Skip to main content
Top
Published in: BMC Musculoskeletal Disorders 1/2020

Open Access 01-12-2020 | Painful Arc | Research article

Biomechanical comparison between single-row with triple-loaded suture anchor and suture-bridge double-row rotator cuff repair

Authors: He-Bei He, Yong Hu, Chuan Li, Cheng-Guo Li, Min-Cong Wang, Hui-Feng Zhu, Zhi-Wen Yan, Cheng-Long Pan, Tao Wang

Published in: BMC Musculoskeletal Disorders | Issue 1/2020

Login to get access

Abstract

Background

Numerous biomechanical and clinical studies comparing different techniques for rotator cuff repair have been reported, yet universal consensus regarding the superior technique has not achieved. A medially-based single-row with triple-loaded suture anchor (also referred to as the Southern California Orthopedic Institute [SCOI] row) and a suture-bridge double-row (SB-DR) with Push-Locks have been shown to result in comparable improvement in treating rotator cuff tear, yet the biomechanical difference is unknown. The purpose of the current study was to determine whether a SCOI row repair had comparable initial biomechanical properties to a SB-DR repair.

Methods

Six matched pairs of fresh-frozen cadaveric shoulders with full-thickness supraspinatus tendon tears we created were included. Two different repairs were performed for each pair (SCOI row and SB-DR methods). Specimens were mounted on a material testing machine to undergo cyclic loading, which was cycled from 10 to 100 N at 1 Hz for 500 cycles. Construct gap formation was recorded at an interval of 50 cycles. Samples were then loaded to failure and modes of failure were recorded. Repeated-measures analysis of variance and pair-t test were used for statistical analyses.

Results

The construct gap formation did not differ between SCOI row and SB-DR repairs (P = 0.056). The last gap displacement was 1.93 ± 0.37 mm for SCOI row repair, and 1.49 ± 0.55 mm for SB-DR repair. The tensile load for 5 mm of elongation and ultimate failure were higher for SCOI row repair compared to SB-DR repair (P = 0.011 and 0.028, respectively). The ultimate failure load was 326.34 ± 11.52 N in the SCOI row group, and 299.82 ± 27.27 N in the SB-DR group. Rotator cuff repair with the SCOI row method failed primarily at the suture- tendon interface, whereas pullout of the lateral row anchors was the primary mechanism of failure for repair with the SB-DR method.

