Skip to main content
Top
Published in: BMC Musculoskeletal Disorders 1/2019

Open Access 01-12-2019 | Dupuytren Disease | Research article

A multi-chamber tissue culture device for load-dependent parallel evaluation of tendon explants

Authors: Endre Soreide, Janet M. Denbeigh, Eric A. Lewallen, Roman Thaler, Rebekah M. Samsonraj, Dakota L. Jones, Wei Xu, Dirk Larson, Lars Nordsletten, Sanjeev Kakar, Andre J. van Wijnen

Published in: BMC Musculoskeletal Disorders | Issue 1/2019

Login to get access

Abstract

Background

Injuries in the musculoskeletal system, such as tendon and ligament ruptures, are challenging to manage and often require surgical reconstructions with limited long-term success. Thus, characterizations of these tissues are urgently needed to better understand cellular mechanisms that regulate tissue homeostasis and healing. Explant culturing systems allow for ex vivo analysis of tissues in an environment that mimics the native microenvironment in vivo.

Methods

Collaborative efforts within our institution facilitated the establishment of a novel explant culturing system. Tissue specimens cultured in single wells, with individual applied loading and/or biological environment, allowed characterization of tissue cultured under a variety of biological loading conditions. Quantitative PCR analysis for selected gene markers was our primary outcome.

Results

Data were stratified for analysis by either culture environment or loading condition. Our gene expression results show that specimens clustered by culture condition may differ in molecular markers related to ECM production (e.g., Col1a1, Adamts4) and/or organization (e.g., Tnc, Dnc). In contrast, loading condition did significantly alter the median gene expression levels of tissues in comparison to unloaded control samples, although gene expression values related to ECM degradation (e.g., Mmp1, Mmp10) were altered in tendons cultured under tension in the device.

