat-Verboom L, Smeenk FW, van den Borne BE, Spruit MA, Jansen FH, et al. Progression of osteoporosis in patients with COPD: a 3-year follow up study. Respir Med. 2012;106:861–70.PubMedCrossRef
28.
go back to reference Jilka RL, Hangoc G, Girasole G, Passeri G, Williams DC, et al. Increased osteoclast development after estrogen loss: mediation by interleukin-6. Science. 1992;257:88–91.PubMedCrossRef Jilka RL, Hangoc G, Girasole G, Passeri G, Williams DC, et al. Increased osteoclast development after estrogen loss: mediation by interleukin-6. Science. 1992;257:88–91.PubMedCrossRef
29.
go back to reference Arima J, Huang C, Rosner B, Akaishi S, Ogawa R. Hypertension: a systemic key to understanding local keloid severity. Wound Repair Regen. 2015;23:213–21.PubMedCrossRef Arima J, Huang C, Rosner B, Akaishi S, Ogawa R. Hypertension: a systemic key to understanding local keloid severity. Wound Repair Regen. 2015;23:213–21.PubMedCrossRef
30.
31.
go back to reference Ogawa R. Keloid and hypertrophic scars are the result of chronic inflammation in the reticular dermis. Int J Mol Sci. 2017;18. Ogawa R. Keloid and hypertrophic scars are the result of chronic inflammation in the reticular dermis. Int J Mol Sci. 2017;18.
32.
go back to reference Shi C, Zhu J, Yang D. The pivotal role of inflammation in scar/keloid formation after acne. Dermatoendocrinol. 2017;9:e1448327.PubMedCrossRef Shi C, Zhu J, Yang D. The pivotal role of inflammation in scar/keloid formation after acne. Dermatoendocrinol. 2017;9:e1448327.PubMedCrossRef
33.
go back to reference Postlethwaite AE, Smith GN, Mainardi CL, Seyer JM, Kang AH. Lymphocyte modulation of fibroblast function in vitro: stimulation and inhibition of collagen production by different effector molecules. J Immunol. 1984;132:2470–7.PubMedCrossRef Postlethwaite AE, Smith GN, Mainardi CL, Seyer JM, Kang AH. Lymphocyte modulation of fibroblast function in vitro: stimulation and inhibition of collagen production by different effector molecules. J Immunol. 1984;132:2470–7.PubMedCrossRef
34.
go back to reference Chen W, Fu X, Sun X, Sun T, Zhao Z, et al. Analysis of differentially expressed genes in keloids and normal skin with cDNA microarray. J Surg Res. 2003;113:208–16.PubMedCrossRef Chen W, Fu X, Sun X, Sun T, Zhao Z, et al. Analysis of differentially expressed genes in keloids and normal skin with cDNA microarray. J Surg Res. 2003;113:208–16.PubMedCrossRef
35.
36.
go back to reference Redlich K, Smolen JS. Inflammatory bone loss: pathogenesis and therapeutic intervention. Nat Rev Drug Discov. 2012;11:234–50.PubMedCrossRef Redlich K, Smolen JS. Inflammatory bone loss: pathogenesis and therapeutic intervention. Nat Rev Drug Discov. 2012;11:234–50.PubMedCrossRef
37.
go back to reference De Benedetti F, Rucci N, Del Fattore A, Peruzzi B, Paro R, et al. Impaired skeletal development in interleukin-6-transgenic mice: a model for the impact of chronic inflammation on the growing skeletal system. Arthritis Rheum. 2006;54:3551–63.PubMedCrossRef De Benedetti F, Rucci N, Del Fattore A, Peruzzi B, Paro R, et al. Impaired skeletal development in interleukin-6-transgenic mice: a model for the impact of chronic inflammation on the growing skeletal system. Arthritis Rheum. 2006;54:3551–63.PubMedCrossRef
39.
go back to reference Cheng AM, Byrom MW, Shelton J, Ford LP. Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Res. 2005;33:1290–7.PubMedPubMedCentralCrossRef Cheng AM, Byrom MW, Shelton J, Ford LP. Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Res. 2005;33:1290–7.PubMedPubMedCentralCrossRef
40.