Conclusion

Rotator cuff repair with the SCOI row method has superior biomechanical properties when compared with the SB-DR method. Therefore, SCOI row repair using a medially-based single-row technique with triple-loaded suture anchor is recommended to improve the initial strength in treating full-thickness rotator cuff tears.
Literature
1.
go back to reference Huegel J, Williams AA, Soslowsky LJ. Rotator cuff biology and biomechanics: a review of normal and pathological conditions. Curr Rheumatol Rep. 2015;17(1):476.CrossRef Huegel J, Williams AA, Soslowsky LJ. Rotator cuff biology and biomechanics: a review of normal and pathological conditions. Curr Rheumatol Rep. 2015;17(1):476.CrossRef
2.
go back to reference Mesiha MM, Derwin KA, Sibole SC, Erdemir A, McCarron JA. The biomechanical relevance of anterior rotator cuff cable tears in a cadaveric shoulder model. J Bone Joint Surg Am. 2013;95(20):1817–24.CrossRef Mesiha MM, Derwin KA, Sibole SC, Erdemir A, McCarron JA. The biomechanical relevance of anterior rotator cuff cable tears in a cadaveric shoulder model. J Bone Joint Surg Am. 2013;95(20):1817–24.CrossRef
3.
go back to reference Haque A, Pal SH. Does structural integrity following rotator cuff repair affect functional outcomes and pain scores? A meta-analysis. Shoulder Elb. 2018;10(3):163–9. Haque A, Pal SH. Does structural integrity following rotator cuff repair affect functional outcomes and pain scores? A meta-analysis. Shoulder Elb. 2018;10(3):163–9.
4.
go back to reference Barber FA, Herbert MA, Schroeder FA, Aziz-Jacobo J, Mays MM, Rapley JH. Biomechanical advantages of triple-loaded suture anchors compared with double-row rotator cuff repairs. Arthroscopy. 2010;26(3):316–23.CrossRef Barber FA, Herbert MA, Schroeder FA, Aziz-Jacobo J, Mays MM, Rapley JH. Biomechanical advantages of triple-loaded suture anchors compared with double-row rotator cuff repairs. Arthroscopy. 2010;26(3):316–23.CrossRef
5.
go back to reference Bicknell RT, Harwood C, Ferreira L, King GJ, Johnson JA, Faber K, et al. Cyclic loading of rotator cuff repairs: an in vitro biomechanical comparison of bioabsorbable tacks with transosseous sutures. Arthroscopy. 2005;21(7):875–80.CrossRef Bicknell RT, Harwood C, Ferreira L, King GJ, Johnson JA, Faber K, et al. Cyclic loading of rotator cuff repairs: an in vitro biomechanical comparison of bioabsorbable tacks with transosseous sutures. Arthroscopy. 2005;21(7):875–80.CrossRef
6.
go back to reference Burkhart SS, Adams CR, Burkhart SS, Schoolfield JD. A biomechanical comparison of 2 techniques of footprint reconstruction for rotator cuff repair: the SwiveLock-FiberChain construct versus standard double-row repair. Arthroscopy. 2009;25(3):274–81.CrossRef Burkhart SS, Adams CR, Burkhart SS, Schoolfield JD. A biomechanical comparison of 2 techniques of footprint reconstruction for rotator cuff repair: the SwiveLock-FiberChain construct versus standard double-row repair. Arthroscopy. 2009;25(3):274–81.CrossRef
7.
go back to reference Busfield BT, Glousman RE, McGarry MH, Tibone JE, Lee TQ. A biomechanical comparison of 2 technical variations of double-row rotator cuff fixation: the importance of medial row knots. Am J Sports Med. 2008;36(5):901–6.CrossRef Busfield BT, Glousman RE, McGarry MH, Tibone JE, Lee TQ. A biomechanical comparison of 2 technical variations of double-row rotator cuff fixation: the importance of medial row knots. Am J Sports Med. 2008;36(5):901–6.CrossRef
8.
go back to reference Goschka AM, Hafer JS, Reynolds KA, Aberle NS 2nd, Baldini TH, Hawkins MJ, et al. Biomechanical comparison of traditional anchors to all-suture anchors in a double-row rotator cuff repair cadaver model. Clin Biomech (Bristol, Avon). 2015;30(8):808–13.CrossRef Goschka AM, Hafer JS, Reynolds KA, Aberle NS 2nd, Baldini TH, Hawkins MJ, et al. Biomechanical comparison of traditional anchors to all-suture anchors in a double-row rotator cuff repair cadaver model. Clin Biomech (Bristol, Avon). 2015;30(8):808–13.CrossRef
