Skip to main content
Top
Published in: BMC Musculoskeletal Disorders 1/2019

Open Access 01-12-2019 | Research article

The effect of low-intensity resistance training after heat stress on muscle size and strength of triceps brachii: a randomized controlled trial

Authors: Masatoshi Nakamura, Tomoichi Yoshida, Ryosuke Kiyono, Shigeru Sato, Nobushige Takahashi

Published in: BMC Musculoskeletal Disorders | Issue 1/2019

Login to get access

Abstract

Background

The purpose of this study was to clarify whether there is a synergistic effect on muscular strength and hypertrophy when low-intensity resistance training is performed after heat stress.

Methods

Thirty healthy young male volunteers were randomly allocated to either the low-intensity resistance training with heat stress group or the control group. The control group performed low-intensity resistance training alone. In the low-intensity resistance training with heat stress group, a hot pack was applied to cover the muscle belly of the triceps brachii for 20 min before the training. The duration of the intervention was 6 weeks. In both groups, the training resistance was 30% of the one repetition maximum, applied in three sets with eight repetitions each and 60-s intervals. The one repetition maximum of elbow extension and muscle thickness of triceps brachii were measured before and after 6 weeks of low intensity resistance training.

Results

There was no significant change in the one-repetition maximum and muscle thickness in the control group, whereas there was a significant increase in the muscle strength and thickness in the low-intensity resistance training with heat stress group.

Conclusion

The combination of heat stress and low-intensity resistance training was an effective method for increasing muscle strength and volume.

