Skip to main content
Top
Published in: BMC Musculoskeletal Disorders 1/2020

Open Access 01-12-2020 | Ovariectomy | Research article

Novel transplant of combined platelet-rich fibrin Releasate and bone marrow stem cells prevent bone loss in Ovariectomized osteoporotic mice

Authors: Chin-Chean Wong, Jeng-Hao Liao, Shi-Yuan Sheu, Po-Yu Lin, Chih-Hwa Chen, Tzong-Fu Kuo

Published in: BMC Musculoskeletal Disorders | Issue 1/2020

Login to get access

Abstract

Background

Osteoporosis is a metabolic bone disorder characterized by deterioration in the quantity and quality of bone tissue, with a consequent increase susceptibility to fracture.

Methods

In this study, we sought to determine the efficacy of platelet-rich fibrin releasates (PRFr) in augmenting the therapeutic effects of stem cell-based therapy in treating osteoporotic bone disorder. An osteoporosis mouse model was established through bilateral ovariectomy on 12-week-old female ICR (Institute of Cancer Research) mice. Eight weeks postoperatively, the ovariectomized (OVX) mice were left untreated (control) or injected with PRFr, bone marrow stem cells (BMSCs), or the combination of BMSCs and PRFr. Two different injection (single versus quadruple) dosages were tested to investigate the accumulative effects of BMSCS and PRFr on bone quality.
Eight weeks after injection, the changes in tibial microstructural profiles included the percentage of bone volume versus total tissue volume (BV/TV, %), bone mineral density (BMD, g/cm3), trabecular number (Tb.N, number/mm), and trabecular separation (Tb.Sp, mm) and bony histology were analyzed.

Results

Postmenopausal osteoporosis model was successfully established in OVX mice, evidenced by reduced BMD, decreased BV/TV, lower Tb.N but increased Tb.Sp. Eight weeks after injection, there was no significant change to BMD and bone trabeculae could be detected in mice that received single-injection regimen. In contrast, in mice which received 4 doses of combined PRFr and BMSCs, the BMD, BV/TV, and TB.N increased, and the TB.Sp decreased significantly compared to untreated OVX mice. Moreover, the histological analysis showed the trabecular spacing become narrower in OVX-mice treated with quadruple injection of BMSCs and combined PRFr and BMSCs than untreated control.