9.
go back to reference Lorbach O, Kieb M, Raber F, Busch LC, Kohn D, Pape D. Comparable biomechanical results for a modified single-row rotator cuff reconstruction using triple-loaded suture anchors versus a suture-bridging double-row repair. Arthroscopy. 2012;28(2):178–87.CrossRef Lorbach O, Kieb M, Raber F, Busch LC, Kohn D, Pape D. Comparable biomechanical results for a modified single-row rotator cuff reconstruction using triple-loaded suture anchors versus a suture-bridging double-row repair. Arthroscopy. 2012;28(2):178–87.CrossRef
10.
go back to reference Ma CB, Comerford L, Wilson J, Puttlitz CM. Biomechanical evaluation of arthroscopic rotator cuff repairs: double-row compared with single-row fixation. J Bone Joint Surg Am. 2006;88(2):403–10.PubMed Ma CB, Comerford L, Wilson J, Puttlitz CM. Biomechanical evaluation of arthroscopic rotator cuff repairs: double-row compared with single-row fixation. J Bone Joint Surg Am. 2006;88(2):403–10.PubMed
11.
go back to reference Meisel AF, Henninger HB, Barber FA, Getelman MH. Biomechanical comparison of standard and linked single-row rotator cuff repairs in a human cadaver model. Arthroscopy. 2017;33(5):938–44.CrossRef Meisel AF, Henninger HB, Barber FA, Getelman MH. Biomechanical comparison of standard and linked single-row rotator cuff repairs in a human cadaver model. Arthroscopy. 2017;33(5):938–44.CrossRef
12.
go back to reference Quigley RJ, Gupta A, Oh JH, Chung KC, McGarry MH, Gupta R, et al. Biomechanical comparison of single-row, double-row, and transosseous-equivalent repair techniques after healing in an animal rotator cuff tear model. J Orthopaed Res. 2013;31(8):1254–60.CrossRef Quigley RJ, Gupta A, Oh JH, Chung KC, McGarry MH, Gupta R, et al. Biomechanical comparison of single-row, double-row, and transosseous-equivalent repair techniques after healing in an animal rotator cuff tear model. J Orthopaed Res. 2013;31(8):1254–60.CrossRef
13.
go back to reference Kim DH, Elattrache NS, Tibone JE, Jun BJ, DeLaMora SN, Kvitne RS, et al. Biomechanical comparison of a single-row versus double-row suture anchor technique for rotator cuff repair. Am J Sports Med. 2006;34(3):407–14.CrossRef Kim DH, Elattrache NS, Tibone JE, Jun BJ, DeLaMora SN, Kvitne RS, et al. Biomechanical comparison of a single-row versus double-row suture anchor technique for rotator cuff repair. Am J Sports Med. 2006;34(3):407–14.CrossRef
14.
go back to reference Dini AA, Snyder SJ. Rotator cuff repair – The SCOI row method. Medicina Fluminensis. 2015;51(1):114–26. Dini AA, Snyder SJ. Rotator cuff repair – The SCOI row method. Medicina Fluminensis. 2015;51(1):114–26.
15.
go back to reference Dierckman BD, Ni JJ, Karzel RP, Getelman MH. Excellent healing rates and patient satisfaction after arthroscopic repair of medium to large rotator cuff tears with a single-row technique augmented with bone marrow vents. Knee Surg Sports Traumatol Arthrosc. 2018;26(1):136–45.CrossRef Dierckman BD, Ni JJ, Karzel RP, Getelman MH. Excellent healing rates and patient satisfaction after arthroscopic repair of medium to large rotator cuff tears with a single-row technique augmented with bone marrow vents. Knee Surg Sports Traumatol Arthrosc. 2018;26(1):136–45.CrossRef
16.
go back to reference Tashjian RZ, Granger EK, Chalmers PN. Healing rates and functional outcomes after triple-loaded single-row versus Transosseous-equivalent double-row rotator cuff tendon repair. Orthopaed J Sports Med. 2018;6(11):2325967118805365.CrossRef Tashjian RZ, Granger EK, Chalmers PN. Healing rates and functional outcomes after triple-loaded single-row versus Transosseous-equivalent double-row rotator cuff tendon repair. Orthopaed J Sports Med. 2018;6(11):2325967118805365.CrossRef
