Skip to main content
Top
Published in: BMC Musculoskeletal Disorders 1/2019

Open Access 01-12-2019 | Osteonecrosis | Research article

Three-dimensional finite element analysis of silk protein rod implantation after core decompression for osteonecrosis of the femoral head

Authors: Liangta Huang, Feiyan Chen, Siqun Wang, Yibing Wei, Gangyong Huang, Jie Chen, Jingsheng Shi, Rajeev K. Naidu, Jun Xia, Tiger H. Tao

Published in: BMC Musculoskeletal Disorders | Issue 1/2019

Login to get access

Abstract

Background

Several methods are available for the treatment of early-stage osteonecrosis of the femoral head. Core decompression with implantation is a widely-used treatment. However, no single implant is recognized as the most effective way to prevent disease progression. Silk has high strength and resiliency. This study explored the possibility of a strong and resilient silk protein biomaterial as a new alternative implant.

Methods

We investigated the biomechanical properties of the silk protein material by regular compression, torsion, and three-point bending tests. We established three-dimensional finite element models of different degrees of femoral head osteonecrosis following simple core decompression, fibula implantation, porous tantalum rod implantation, and silk protein rod implantation. Finally, we compared the differences in displacement and surface stress under load at the femoral head weight-bearing areas between these models.

Results

The elastic modulus and shear modulus of the silk protein material was 0.49GPa and 0.66GPa, respectively. Three-dimensional finite element analyses demonstrated less displacement and surface stress at the femoral head weight-bearing areas following silk protein rod implantation compared to simple core decompression (p < 0.05), regardless of the extent of osteonecrosis. No differences were noted in the surface deformation or surface stress of the femoral head weight-bearing areas following silk protein rod, fibula or tantalum rod implantation (p > 0.05).