Conclusion

The systemic administration of combined BMSCs and PRFr protected against OVX-induced bone mass loss in mice. Moreover, the improvement of bony profile scores in quadruple-injection group is better than the single-injection group, probably through the increase in effect size of cells and growth factors. Our data also revealed the combination therapy of BMSCs and PRFr has better effect in enhancing osteogenesis, which may provide insight for the development of a novel therapeutic strategy in osteoporosis treatment.
Literature
1.
go back to reference Tu KN, Lie JD, Wan CKV, Cameron M, Austel AG, Nguyen JK, Van K, Hyun D. Osteoporosis: a review of treatment options. P t. 2018;43(2):92–104.PubMedPubMedCentral Tu KN, Lie JD, Wan CKV, Cameron M, Austel AG, Nguyen JK, Van K, Hyun D. Osteoporosis: a review of treatment options. P t. 2018;43(2):92–104.PubMedPubMedCentral
2.
go back to reference Sale JE, Beaton D, Bogoch E. Secondary prevention after an osteoporosis-related fracture: an overview. Clin Geriatr Med. 2014;30(2):317–32.PubMedCrossRef Sale JE, Beaton D, Bogoch E. Secondary prevention after an osteoporosis-related fracture: an overview. Clin Geriatr Med. 2014;30(2):317–32.PubMedCrossRef
4.
go back to reference Karsenty G, Wagner EF. Reaching a genetic and molecular understanding of skeletal development. Dev Cell. 2002;2(4):389–406.PubMedCrossRef Karsenty G, Wagner EF. Reaching a genetic and molecular understanding of skeletal development. Dev Cell. 2002;2(4):389–406.PubMedCrossRef
5.
6.
go back to reference Seeman E. Bone quality: the material and structural basis of bone strength. J Bone Miner Metab. 2008;26(1):1–8.PubMedCrossRef Seeman E. Bone quality: the material and structural basis of bone strength. J Bone Miner Metab. 2008;26(1):1–8.PubMedCrossRef
7.
go back to reference Seeman E, Delmas PD. Bone quality--the material and structural basis of bone strength and fragility. N Engl J Med. 2006;354(21):2250–61.PubMedCrossRef Seeman E, Delmas PD. Bone quality--the material and structural basis of bone strength and fragility. N Engl J Med. 2006;354(21):2250–61.PubMedCrossRef
8.
go back to reference Clarke BL. Anti-sclerostin antibodies: utility in treatment of osteoporosis. Maturitas. 2014;78(3):199–204.PubMedCrossRef Clarke BL. Anti-sclerostin antibodies: utility in treatment of osteoporosis. Maturitas. 2014;78(3):199–204.PubMedCrossRef
9.
go back to reference Bandeira L, Lewiecki EM, Bilezikian JP. Romosozumab for the treatment of osteoporosis. Expert Opin Biol Ther. 2017;17(2):255–63.PubMedCrossRef Bandeira L, Lewiecki EM, Bilezikian JP. Romosozumab for the treatment of osteoporosis. Expert Opin Biol Ther. 2017;17(2):255–63.PubMedCrossRef
10.
go back to reference Kharazmi M, Hallberg P, Warfvinge G, Michaelsson K. Risk of atypical femoral fractures and osteonecrosis of the jaw associated with alendronate use compared with other oral bisphosphonates. Rheumatology (Oxford). 2014;53(10):1911–3.CrossRef Kharazmi M, Hallberg P, Warfvinge G, Michaelsson K. Risk of atypical femoral fractures and osteonecrosis of the jaw associated with alendronate use compared with other oral bisphosphonates. Rheumatology (Oxford). 2014;53(10):1911–3.CrossRef
11.
go back to reference McClung M, Harris ST, Miller PD, Bauer DC, Davison KS, Dian L, Hanley DA, Kendler DL, Yuen CK, Lewiecki EM. Bisphosphonate therapy for osteoporosis: benefits, risks, and drug holiday. Am J Med. 2013;126(1):13–20.PubMedCrossRef McClung M, Harris ST, Miller PD, Bauer DC, Davison KS, Dian L, Hanley DA, Kendler DL, Yuen CK, Lewiecki EM. Bisphosphonate therapy for osteoporosis: benefits, risks, and drug holiday. Am J Med. 2013;126(1):13–20.PubMedCrossRef