17.
go back to reference Burns JP, Snyder SJ, Albritton M. Arthroscopic rotator cuff repair using triple-loaded anchors, suture shuttles, and suture savers. J Am Acad Orthopaed Surg. 2007;15(7):432–44.CrossRef Burns JP, Snyder SJ, Albritton M. Arthroscopic rotator cuff repair using triple-loaded anchors, suture shuttles, and suture savers. J Am Acad Orthopaed Surg. 2007;15(7):432–44.CrossRef
18.
go back to reference Burkhart SS, Diaz Pagan JL, Wirth MA, Athanasiou KA. Cyclic loading of anchor-based rotator cuff repairs: confirmation of the tension overload phenomenon and comparison of suture anchor fixation with transosseous fixation. Arthroscopy. 1997;13(6):720–4.CrossRef Burkhart SS, Diaz Pagan JL, Wirth MA, Athanasiou KA. Cyclic loading of anchor-based rotator cuff repairs: confirmation of the tension overload phenomenon and comparison of suture anchor fixation with transosseous fixation. Arthroscopy. 1997;13(6):720–4.CrossRef
19.
go back to reference Demirhan M, Atalar AC, Kilicoglu O. Primary fixation strength of rotator cuff repair techniques: a comparative study. Arthroscopy. 2003;19(6):572–6.CrossRef Demirhan M, Atalar AC, Kilicoglu O. Primary fixation strength of rotator cuff repair techniques: a comparative study. Arthroscopy. 2003;19(6):572–6.CrossRef
20.
go back to reference Zheng N, Harris HW, Andrews JR. Failure analysis of rotator cuff repair: a comparison of three double-row techniques. J Bone Joint Surg Am. 2008;90(5):1034–42.CrossRef Zheng N, Harris HW, Andrews JR. Failure analysis of rotator cuff repair: a comparison of three double-row techniques. J Bone Joint Surg Am. 2008;90(5):1034–42.CrossRef
21.
go back to reference Rossi LA, Rodeo SA, Chahla J, Ranalletta M. Current concepts in rotator cuff repair techniques: biomechanical, functional, and structural outcomes. Orthopaed J Sports Med. 2019;7(9):2325967119868674.CrossRef Rossi LA, Rodeo SA, Chahla J, Ranalletta M. Current concepts in rotator cuff repair techniques: biomechanical, functional, and structural outcomes. Orthopaed J Sports Med. 2019;7(9):2325967119868674.CrossRef
22.
go back to reference Meier SW, Meier JD. The effect of double-row fixation on initial repair strength in rotator cuff repair: a biomechanical study. Arthroscopy. 2006;22(11):1168–73.CrossRef Meier SW, Meier JD. The effect of double-row fixation on initial repair strength in rotator cuff repair: a biomechanical study. Arthroscopy. 2006;22(11):1168–73.CrossRef
23.
go back to reference Meier SW, Meier JD. Rotator cuff repair: the effect of double-row fixation on three-dimensional repair site. J Shoulder Elb Surg. 2006;15(6):691–6.CrossRef Meier SW, Meier JD. Rotator cuff repair: the effect of double-row fixation on three-dimensional repair site. J Shoulder Elb Surg. 2006;15(6):691–6.CrossRef
24.
go back to reference Nassos JT, ElAttrache NS, Angel MJ, Tibone JE, Limpisvasti O, Lee TQ. A watertight construct in arthroscopic rotator cuff repair. J Shoulder Elb Surg. 2012;21(5):589–96.CrossRef Nassos JT, ElAttrache NS, Angel MJ, Tibone JE, Limpisvasti O, Lee TQ. A watertight construct in arthroscopic rotator cuff repair. J Shoulder Elb Surg. 2012;21(5):589–96.CrossRef
25.
go back to reference Park MC, Elattrache NS, Ahmad CS, Tibone JE. “Transosseous-equivalent” rotator cuff repair technique. Arthroscopy. 2006;22(12):1360 e1–5.CrossRef Park MC, Elattrache NS, Ahmad CS, Tibone JE. “Transosseous-equivalent” rotator cuff repair technique. Arthroscopy. 2006;22(12):1360 e1–5.CrossRef
26.