Conclusions

When compared with simple core decompression, silk protein rod implantation demonstrated less displacement and surface stress at the femoral head weight-bearing area, but more than fibula or tantalum rod implantation. Similar effects on the surface stress of the femoral head between the silk rod, fibula and tantalum rod implantations, combined with additional modifiable properties support the use of silk protein as a suitable biomaterial in osteonecrosis surgery.
Literature
1.
go back to reference Microsurgery Department of the Orthopedics Branch of the Chinese Medical Doctor A, Group from the O, Bone Defect Branch of the Chinese Association of R, Reconstructive S, Microsurgery, Reconstructive Surgery Group of the Orthopedics Branch of the Chinese Medical A. Chinese Guideline for the Diagnosis and Treatment of Osteonecrosis of the Femoral Head in Adults. Orthop Surg. 2017;9(1):3–12.CrossRef Microsurgery Department of the Orthopedics Branch of the Chinese Medical Doctor A, Group from the O, Bone Defect Branch of the Chinese Association of R, Reconstructive S, Microsurgery, Reconstructive Surgery Group of the Orthopedics Branch of the Chinese Medical A. Chinese Guideline for the Diagnosis and Treatment of Osteonecrosis of the Femoral Head in Adults. Orthop Surg. 2017;9(1):3–12.CrossRef
2.
go back to reference Lee JS, Suh KT. A pathological fracture of the femoral neck associated with osteonecrosis of the femoral head and a stress fracture of the contralateral femoral neck. J Arthroplast. 2005;20(6):807–10.CrossRef Lee JS, Suh KT. A pathological fracture of the femoral neck associated with osteonecrosis of the femoral head and a stress fracture of the contralateral femoral neck. J Arthroplast. 2005;20(6):807–10.CrossRef
3.
go back to reference Yu X, Zhang D, Chen X, Yang J, Shi L, Pang Q. Effectiveness of various hip preservation treatments for non-traumatic osteonecrosis of the femoral head: a network meta-analysis of randomized controlled trials. J Orthop Sci. 2018;23(2):356–64.PubMedCrossRef Yu X, Zhang D, Chen X, Yang J, Shi L, Pang Q. Effectiveness of various hip preservation treatments for non-traumatic osteonecrosis of the femoral head: a network meta-analysis of randomized controlled trials. J Orthop Sci. 2018;23(2):356–64.PubMedCrossRef
4.
go back to reference Chughtai M, Piuzzi NS, Khlopas A, Jones LC, Goodman SB, Mont MA. An evidence-based guide to the treatment of osteonecrosis of the femoral head. Bone Joint J. 2017;99-B(10):1267–79.PubMedCrossRef Chughtai M, Piuzzi NS, Khlopas A, Jones LC, Goodman SB, Mont MA. An evidence-based guide to the treatment of osteonecrosis of the femoral head. Bone Joint J. 2017;99-B(10):1267–79.PubMedCrossRef
5.
go back to reference Castro FP Jr, Barrack RL. Core decompression and conservative treatment for avascular necrosis of the femoral head: a meta-analysis. Am J Orthop. 2000;29(3):187–94.PubMed Castro FP Jr, Barrack RL. Core decompression and conservative treatment for avascular necrosis of the femoral head: a meta-analysis. Am J Orthop. 2000;29(3):187–94.PubMed
6.
go back to reference Israelite C, Nelson CL, Ziarani CF, Abboud JA, Landa J, Steinberg ME. Bilateral core decompression for osteonecrosis of the femoral head. Clin Orthop Relat Res. 2005;441:285–90.PubMedCrossRef Israelite C, Nelson CL, Ziarani CF, Abboud JA, Landa J, Steinberg ME. Bilateral core decompression for osteonecrosis of the femoral head. Clin Orthop Relat Res. 2005;441:285–90.PubMedCrossRef
7.
go back to reference Marker DR, Seyler TM, Ulrich SD, Srivastava S, Mont MA. Do modern techniques improve core decompression outcomes for hip osteonecrosis? Clin Orthop Relat Res. 2008;466(5):1093–103.PubMedPubMedCentralCrossRef Marker DR, Seyler TM, Ulrich SD, Srivastava S, Mont MA. Do modern techniques improve core decompression outcomes for hip osteonecrosis? Clin Orthop Relat Res. 2008;466(5):1093–103.PubMedPubMedCentralCrossRef
8.
go back to reference Bednarek A, Atras A, Gagala J, Kozak L. Operative technique and results of core decompression and filling with bone grafts in the treatment of osteonecrosis of femoral head. Ortop Traumatol Rehabil. 2010;12(6):511–8.PubMed Bednarek A, Atras A, Gagala J, Kozak L. Operative technique and results of core decompression and filling with bone grafts in the treatment of osteonecrosis of femoral head. Ortop Traumatol Rehabil. 2010;12(6):511–8.PubMed