12.
go back to reference Wirth SM, Lawson AP, Sutphin SD, Adams VR. Osteonecrosis of the jaw associated with bisphosphonate therapy. Orthopedics. 2009;32(12):900.PubMed Wirth SM, Lawson AP, Sutphin SD, Adams VR. Osteonecrosis of the jaw associated with bisphosphonate therapy. Orthopedics. 2009;32(12):900.PubMed
14.
go back to reference Antebi B, Pelled G, Gazit D. Stem cell therapy for osteoporosis. Curr Osteoporos Rep. 2014;12(1):41–7.PubMedCrossRef Antebi B, Pelled G, Gazit D. Stem cell therapy for osteoporosis. Curr Osteoporos Rep. 2014;12(1):41–7.PubMedCrossRef
15.
go back to reference Liu HY, Wu AT, Tsai CY, Chou KR, Zeng R, Wang MF, Chang WC, Hwang SM, Su CH, Deng WP. The balance between adipogenesis and osteogenesis in bone regeneration by platelet-rich plasma for age-related osteoporosis. Biomaterials. 2011;32(28):6773–80.PubMedCrossRef Liu HY, Wu AT, Tsai CY, Chou KR, Zeng R, Wang MF, Chang WC, Hwang SM, Su CH, Deng WP. The balance between adipogenesis and osteogenesis in bone regeneration by platelet-rich plasma for age-related osteoporosis. Biomaterials. 2011;32(28):6773–80.PubMedCrossRef
16.
go back to reference Tokuzawa Y, Yagi K, Yamashita Y, Nakachi Y, Nikaido I, Bono H, Ninomiya Y, Kanesaki-Yatsuka Y, Akita M, Motegi H, et al. Id4, a new candidate gene for senile osteoporosis, acts as a molecular switch promoting osteoblast differentiation. PLoS Genet. 2010;6(7):e1001019.PubMedPubMedCentralCrossRef Tokuzawa Y, Yagi K, Yamashita Y, Nakachi Y, Nikaido I, Bono H, Ninomiya Y, Kanesaki-Yatsuka Y, Akita M, Motegi H, et al. Id4, a new candidate gene for senile osteoporosis, acts as a molecular switch promoting osteoblast differentiation. PLoS Genet. 2010;6(7):e1001019.PubMedPubMedCentralCrossRef
17.
go back to reference Wang C, Meng H, Wang X, Zhao C, Peng J, Wang Y. Differentiation of bone marrow Mesenchymal stem cells in osteoblasts and adipocytes and its role in treatment of osteoporosis. Med Sci Monit. 2016;22:226–33.PubMedPubMedCentralCrossRef Wang C, Meng H, Wang X, Zhao C, Peng J, Wang Y. Differentiation of bone marrow Mesenchymal stem cells in osteoblasts and adipocytes and its role in treatment of osteoporosis. Med Sci Monit. 2016;22:226–33.PubMedPubMedCentralCrossRef
18.
go back to reference Maurin AC, Chavassieux PM, Frappart L, Delmas PD, Serre CM, Meunier PJ. Influence of mature adipocytes on osteoblast proliferation in human primary cocultures. Bone. 2000;26(5):485–9.PubMedCrossRef Maurin AC, Chavassieux PM, Frappart L, Delmas PD, Serre CM, Meunier PJ. Influence of mature adipocytes on osteoblast proliferation in human primary cocultures. Bone. 2000;26(5):485–9.PubMedCrossRef
19.
go back to reference Wan Y, Chong LW, Evans RM. PPAR-gamma regulates osteoclastogenesis in mice. Nat Med. 2007;13(12):1496–503.PubMedCrossRef Wan Y, Chong LW, Evans RM. PPAR-gamma regulates osteoclastogenesis in mice. Nat Med. 2007;13(12):1496–503.PubMedCrossRef
20.
go back to reference Uggeri J, Belletti S, Guizzardi S, Poli T, Cantarelli S, Scandroglio R, Gatti R. Dose-dependent effects of platelet gel releasate on activities of human osteoblasts. J Periodontol. 2007;78(10):1985–91.PubMedCrossRef Uggeri J, Belletti S, Guizzardi S, Poli T, Cantarelli S, Scandroglio R, Gatti R. Dose-dependent effects of platelet gel releasate on activities of human osteoblasts. J Periodontol. 2007;78(10):1985–91.PubMedCrossRef
21.