go back to reference Lo IK, Burkhart SS. Double-row arthroscopic rotator cuff repair: re-establishing the footprint of the rotator cuff. Arthroscopy. 2003;19(9):1035–42.CrossRef Lo IK, Burkhart SS. Double-row arthroscopic rotator cuff repair: re-establishing the footprint of the rotator cuff. Arthroscopy. 2003;19(9):1035–42.CrossRef
27.
go back to reference Jost PW, Khair MM, Chen DX, Wright TM, Kelly AM, Rodeo SA. Suture number determines strength of rotator cuff repair. J Bone Joint Surg Am. 2012;94(14):e100.CrossRef Jost PW, Khair MM, Chen DX, Wright TM, Kelly AM, Rodeo SA. Suture number determines strength of rotator cuff repair. J Bone Joint Surg Am. 2012;94(14):e100.CrossRef
28.
go back to reference Coons DA, Barber FA, Herbert MA. Triple-loaded single-anchor stitch configurations: an analysis of cyclically loaded suture-tendon interface security. Arthroscopy. 2006;22(11):1154–8.CrossRef Coons DA, Barber FA, Herbert MA. Triple-loaded single-anchor stitch configurations: an analysis of cyclically loaded suture-tendon interface security. Arthroscopy. 2006;22(11):1154–8.CrossRef
29.
go back to reference Burkhart SS, Johnson TC, Wirth MA, Athanasiou KA. Cyclic loading of transosseous rotator cuff repairs: tension overload as a possible cause of failure. Arthroscopy. 1997;13(2):172–6.CrossRef Burkhart SS, Johnson TC, Wirth MA, Athanasiou KA. Cyclic loading of transosseous rotator cuff repairs: tension overload as a possible cause of failure. Arthroscopy. 1997;13(2):172–6.CrossRef
30.
go back to reference Tingart MJ, Apreleva M, Zurakowski D, Warner JJ. Pullout strength of suture anchors used in rotator cuff repair. J Bone Joint Surg Am. 2003;85(11):2190–8.CrossRef Tingart MJ, Apreleva M, Zurakowski D, Warner JJ. Pullout strength of suture anchors used in rotator cuff repair. J Bone Joint Surg Am. 2003;85(11):2190–8.CrossRef
31.
go back to reference Yamamoto A, Takagishi K, Osawa T, Yanagawa T, Nakajima D, Shitara H, et al. Prevalence and risk factors of a rotator cuff tear in the general population. J Shoulder Elb Surg. 2010;19(1):116–20.CrossRef Yamamoto A, Takagishi K, Osawa T, Yanagawa T, Nakajima D, Shitara H, et al. Prevalence and risk factors of a rotator cuff tear in the general population. J Shoulder Elb Surg. 2010;19(1):116–20.CrossRef
32.
go back to reference Deprés-Tremblay G, Chevrier A, Snow M, Hurtig MB, Rodeo S, Buschmann MD. Rotator cuff repair: a review of surgical techniques, animal models, and new technologies under development. J Shoulder Elb Surg. 2016;25(12):2078–85.CrossRef Deprés-Tremblay G, Chevrier A, Snow M, Hurtig MB, Rodeo S, Buschmann MD. Rotator cuff repair: a review of surgical techniques, animal models, and new technologies under development. J Shoulder Elb Surg. 2016;25(12):2078–85.CrossRef
33.
go back to reference Galatz LM, Rothermich SY, Zaegel M, Silva MJ, Havlioglu N, Thomopoulos S. Delayed repair of tendon to bone injuries leads to decreased biomechanical properties and bone loss. J Orthopaed Res. 2005;23(6):1441–7.CrossRef Galatz LM, Rothermich SY, Zaegel M, Silva MJ, Havlioglu N, Thomopoulos S. Delayed repair of tendon to bone injuries leads to decreased biomechanical properties and bone loss. J Orthopaed Res. 2005;23(6):1441–7.CrossRef
Metadata
Title
Biomechanical comparison between single-row with triple-loaded suture anchor and suture-bridge double-row rotator cuff repair
Authors
He-Bei He
Yong Hu
Chuan Li
Cheng-Guo Li
Min-Cong Wang
Hui-Feng Zhu
Zhi-Wen Yan
Cheng-Long Pan
Tao Wang
Publication date
01-12-2020
Publisher
BioMed Central
Keyword
Painful Arc
Published in
BMC Musculoskeletal Disorders / Issue 1/2020
Electronic ISSN: 1471-2474
DOI
https://doi.org/10.1186/s12891-020-03654-y

Other articles of this Issue 1/2020

BMC Musculoskeletal Disorders 1/2020 Go to the issue