Trial registration

University Hospital Medical Information Network Clinical Trials Registry (UMIN000036167; March 11, 2019).
Literature
1.
go back to reference American College of Sports M: American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Med Sci Sports Exerc. 2009;41(3):687–708.CrossRef American College of Sports M: American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Med Sci Sports Exerc. 2009;41(3):687–708.CrossRef
2.
go back to reference Wernbom M, Augustsson J, Thomee R. The influence of frequency, intensity, volume and mode of strength training on whole muscle cross-sectional area in humans. Sports Med. 2007;37(3):225–64.CrossRef Wernbom M, Augustsson J, Thomee R. The influence of frequency, intensity, volume and mode of strength training on whole muscle cross-sectional area in humans. Sports Med. 2007;37(3):225–64.CrossRef
3.
go back to reference Liu CJ, Latham N. Adverse events reported in progressive resistance strength training trials in older adults: 2 sides of a coin. Arch Phys Med Rehabil. 2010;91(9):1471–3.CrossRef Liu CJ, Latham N. Adverse events reported in progressive resistance strength training trials in older adults: 2 sides of a coin. Arch Phys Med Rehabil. 2010;91(9):1471–3.CrossRef
4.
go back to reference Fleck SJ. Cardiovascular adaptations to resistance training. Med Sci Sports Exerc. 1988;20(5 Suppl):S146–51.CrossRef Fleck SJ. Cardiovascular adaptations to resistance training. Med Sci Sports Exerc. 1988;20(5 Suppl):S146–51.CrossRef
5.
go back to reference MacDougall JD, Tuxen D, Sale DG, Moroz JR, Sutton JR. Arterial blood pressure response to heavy resistance exercise. J Appl Physiol. 1985;58(3):785–90.CrossRef MacDougall JD, Tuxen D, Sale DG, Moroz JR, Sutton JR. Arterial blood pressure response to heavy resistance exercise. J Appl Physiol. 1985;58(3):785–90.CrossRef
6.
go back to reference Takarada Y, Sato Y, Ishii N. Effects of resistance exercise combined with vascular occlusion on muscle function in athletes. Eur J Appl Physiol. 2002;86(4):308–14.CrossRef Takarada Y, Sato Y, Ishii N. Effects of resistance exercise combined with vascular occlusion on muscle function in athletes. Eur J Appl Physiol. 2002;86(4):308–14.CrossRef
7.
go back to reference Tanimoto M, Ishii N. Effects of low-intensity resistance exercise with slow movement and tonic force generation on muscular function in young men. J Appl Physiol. 2006;100(4):1150–7.CrossRef Tanimoto M, Ishii N. Effects of low-intensity resistance exercise with slow movement and tonic force generation on muscular function in young men. J Appl Physiol. 2006;100(4):1150–7.CrossRef
8.
go back to reference Harris C, DeBeliso MA, Spitzer-Gibson TA, Adams KJ. The effect of resistance-training intensity on strength-gain response in the older adult. J Strength Cond Res. 2004;18(4):833–8.PubMed Harris C, DeBeliso MA, Spitzer-Gibson TA, Adams KJ. The effect of resistance-training intensity on strength-gain response in the older adult. J Strength Cond Res. 2004;18(4):833–8.PubMed
9.
go back to reference Moore DR, Young M, Phillips SM. Similar increases in muscle size and strength in young men after training with maximal shortening or lengthening contractions when matched for total work. Eur J Appl Physiol. 2012;112(4):1587–92.CrossRef Moore DR, Young M, Phillips SM. Similar increases in muscle size and strength in young men after training with maximal shortening or lengthening contractions when matched for total work. Eur J Appl Physiol. 2012;112(4):1587–92.CrossRef
10.
go back to reference Ikezoe T, Kobayashi T, Nakamura M, Ichihashi N. Effects of low-load, higher-repetition versus high-load, lower-repetition resistance training not performed to failure on muscle strength, mass, and echo intensity in healthy young men: a time-course study. J Strength Cond Res. [in press]. Ikezoe T, Kobayashi T, Nakamura M, Ichihashi N. Effects of low-load, higher-repetition versus high-load, lower-repetition resistance training not performed to failure on muscle strength, mass, and echo intensity in healthy young men: a time-course study. J Strength Cond Res. [in press].
11.
go back to reference Uehara K, Goto K, Kobayashi T, Kojima A, Akema T, Sugiura T, Yamada S, Ohira Y, Yoshioka T, Aoki H. Heat-stress enhances proliferative potential in rat soleus muscle. Jpn J Physiol. 2004;54(3):263–71.CrossRef Uehara K, Goto K, Kobayashi T, Kojima A, Akema T, Sugiura T, Yamada S, Ohira Y, Yoshioka T, Aoki H. Heat-stress enhances proliferative potential in rat soleus muscle. Jpn J Physiol. 2004;54(3):263–71.CrossRef
12.
go back to reference Kobayashi T, Goto K, Kojima A, Akema T, Uehara K, Aoki H, Sugiura T, Ohira Y, Yoshioka T. Possible role of calcineurin in heating-related increase of rat muscle mass. Biochem Biophys Res Commun. 2005;331(4):1301–9.CrossRef Kobayashi T, Goto K, Kojima A, Akema T, Uehara K, Aoki H, Sugiura T, Ohira Y, Yoshioka T. Possible role of calcineurin in heating-related increase of rat muscle mass. Biochem Biophys Res Commun. 2005;331(4):1301–9.CrossRef
13.
go back to reference Ohno Y, Yamada S, Goto A, Ikuta A, Sugiura T, Ohira Y, Yoshioka T, Goto K. Effects of heat stress on muscle mass and the expression levels of heat shock proteins and lysosomal cathepsin L in soleus muscle of young and aged mice. Mol Cell Biochem. 2012;369(1–2):45–53.CrossRef Ohno Y, Yamada S, Goto A, Ikuta A, Sugiura T, Ohira Y, Yoshioka T, Goto K. Effects of heat stress on muscle mass and the expression levels of heat shock proteins and lysosomal cathepsin L in soleus muscle of young and aged mice. Mol Cell Biochem. 2012;369(1–2):45–53.CrossRef
14.