go back to reference Liu Y, Yang D, Xiao Z, Zhang M. miRNA expression profiles in keloid tissue and corresponding normal skin tissue. Aesthet Plast Surg. 2012;36:193–201.CrossRef Liu Y, Yang D, Xiao Z, Zhang M. miRNA expression profiles in keloid tissue and corresponding normal skin tissue. Aesthet Plast Surg. 2012;36:193–201.CrossRef
41.
go back to reference Kashiyama K, Mitsutake N, Matsuse M, Ogi T, Saenko VA, et al. miR-196a downregulation increases the expression of type I and III collagens in keloid fibroblasts. J Invest Dermatol. 2012;132:1597–604.PubMedCrossRef Kashiyama K, Mitsutake N, Matsuse M, Ogi T, Saenko VA, et al. miR-196a downregulation increases the expression of type I and III collagens in keloid fibroblasts. J Invest Dermatol. 2012;132:1597–604.PubMedCrossRef
42.
go back to reference Li C, Bai Y, Liu H, Zuo X, Yao H, et al. Comparative study of microRNA profiling in keloid fibroblast and annotation of differential expressed microRNAs. Acta Biochim Biophys Sin (Shanghai). 2013;45:692–9.CrossRef Li C, Bai Y, Liu H, Zuo X, Yao H, et al. Comparative study of microRNA profiling in keloid fibroblast and annotation of differential expressed microRNAs. Acta Biochim Biophys Sin (Shanghai). 2013;45:692–9.CrossRef
44.
go back to reference Wu ZY, Lu L, Liang J, Guo XR, Zhang PH, et al. Keloid microRNA expression analysis and the influence of miR-199a-5p on the proliferation of keloid fibroblasts. Genet Mol Res. 2014;13:2727–38.PubMedCrossRef Wu ZY, Lu L, Liang J, Guo XR, Zhang PH, et al. Keloid microRNA expression analysis and the influence of miR-199a-5p on the proliferation of keloid fibroblasts. Genet Mol Res. 2014;13:2727–38.PubMedCrossRef
45.
go back to reference De-Ugarte L, Yoskovitz G, Balcells S, Guerri-Fernandez R, Martinez-Diaz S, et al. MiRNA profiling of whole trabecular bone: identification of osteoporosis-related changes in MiRNAs in human hip bones. BMC Med Genet. 2015;8:75. De-Ugarte L, Yoskovitz G, Balcells S, Guerri-Fernandez R, Martinez-Diaz S, et al. MiRNA profiling of whole trabecular bone: identification of osteoporosis-related changes in MiRNAs in human hip bones. BMC Med Genet. 2015;8:75.
46.
go back to reference Rossi M, Pitari MR, Amodio N, Di Martino MT, Conforti F, et al. miR-29b negatively regulates human osteoclastic cell differentiation and function: implications for the treatment of multiple myeloma-related bone disease. J Cell Physiol. 2013;228:1506–15.PubMedCrossRef Rossi M, Pitari MR, Amodio N, Di Martino MT, Conforti F, et al. miR-29b negatively regulates human osteoclastic cell differentiation and function: implications for the treatment of multiple myeloma-related bone disease. J Cell Physiol. 2013;228:1506–15.PubMedCrossRef
47.
go back to reference Wang T, Feng Y, Sun H, Zhang L, Hao L, et al. miR-21 regulates skin wound healing by targeting multiple aspects of the healing process. Am J Pathol. 2012;181:1911–20.PubMedCrossRef Wang T, Feng Y, Sun H, Zhang L, Hao L, et al. miR-21 regulates skin wound healing by targeting multiple aspects of the healing process. Am J Pathol. 2012;181:1911–20.PubMedCrossRef
48.
go back to reference Cottonham CL, Kaneko S, Xu L. miR-21 and miR-31 converge on TIAM1 to regulate migration and invasion of colon carcinoma cells. J Biol Chem. 2010;285:35293–302.PubMedPubMedCentralCrossRef Cottonham CL, Kaneko S, Xu L. miR-21 and miR-31 converge on TIAM1 to regulate migration and invasion of colon carcinoma cells. J Biol Chem. 2010;285:35293–302.PubMedPubMedCentralCrossRef
49.
go back to reference Liu Y, Wang X, Yang D, Xiao Z, Chen X. MicroRNA-21 affects proliferation and apoptosis by regulating expression of PTEN in human keloid fibroblasts. Plast Reconstr Surg. 2014;134:561e–73e.PubMedCrossRef Liu Y, Wang X, Yang D, Xiao Z, Chen X. MicroRNA-21 affects proliferation and apoptosis by regulating expression of PTEN in human keloid fibroblasts. Plast Reconstr Surg. 2014;134:561e–73e.PubMedCrossRef
50.