9.
go back to reference Shah SN, Kapoor CS, Jhaveri MR, Golwala PP, Patel S. Analysis of outcome of avascular necrosis of femoral head treated by core decompression and bone grafting. J Clin Orthop Trauma. 2015;6(3):160–6.PubMedPubMedCentralCrossRef Shah SN, Kapoor CS, Jhaveri MR, Golwala PP, Patel S. Analysis of outcome of avascular necrosis of femoral head treated by core decompression and bone grafting. J Clin Orthop Trauma. 2015;6(3):160–6.PubMedPubMedCentralCrossRef
10.
go back to reference Rijnen WH, Gardeniers JW, Buma P, Yamano K, Slooff TJ, Schreurs BW. Treatment of femoral head osteonecrosis using bone impaction grafting. Clin Orthop Relat Res. 2003;417:74–83. Rijnen WH, Gardeniers JW, Buma P, Yamano K, Slooff TJ, Schreurs BW. Treatment of femoral head osteonecrosis using bone impaction grafting. Clin Orthop Relat Res. 2003;417:74–83.
11.
go back to reference Yuhan C, Hu CC, Chen DW, Ueng SW, Shih CH, Lee MS. Local cancellous bone grafting for osteonecrosis of the femoral head. Surg Innov. 2009;16(1):63–7.CrossRef Yuhan C, Hu CC, Chen DW, Ueng SW, Shih CH, Lee MS. Local cancellous bone grafting for osteonecrosis of the femoral head. Surg Innov. 2009;16(1):63–7.CrossRef
12.
go back to reference Yoo MC, Kim KI, Hahn CS, Parvizi J. Long-term followup of vascularized fibular grafting for femoral head necrosis. Clin Orthop Relat Res. 2008;466(5):1133–40.PubMedPubMedCentralCrossRef Yoo MC, Kim KI, Hahn CS, Parvizi J. Long-term followup of vascularized fibular grafting for femoral head necrosis. Clin Orthop Relat Res. 2008;466(5):1133–40.PubMedPubMedCentralCrossRef
13.
go back to reference Tanzer M, Bobyn JD, Krygier JJ, Karabasz D. Histopathologic retrieval analysis of clinically failed porous tantalum osteonecrosis implants. J Bone Joint Surg Am. 2008;90(6):1282–9.PubMedCrossRef Tanzer M, Bobyn JD, Krygier JJ, Karabasz D. Histopathologic retrieval analysis of clinically failed porous tantalum osteonecrosis implants. J Bone Joint Surg Am. 2008;90(6):1282–9.PubMedCrossRef
15.
go back to reference Shi C, Pu X, Zheng G, Feng X, Yang X, Zhang B, Zhang Y, Yin Q, Xia H. An antibacterial and absorbable silk-based fixation material with impressive mechanical properties and biocompatibility. Sci Rep. 2016;6:37418.PubMedPubMedCentralCrossRef Shi C, Pu X, Zheng G, Feng X, Yang X, Zhang B, Zhang Y, Yin Q, Xia H. An antibacterial and absorbable silk-based fixation material with impressive mechanical properties and biocompatibility. Sci Rep. 2016;6:37418.PubMedPubMedCentralCrossRef
16.
go back to reference Rockwood DN, Preda RC, Yucel T, Wang X, Lovett ML, Kaplan DL. Materials fabrication from Bombyx mori silk fibroin. Nat Protoc. 2011;6(10):1612–31.PubMedCrossRef Rockwood DN, Preda RC, Yucel T, Wang X, Lovett ML, Kaplan DL. Materials fabrication from Bombyx mori silk fibroin. Nat Protoc. 2011;6(10):1612–31.PubMedCrossRef
17.
go back to reference Perrone GS, Leisk GG, Lo TJ, Moreau JE, Haas DS, Papenburg BJ, Golden EB, Partlow BP, Fox SE, Ibrahim AM, et al. The use of silk-based devices for fracture fixation. Nat Commun. 2014;5:3385.PubMedCrossRef Perrone GS, Leisk GG, Lo TJ, Moreau JE, Haas DS, Papenburg BJ, Golden EB, Partlow BP, Fox SE, Ibrahim AM, et al. The use of silk-based devices for fracture fixation. Nat Commun. 2014;5:3385.PubMedCrossRef
18.
go back to reference Smeets R, Knabe C, Kolk A, Rheinnecker M, Grobe A, Heiland M, Zehbe R, Sachse M, Grosse-Siestrup C, Woltje M, et al. Novel silk protein barrier membranes for guided bone regeneration. J Biomed Mater Res B Appl Biomater. 2017;105(8):2603–11.PubMedCrossRef Smeets R, Knabe C, Kolk A, Rheinnecker M, Grobe A, Heiland M, Zehbe R, Sachse M, Grosse-Siestrup C, Woltje M, et al. Novel silk protein barrier membranes for guided bone regeneration. J Biomed Mater Res B Appl Biomater. 2017;105(8):2603–11.PubMedCrossRef
19.
go back to reference Bhattacharjee P, Kundu B, Naskar D, Kim HW, Maiti TK, Bhattacharya D, Kundu SC. Silk scaffolds in bone tissue engineering: an overview. Acta Biomater. 2017;63:1–17.PubMedCrossRef Bhattacharjee P, Kundu B, Naskar D, Kim HW, Maiti TK, Bhattacharya D, Kundu SC. Silk scaffolds in bone tissue engineering: an overview. Acta Biomater. 2017;63:1–17.PubMedCrossRef
20.