go back to reference Goto K, Oda H, Kondo H, Igaki M, Suzuki A, Tsuchiya S, Murase T, Hase T, Fujiya H, Matsumoto I, et al. Responses of muscle mass, strength and gene transcripts to long-term heat stress in healthy human subjects. Eur J Appl Physiol. 2011;111(1):17–27.CrossRef Goto K, Oda H, Kondo H, Igaki M, Suzuki A, Tsuchiya S, Murase T, Hase T, Fujiya H, Matsumoto I, et al. Responses of muscle mass, strength and gene transcripts to long-term heat stress in healthy human subjects. Eur J Appl Physiol. 2011;111(1):17–27.CrossRef
15.
go back to reference Goto K, Oda H, Morioka S, Naito T, Akema T, Kato H, Fujiya H, Nakajima Y, Sugiura T, Ohira Y, et al. Skeletal muscle hypertrophy induced by low-intensity exercise with heat-stress in healthy human subjects. J Jpn J Aerosp Environ Med. 2007;44(1):13–8. Goto K, Oda H, Morioka S, Naito T, Akema T, Kato H, Fujiya H, Nakajima Y, Sugiura T, Ohira Y, et al. Skeletal muscle hypertrophy induced by low-intensity exercise with heat-stress in healthy human subjects. J Jpn J Aerosp Environ Med. 2007;44(1):13–8.
16.
go back to reference Yoon SJ, Lee MJ, Lee HM, Lee JS. Effect of low-intensity resistance training with heat stress on the HSP72, anabolic hormones, muscle size, and strength in elderly women. Aging Clin Exp Res. 2017;29(5):977–84.CrossRef Yoon SJ, Lee MJ, Lee HM, Lee JS. Effect of low-intensity resistance training with heat stress on the HSP72, anabolic hormones, muscle size, and strength in elderly women. Aging Clin Exp Res. 2017;29(5):977–84.CrossRef
17.
go back to reference Stadnyk AMJ, Rehrer NJ, Handcock PJ1, Meredith-Jones KA, Cotter JD. No clear benefit of muscle heating on hypertrophy and strength with resistance training. Temperature. 2017 7;5(2):175–83.CrossRef Stadnyk AMJ, Rehrer NJ, Handcock PJ1, Meredith-Jones KA, Cotter JD. No clear benefit of muscle heating on hypertrophy and strength with resistance training. Temperature. 2017 7;5(2):175–83.CrossRef
18.
go back to reference Draper DO, Harris ST, Schulthies S, Durrant E, Knight KL, Ricard M. Hot-pack and 1-MHz ultrasound treatments have an additive effect on muscle temperature increase. J Athl Train. 1998;33(1):21–4.PubMedPubMedCentral Draper DO, Harris ST, Schulthies S, Durrant E, Knight KL, Ricard M. Hot-pack and 1-MHz ultrasound treatments have an additive effect on muscle temperature increase. J Athl Train. 1998;33(1):21–4.PubMedPubMedCentral
19.
go back to reference Kawakami Y, Abe T, Kuno SY, Fukunaga T. Training-induced changes in muscle architecture and specific tension. Eur J Appl Physiol Occup Physiol. 1995;72(1–2):37–43.CrossRef Kawakami Y, Abe T, Kuno SY, Fukunaga T. Training-induced changes in muscle architecture and specific tension. Eur J Appl Physiol Occup Physiol. 1995;72(1–2):37–43.CrossRef
20.
go back to reference Akagi R, Tanaka J, Shikiba T, Takahashi H. Muscle hardness of the triceps brachii before and after a resistance exercise session: a shear wave ultrasound elastography study. Acta Radiol. 2015;56(12):1487–93.CrossRef Akagi R, Tanaka J, Shikiba T, Takahashi H. Muscle hardness of the triceps brachii before and after a resistance exercise session: a shear wave ultrasound elastography study. Acta Radiol. 2015;56(12):1487–93.CrossRef
21.
go back to reference Akagi R, Shikiba T, Tanaka J, Takahashi H. A six-week resistance training program does not change shear Modulus of the triceps Brachii. J Appl Biomech. 2016;32(4):373–8.CrossRef Akagi R, Shikiba T, Tanaka J, Takahashi H. A six-week resistance training program does not change shear Modulus of the triceps Brachii. J Appl Biomech. 2016;32(4):373–8.CrossRef
22.
go back to reference Goto K, Kojima A, Kobayashi T, Uehara K, Morioka S, Naito T, Akema T, Sugiura T, Ohira Y, Yoshioka T. Heat stress as a countermeasure for prevention of muscle atrophy in microgravity environment. J Jpn J Aerosp Environ Med. 2005;42(2):51–9. Goto K, Kojima A, Kobayashi T, Uehara K, Morioka S, Naito T, Akema T, Sugiura T, Ohira Y, Yoshioka T. Heat stress as a countermeasure for prevention of muscle atrophy in microgravity environment. J Jpn J Aerosp Environ Med. 2005;42(2):51–9.
23.
go back to reference Goto K, Honda M, Kobayashi T, Uehara K, Kojima A, Akema T, Sugiura T, Yamada S, Ohira Y, Yoshioka T. Heat stress facilitates the recovery of atrophied soleus muscle in rat. Jpn J Physiol. 2004;54(3):285–93.CrossRef Goto K, Honda M, Kobayashi T, Uehara K, Kojima A, Akema T, Sugiura T, Yamada S, Ohira Y, Yoshioka T. Heat stress facilitates the recovery of atrophied soleus muscle in rat. Jpn J Physiol. 2004;54(3):285–93.CrossRef
24.
go back to reference Goto K, Okuyama R, Sugiyama H, Honda M, Kobayashi T, Uehara K, Akema T, Sugiura T, Yamada S, Ohira Y, et al. Effects of heat stress and mechanical stretch on protein expression in cultured skeletal muscle cells. Pflugers Arch. 2003;447(2):247–53.CrossRef Goto K, Okuyama R, Sugiyama H, Honda M, Kobayashi T, Uehara K, Akema T, Sugiura T, Yamada S, Ohira Y, et al. Effects of heat stress and mechanical stretch on protein expression in cultured skeletal muscle cells. Pflugers Arch. 2003;447(2):247–53.CrossRef
25.
go back to reference Yamashita-Goto K, Ohira Y, Okuyama R, Sugiyama H, Honda M, Sugiura T, Yamada S, Akema T, Yoshioka T. Heat stress facilitates stretch-induced hypertrophy of cultured muscle cells. J Gravit Physiol. 2002;9(1):P145–6.PubMed Yamashita-Goto K, Ohira Y, Okuyama R, Sugiyama H, Honda M, Sugiura T, Yamada S, Akema T, Yoshioka T. Heat stress facilitates stretch-induced hypertrophy of cultured muscle cells. J Gravit Physiol. 2002;9(1):P145–6.PubMed
Metadata
Title
The effect of low-intensity resistance training after heat stress on muscle size and strength of triceps brachii: a randomized controlled trial
Authors
Masatoshi Nakamura
Tomoichi Yoshida
Ryosuke Kiyono
Shigeru Sato
Nobushige Takahashi
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Musculoskeletal Disorders / Issue 1/2019
Electronic ISSN: 1471-2474
DOI
https://doi.org/10.1186/s12891-019-2991-4

Other articles of this Issue 1/2019

BMC Musculoskeletal Disorders 1/2019 Go to the issue