51.
go back to reference Liu Y, Li Y, Li N, Teng W, Wang M, et al. TGF-beta1 promotes scar fibroblasts proliferation and transdifferentiation via up-regulating MicroRNA-21. Sci Rep. 2016;6:32231.PubMedPubMedCentralCrossRef Liu Y, Li Y, Li N, Teng W, Wang M, et al. TGF-beta1 promotes scar fibroblasts proliferation and transdifferentiation via up-regulating MicroRNA-21. Sci Rep. 2016;6:32231.PubMedPubMedCentralCrossRef
53.
go back to reference Garcia Palacios V, Robinson LJ, Borysenko CW, Lehmann T, Kalla SE, et al. Negative regulation of RANKL-induced osteoclastic differentiation in RAW264.7 Cells by estrogen and phytoestrogens. J Biol Chem. 2005;280:13720–7.PubMedCrossRef Garcia Palacios V, Robinson LJ, Borysenko CW, Lehmann T, Kalla SE, et al. Negative regulation of RANKL-induced osteoclastic differentiation in RAW264.7 Cells by estrogen and phytoestrogens. J Biol Chem. 2005;280:13720–7.PubMedCrossRef
54.
go back to reference Robbins J, Hirsch C, Whitmer R, Cauley J, Harris T. The association of bone mineral density and depression in an older population. J Am Geriatr Soc. 2001;49:732–6.PubMedCrossRef Robbins J, Hirsch C, Whitmer R, Cauley J, Harris T. The association of bone mineral density and depression in an older population. J Am Geriatr Soc. 2001;49:732–6.PubMedCrossRef
55.
go back to reference Wong SY, Lau EM, Lynn H, Leung PC, Woo J, et al. Depression and bone mineral density: is there a relationship in elderly Asian men? Results from Mr. Os (Hong Kong). Osteoporos Int. 2005;16:610–5.PubMedCrossRef Wong SY, Lau EM, Lynn H, Leung PC, Woo J, et al. Depression and bone mineral density: is there a relationship in elderly Asian men? Results from Mr. Os (Hong Kong). Osteoporos Int. 2005;16:610–5.PubMedCrossRef
56.
go back to reference Huang WS, Hsu JW, Huang KL, Bai YM, Su TP, et al. Post-traumatic stress disorder and risk of osteoporosis: a nationwide longitudinal study. Stress Health. 2018;34:440–5.PubMedCrossRef Huang WS, Hsu JW, Huang KL, Bai YM, Su TP, et al. Post-traumatic stress disorder and risk of osteoporosis: a nationwide longitudinal study. Stress Health. 2018;34:440–5.PubMedCrossRef
57.
go back to reference Furtado F, Hochman B, Farber PL, Muller MC, Hayashi LF, et al. Psychological stress as a risk factor for postoperative keloid recurrence. J Psychosom Res. 2012;72:282–7.PubMedCrossRef Furtado F, Hochman B, Farber PL, Muller MC, Hayashi LF, et al. Psychological stress as a risk factor for postoperative keloid recurrence. J Psychosom Res. 2012;72:282–7.PubMedCrossRef
Metadata
Title
The association between keloid and osteoporosis: real-world evidence
Authors
Chun-Ching Lu
Hao Qin
Zi-Hao Zhang
Cong-Liang Zhang
Ying-Yi Lu
Chieh-Hsin Wu
Publication date
01-12-2021
Publisher
BioMed Central
Published in
BMC Musculoskeletal Disorders / Issue 1/2021
Electronic ISSN: 1471-2474
DOI
https://doi.org/10.1186/s12891-020-03898-8

Other articles of this Issue 1/2021

BMC Musculoskeletal Disorders 1/2021 Go to the issue