go back to reference Parsons P, Butcher A, Hesselden K, Ellis K, Maughan J, Milner R, Scott M, Alley C, Watson JT, Horner A. Platelet-rich concentrate supports human mesenchymal stem cell proliferation, bone morphogenetic protein-2 messenger RNA expression, alkaline phosphatase activity, and bone formation in vitro: a mode of action to enhance bone repair. J Orthop Trauma. 2008;22(9):595–604.PubMedCrossRef Parsons P, Butcher A, Hesselden K, Ellis K, Maughan J, Milner R, Scott M, Alley C, Watson JT, Horner A. Platelet-rich concentrate supports human mesenchymal stem cell proliferation, bone morphogenetic protein-2 messenger RNA expression, alkaline phosphatase activity, and bone formation in vitro: a mode of action to enhance bone repair. J Orthop Trauma. 2008;22(9):595–604.PubMedCrossRef
22.
go back to reference Man Y, Wang P, Guo Y, Xiang L, Yang Y, Qu Y, Gong P, Deng L. Angiogenic and osteogenic potential of platelet-rich plasma and adipose-derived stem cell laden alginate microspheres. Biomaterials. 2012;33(34):8802–11.PubMedCrossRef Man Y, Wang P, Guo Y, Xiang L, Yang Y, Qu Y, Gong P, Deng L. Angiogenic and osteogenic potential of platelet-rich plasma and adipose-derived stem cell laden alginate microspheres. Biomaterials. 2012;33(34):8802–11.PubMedCrossRef
23.
go back to reference Choukroun J, Diss A, Simonpieri A, Girard MO, Schoeffler C, Dohan SL, Dohan AJ, Mouhyi J, Dohan DM. Platelet-rich fibrin (PRF): a second-generation platelet concentrate. Part IV: clinical effects on tissue healing. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2006;101(3):e56–60.PubMedCrossRef Choukroun J, Diss A, Simonpieri A, Girard MO, Schoeffler C, Dohan SL, Dohan AJ, Mouhyi J, Dohan DM. Platelet-rich fibrin (PRF): a second-generation platelet concentrate. Part IV: clinical effects on tissue healing. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2006;101(3):e56–60.PubMedCrossRef
24.
go back to reference Dohan DM, Choukroun J, Diss A, Dohan SL, Dohan AJ, Mouhyi J, Gogly B. Platelet-rich fibrin (PRF): a second-generation platelet concentrate. Part I: technological concepts and evolution. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2006;101(3):e37–44.PubMedCrossRef Dohan DM, Choukroun J, Diss A, Dohan SL, Dohan AJ, Mouhyi J, Gogly B. Platelet-rich fibrin (PRF): a second-generation platelet concentrate. Part I: technological concepts and evolution. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2006;101(3):e37–44.PubMedCrossRef
25.
go back to reference Kobayashi M, Kawase T, Horimizu M, Okuda K, Wolff LF, Yoshie H. A proposed protocol for the standardized preparation of PRF membranes for clinical use. Biologicals. 2012;40(5):323–9.PubMedCrossRef Kobayashi M, Kawase T, Horimizu M, Okuda K, Wolff LF, Yoshie H. A proposed protocol for the standardized preparation of PRF membranes for clinical use. Biologicals. 2012;40(5):323–9.PubMedCrossRef
26.
go back to reference Kosmacheva SM, Danilkovich NN, Shchepen AV, Ignatenko SI, Potapnev MP. Effect of platelet releasate on osteogenic differentiation of human mesenchymal bone marrow stem cells. Bull Exp Biol Med. 2014;156(4):560–5.PubMedCrossRef Kosmacheva SM, Danilkovich NN, Shchepen AV, Ignatenko SI, Potapnev MP. Effect of platelet releasate on osteogenic differentiation of human mesenchymal bone marrow stem cells. Bull Exp Biol Med. 2014;156(4):560–5.PubMedCrossRef
28.
go back to reference Rocha MAC, Silva LMC, Oliveira WA, Bezerra DO, Silva GCD, Silva LDS, Medeiros B, Baeta SAF, Carvalho MAM, Argolo NMN. Allogeneic mesenchymal stem cells and xenogenic platelet rich plasma, associated or not, in the repair of bone failures in rabbits with secondary osteoporosis. Acta Cir Bras. 2017;32(9):767–80.PubMedCrossRef Rocha MAC, Silva LMC, Oliveira WA, Bezerra DO, Silva GCD, Silva LDS, Medeiros B, Baeta SAF, Carvalho MAM, Argolo NMN. Allogeneic mesenchymal stem cells and xenogenic platelet rich plasma, associated or not, in the repair of bone failures in rabbits with secondary osteoporosis. Acta Cir Bras. 2017;32(9):767–80.PubMedCrossRef