go back to reference Bhattacharjee P, Naskar D, Maiti TK, Bhattacharya D, Das P, Nandi SK, Kundu SC. Potential of non-mulberry silk protein fibroin blended and grafted poly(capital JE, Ukrainian-caprolactone) nanofibrous matrices for in vivo bone regeneration. Colloids Surf B: Biointerfaces. 2016;143:431–9.PubMedCrossRef Bhattacharjee P, Naskar D, Maiti TK, Bhattacharya D, Das P, Nandi SK, Kundu SC. Potential of non-mulberry silk protein fibroin blended and grafted poly(capital JE, Ukrainian-caprolactone) nanofibrous matrices for in vivo bone regeneration. Colloids Surf B: Biointerfaces. 2016;143:431–9.PubMedCrossRef
21.
go back to reference Yucel T, Lovett ML, Giangregorio R, Coonahan E, Kaplan DL. Silk fibroin rods for sustained delivery of breast cancer therapeutics. Biomaterials. 2014;35(30):8613–20.PubMedCrossRef Yucel T, Lovett ML, Giangregorio R, Coonahan E, Kaplan DL. Silk fibroin rods for sustained delivery of breast cancer therapeutics. Biomaterials. 2014;35(30):8613–20.PubMedCrossRef
22.
go back to reference Kapoor S, Kundu SC. Silk protein-based hydrogels: promising advanced materials for biomedical applications. Acta Biomater. 2016;31:17–32.PubMedCrossRef Kapoor S, Kundu SC. Silk protein-based hydrogels: promising advanced materials for biomedical applications. Acta Biomater. 2016;31:17–32.PubMedCrossRef
23.
go back to reference Dong XN, Acuna RL, Luo Q, Wang X. Orientation dependence of progressive post-yield behavior of human cortical bone in compression. J Biomech. 2012;45(16):2829–34.PubMedPubMedCentralCrossRef Dong XN, Acuna RL, Luo Q, Wang X. Orientation dependence of progressive post-yield behavior of human cortical bone in compression. J Biomech. 2012;45(16):2829–34.PubMedPubMedCentralCrossRef
24.
go back to reference Du C, Ma H, Ruo M, Zhang Z, Yu X, Zeng Y. An experimental study on the biomechanical properties of the cancellous bones of distal femur. Biomed Mater Eng. 2006;16(3):215–22.PubMed Du C, Ma H, Ruo M, Zhang Z, Yu X, Zeng Y. An experimental study on the biomechanical properties of the cancellous bones of distal femur. Biomed Mater Eng. 2006;16(3):215–22.PubMed
25.
go back to reference Vacanti JP, Langer R. Tissue engineering: the design and fabrication of living replacement devices for surgical reconstruction and transplantation. Lancet. 1999;354(Suppl 1):SI32–4.PubMedCrossRef Vacanti JP, Langer R. Tissue engineering: the design and fabrication of living replacement devices for surgical reconstruction and transplantation. Lancet. 1999;354(Suppl 1):SI32–4.PubMedCrossRef
26.
go back to reference Ribeiro VP, Silva-Correia J, Nascimento AI, da Silva MA, Marques AP, Ribeiro AS, Silva CJ, Bonifacio G, Sousa RA, Oliveira JM, et al. Silk-based anisotropical 3D biotextiles for bone regeneration. Biomaterials. 2017;123:92–106.PubMedCrossRef Ribeiro VP, Silva-Correia J, Nascimento AI, da Silva MA, Marques AP, Ribeiro AS, Silva CJ, Bonifacio G, Sousa RA, Oliveira JM, et al. Silk-based anisotropical 3D biotextiles for bone regeneration. Biomaterials. 2017;123:92–106.PubMedCrossRef
27.
go back to reference Melke J, Midha S, Ghosh S, Ito K, Hofmann S. Silk fibroin as biomaterial for bone tissue engineering. Acta Biomater. 2016;31:1–16.PubMedCrossRef Melke J, Midha S, Ghosh S, Ito K, Hofmann S. Silk fibroin as biomaterial for bone tissue engineering. Acta Biomater. 2016;31:1–16.PubMedCrossRef
28.
go back to reference Cai Y, Guo J, Chen C, Yao C, Chung SM, Yao J, Lee IS, Kong X. Silk fibroin membrane used for guided bone tissue regeneration. Mater Sci Eng C Mater Biol Appl. 2017;70(Pt 1):148–54.PubMedCrossRef Cai Y, Guo J, Chen C, Yao C, Chung SM, Yao J, Lee IS, Kong X. Silk fibroin membrane used for guided bone tissue regeneration. Mater Sci Eng C Mater Biol Appl. 2017;70(Pt 1):148–54.PubMedCrossRef
Metadata
Title
Three-dimensional finite element analysis of silk protein rod implantation after core decompression for osteonecrosis of the femoral head
Authors
Liangta Huang
Feiyan Chen
Siqun Wang
Yibing Wei
Gangyong Huang
Jie Chen
Jingsheng Shi
Rajeev K. Naidu
Jun Xia
Tiger H. Tao
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Musculoskeletal Disorders / Issue 1/2019
Electronic ISSN: 1471-2474
DOI
https://doi.org/10.1186/s12891-019-2914-4

Other articles of this Issue 1/2019

BMC Musculoskeletal Disorders 1/2019 Go to the issue