29.
go back to reference Su CY, Kuo YP, Tseng YH, Su CH, Burnouf T. In vitro release of growth factors from platelet-rich fibrin (PRF): a proposal to optimize the clinical applications of PRF. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;108(1):56–61.PubMedCrossRef Su CY, Kuo YP, Tseng YH, Su CH, Burnouf T. In vitro release of growth factors from platelet-rich fibrin (PRF): a proposal to optimize the clinical applications of PRF. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;108(1):56–61.PubMedCrossRef
31.
go back to reference Muschler GF, Nitto H, Boehm CA, Easley KA. Age- and gender-related changes in the cellularity of human bone marrow and the prevalence of osteoblastic progenitors. J Orthop Res. 2001;19(1):117–25.PubMedCrossRef Muschler GF, Nitto H, Boehm CA, Easley KA. Age- and gender-related changes in the cellularity of human bone marrow and the prevalence of osteoblastic progenitors. J Orthop Res. 2001;19(1):117–25.PubMedCrossRef
32.
33.
go back to reference Wong CC, Chen CH, Chan WP, Chiu LH, Ho WP, Hsieh FJ, Chen YT, Yang TL. Single-stage cartilage repair using platelet-rich fibrin scaffolds with autologous cartilaginous grafts. Am J Sports Med. 2017;45(13):3128–42.PubMedCrossRef Wong CC, Chen CH, Chan WP, Chiu LH, Ho WP, Hsieh FJ, Chen YT, Yang TL. Single-stage cartilage repair using platelet-rich fibrin scaffolds with autologous cartilaginous grafts. Am J Sports Med. 2017;45(13):3128–42.PubMedCrossRef
34.
go back to reference Wong CC, Kuo TF, Yang TL, Tsuang YH, Lin MF, Chang CH, Lin YH, Chan WP. Platelet-Rich Fibrin Facilitates Rabbit Meniscal Repair by Promoting Meniscocytes Proliferation, Migration, and Extracellular Matrix Synthesis. Int J Mol Sci. 2017;18(8):1722.PubMedCentralCrossRef Wong CC, Kuo TF, Yang TL, Tsuang YH, Lin MF, Chang CH, Lin YH, Chan WP. Platelet-Rich Fibrin Facilitates Rabbit Meniscal Repair by Promoting Meniscocytes Proliferation, Migration, and Extracellular Matrix Synthesis. Int J Mol Sci. 2017;18(8):1722.PubMedCentralCrossRef
35.
go back to reference Wong CC, Ou KL, Lin YH, Lin MF, Yang TL, Chen CH, Chan WP. Platelet-Rich Fibrin Facilitates One-Stage Cartilage Repair by Promoting Chondrocytes Viability, Migration, and Matrix Synthesis. Int J Mol Sci. 2020;21(2):577.PubMedCentralCrossRef Wong CC, Ou KL, Lin YH, Lin MF, Yang TL, Chen CH, Chan WP. Platelet-Rich Fibrin Facilitates One-Stage Cartilage Repair by Promoting Chondrocytes Viability, Migration, and Matrix Synthesis. Int J Mol Sci. 2020;21(2):577.PubMedCentralCrossRef
36.
go back to reference Sharif PS, Abdollahi M. The role of platelets in bone remodeling. Inflamm Allergy Drug Targets. 2010;9(5):393–9.PubMedCrossRef Sharif PS, Abdollahi M. The role of platelets in bone remodeling. Inflamm Allergy Drug Targets. 2010;9(5):393–9.PubMedCrossRef
37.
go back to reference Zou J, Yuan C, Wu C, Cao C, Yang H. The effects of platelet-rich plasma on the osteogenic induction of bone marrow mesenchymal stem cells. Connect Tissue Res. 2014;55(4):304–9.PubMedCrossRef Zou J, Yuan C, Wu C, Cao C, Yang H. The effects of platelet-rich plasma on the osteogenic induction of bone marrow mesenchymal stem cells. Connect Tissue Res. 2014;55(4):304–9.PubMedCrossRef
38.
go back to reference Foster TE, Puskas BL, Mandelbaum BR, Gerhardt MB, Rodeo SA. Platelet-rich plasma: from basic science to clinical applications. Am J Sports Med. 2009;37(11):2259–72.PubMedCrossRef Foster TE, Puskas BL, Mandelbaum BR, Gerhardt MB, Rodeo SA. Platelet-rich plasma: from basic science to clinical applications. Am J Sports Med. 2009;37(11):2259–72.PubMedCrossRef
39.
go back to reference Jalowiec JM, D'Este M, Bara JJ, Denom J, Menzel U, Alini M, Verrier S, Herrmann M. An in vitro investigation of platelet-rich plasma-gel as a cell and growth factor delivery vehicle for tissue engineering. Tissue Eng Part C Methods. 2016;22(1):49–58.PubMedCrossRef Jalowiec JM, D'Este M, Bara JJ, Denom J, Menzel U, Alini M, Verrier S, Herrmann M. An in vitro investigation of platelet-rich plasma-gel as a cell and growth factor delivery vehicle for tissue engineering. Tissue Eng Part C Methods. 2016;22(1):49–58.PubMedCrossRef
40.
go back to reference Kang YH, Jeon SH, Park JY, Chung JH, Choung YH, Choung HW, Kim ES, Choung PH. Platelet-rich fibrin is a bioscaffold and reservoir of growth factors for tissue regeneration. Tissue Eng A. 2011;17(3–4):349–59.CrossRef Kang YH, Jeon SH, Park JY, Chung JH, Choung YH, Choung HW, Kim ES, Choung PH. Platelet-rich fibrin is a bioscaffold and reservoir of growth factors for tissue regeneration. Tissue Eng A. 2011;17(3–4):349–59.CrossRef
41.
go back to reference Khiste SV, Naik Tari R. Platelet-rich fibrin as a biofuel for tissue regeneration. ISRN Biomaterials. 2013;2013:1–6.CrossRef Khiste SV, Naik Tari R. Platelet-rich fibrin as a biofuel for tissue regeneration. ISRN Biomaterials. 2013;2013:1–6.CrossRef
42.
go back to reference Zhang M, Zhen J, Zhang X, Yang Z, Zhang L, Hao D, Ren B. Effect of autologous platelet-rich plasma and gelatin sponge for tendon-to-bone healing after rabbit anterior cruciate ligament reconstruction. Arthroscopy. 2019;35(5):1486–97.PubMedCrossRef Zhang M, Zhen J, Zhang X, Yang Z, Zhang L, Hao D, Ren B. Effect of autologous platelet-rich plasma and gelatin sponge for tendon-to-bone healing after rabbit anterior cruciate ligament reconstruction. Arthroscopy. 2019;35(5):1486–97.PubMedCrossRef
43.
go back to reference Cho HS, Song IH, Park SY, Sung MC, Ahn MW, Song KE. Individual variation in growth factor concentrations in platelet-rich plasma and its influence on human mesenchymal stem cells. Korean J Lab Med. 2011;31(3):212–8.PubMedPubMedCentral Cho HS, Song IH, Park SY, Sung MC, Ahn MW, Song KE. Individual variation in growth factor concentrations in platelet-rich plasma and its influence on human mesenchymal stem cells. Korean J Lab Med. 2011;31(3):212–8.PubMedPubMedCentral
44.
go back to reference Wei B, Huang C, Zhao M, Li P, Gao X, Kong J, Niu Y, Huang R, Quan J, Wei J, et al. Effect of Mesenchymal stem cells and platelet-rich plasma on the bone healing of Ovariectomized rats. Stem Cells Int. 2016;2016:9458396.PubMedPubMedCentralCrossRef Wei B, Huang C, Zhao M, Li P, Gao X, Kong J, Niu Y, Huang R, Quan J, Wei J, et al. Effect of Mesenchymal stem cells and platelet-rich plasma on the bone healing of Ovariectomized rats. Stem Cells Int. 2016;2016:9458396.PubMedPubMedCentralCrossRef
Metadata
Title
Novel transplant of combined platelet-rich fibrin Releasate and bone marrow stem cells prevent bone loss in Ovariectomized osteoporotic mice
Authors
Chin-Chean Wong
Jeng-Hao Liao
Shi-Yuan Sheu
Po-Yu Lin
Chih-Hwa Chen
Tzong-Fu Kuo
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Musculoskeletal Disorders / Issue 1/2020
Electronic ISSN: 1471-2474
DOI
https://doi.org/10.1186/s12891-020-03549-y

Other articles of this Issue 1/2020

BMC Musculoskeletal Disorders 1/2020 Go to the issue