Conclusion

Our study demonstrates promising utility of a novel explant culturing system for further characterization of musculoskeletal tissues such as native tendons and ligaments, as well as pathologic fibrotic tissues resulting from arthrofibrosis or Dupuytren’s disease.
Appendix
Available only for authorised users
Literature
1.
go back to reference Granan LP, Bahr R, Steindal K, Furnes O, Engebretsen L. Development of a national cruciate ligament surgery registry: the Norwegian National Knee Ligament Registry. Am J Sports Med. 2008;36(2):308–15.PubMedCrossRef Granan LP, Bahr R, Steindal K, Furnes O, Engebretsen L. Development of a national cruciate ligament surgery registry: the Norwegian National Knee Ligament Registry. Am J Sports Med. 2008;36(2):308–15.PubMedCrossRef
2.
go back to reference Hewett TE, Di Stasi SL, Myer GD. Current concepts for injury prevention in athletes after anterior cruciate ligament reconstruction. Am J Sports Med. 2013;41(1):216–24.PubMedCrossRef Hewett TE, Di Stasi SL, Myer GD. Current concepts for injury prevention in athletes after anterior cruciate ligament reconstruction. Am J Sports Med. 2013;41(1):216–24.PubMedCrossRef
3.
go back to reference Frobell RB, Lohmander LS, Roos HP. Acute rotational trauma to the knee: poor agreement between clinical assessment and magnetic resonance imaging findings. Scand J Med Sci Sports. 2007;17(2):109–14.PubMed Frobell RB, Lohmander LS, Roos HP. Acute rotational trauma to the knee: poor agreement between clinical assessment and magnetic resonance imaging findings. Scand J Med Sci Sports. 2007;17(2):109–14.PubMed
5.
go back to reference Murray MM, Fleming BC. Biology of anterior cruciate ligament injury and repair: kappa delta ann doner Vaughn award paper 2013. Journal of orthopaedic research : official publication of the Orthopaedic Research Society. 2013;31(10):1501–6.CrossRef Murray MM, Fleming BC. Biology of anterior cruciate ligament injury and repair: kappa delta ann doner Vaughn award paper 2013. Journal of orthopaedic research : official publication of the Orthopaedic Research Society. 2013;31(10):1501–6.CrossRef
6.
go back to reference Strand T, Molster A, Hordvik M, Krukhaug Y. Long-term follow-up after primary repair of the anterior cruciate ligament: clinical and radiological evaluation 15-23 years postoperatively. Arch Orthop Trauma Surg. 2005;125(4):217–21.CrossRef Strand T, Molster A, Hordvik M, Krukhaug Y. Long-term follow-up after primary repair of the anterior cruciate ligament: clinical and radiological evaluation 15-23 years postoperatively. Arch Orthop Trauma Surg. 2005;125(4):217–21.CrossRef
7.
go back to reference Feagin JA Jr, Curl WW. Isolated tear of the anterior cruciate ligament: 5-year follow-up study. Am J Sports Med. 1976;4(3):95–100.PubMedCrossRef Feagin JA Jr, Curl WW. Isolated tear of the anterior cruciate ligament: 5-year follow-up study. Am J Sports Med. 1976;4(3):95–100.PubMedCrossRef
8.
go back to reference Lohmander LS, Ostenberg A, Englund M, Roos H. High prevalence of knee osteoarthritis, pain, and functional limitations in female soccer players twelve years after anterior cruciate ligament injury. Arthritis Rheum. 2004;50(10):3145–52.PubMedCrossRef Lohmander LS, Ostenberg A, Englund M, Roos H. High prevalence of knee osteoarthritis, pain, and functional limitations in female soccer players twelve years after anterior cruciate ligament injury. Arthritis Rheum. 2004;50(10):3145–52.PubMedCrossRef
9.
go back to reference Maletis GB, Inacio MC, Funahashi TT. Analysis of 16,192 anterior cruciate ligament reconstructions from a community-based registry. Am J Sports Med. 2013;41(9):2090–8.PubMedCrossRef Maletis GB, Inacio MC, Funahashi TT. Analysis of 16,192 anterior cruciate ligament reconstructions from a community-based registry. Am J Sports Med. 2013;41(9):2090–8.PubMedCrossRef
10.
go back to reference Gulotta LV, Rodeo SA. Biology of autograft and allograft healing in anterior cruciate ligament reconstruction. Clin Sports Med. 2007;26(4):509–24.PubMedCrossRef Gulotta LV, Rodeo SA. Biology of autograft and allograft healing in anterior cruciate ligament reconstruction. Clin Sports Med. 2007;26(4):509–24.PubMedCrossRef
11.
go back to reference Marumo K, Saito M, Yamagishi T, Fujii K. The "ligamentization" process in human anterior cruciate ligament reconstruction with autogenous patellar and hamstring tendons: a biochemical study. Am J Sports Med. 2005;33(8):1166–73.PubMedCrossRef Marumo K, Saito M, Yamagishi T, Fujii K. The "ligamentization" process in human anterior cruciate ligament reconstruction with autogenous patellar and hamstring tendons: a biochemical study. Am J Sports Med. 2005;33(8):1166–73.PubMedCrossRef
12.
go back to reference Amiel D, Kleiner JB, Roux RD, Harwood FL, Akeson WH. The phenomenon of "ligamentization": anterior cruciate ligament reconstruction with autogenous patellar tendon. Journal of orthopaedic research : official publication of the Orthopaedic Research Society. 1986;4(2):162–72.CrossRef Amiel D, Kleiner JB, Roux RD, Harwood FL, Akeson WH. The phenomenon of "ligamentization": anterior cruciate ligament reconstruction with autogenous patellar tendon. Journal of orthopaedic research : official publication of the Orthopaedic Research Society. 1986;4(2):162–72.CrossRef
13.
go back to reference Ikeda J, Zhao C, Moran SL, An KN, Amadio PC. Effects of synovial interposition on healing in a canine tendon explant culture model. The Journal of hand surgery. 2010;35(7):1153–9.PubMedPubMedCentralCrossRef Ikeda J, Zhao C, Moran SL, An KN, Amadio PC. Effects of synovial interposition on healing in a canine tendon explant culture model. The Journal of hand surgery. 2010;35(7):1153–9.PubMedPubMedCentralCrossRef
14.
go back to reference Vogel KG, Hernandez DJ. The effects of transforming growth factor-beta and serum on proteoglycan synthesis by tendon fibrocartilage. Eur J Cell Biol. 1992;59(2):304–13.PubMed Vogel KG, Hernandez DJ. The effects of transforming growth factor-beta and serum on proteoglycan synthesis by tendon fibrocartilage. Eur J Cell Biol. 1992;59(2):304–13.PubMed
15.
go back to reference Wong MW, Lui WT, Fu SC, Lee KM. The effect of glucocorticoids on tendon cell viability in human tendon explants. Acta Orthop. 2009;80(3):363–7.PubMedCrossRef Wong MW, Lui WT, Fu SC, Lee KM. The effect of glucocorticoids on tendon cell viability in human tendon explants. Acta Orthop. 2009;80(3):363–7.PubMedCrossRef
16.
go back to reference Packer JD, Bedi A, Fox AJ, Gasinu S, Imhauser CW, Stasiak M, Deng XH, Rodeo SA. Effect of immediate and delayed high-strain loading on tendon-to-bone healing after anterior cruciate ligament reconstruction. J Bone Joint Surg Am. 2014;96(9):770–7.PubMedPubMedCentralCrossRef Packer JD, Bedi A, Fox AJ, Gasinu S, Imhauser CW, Stasiak M, Deng XH, Rodeo SA. Effect of immediate and delayed high-strain loading on tendon-to-bone healing after anterior cruciate ligament reconstruction. J Bone Joint Surg Am. 2014;96(9):770–7.PubMedPubMedCentralCrossRef
17.
go back to reference Arnoczky SP, Tian T, Lavagnino M, Gardner K. Ex vivo static tensile loading inhibits MMP-1 expression in rat tail tendon cells through a cytoskeletally based mechanotransduction mechanism. Journal of orthopaedic research : official publication of the Orthopaedic Research Society. 2004;22(2):328–33.CrossRef Arnoczky SP, Tian T, Lavagnino M, Gardner K. Ex vivo static tensile loading inhibits MMP-1 expression in rat tail tendon cells through a cytoskeletally based mechanotransduction mechanism. Journal of orthopaedic research : official publication of the Orthopaedic Research Society. 2004;22(2):328–33.CrossRef
18.
go back to reference Carbone A, Carballo C, Ma R, Wang H, Deng X, Dahia C, Rodeo S. Indian hedgehog signaling and the role of graft tension in tendon-to-bone healing: evaluation in a rat ACL reconstruction model. Journal of orthopaedic research : official publication of the Orthopaedic Research Society. 2016;34(4):641–9.CrossRef Carbone A, Carballo C, Ma R, Wang H, Deng X, Dahia C, Rodeo S. Indian hedgehog signaling and the role of graft tension in tendon-to-bone healing: evaluation in a rat ACL reconstruction model. Journal of orthopaedic research : official publication of the Orthopaedic Research Society. 2016;34(4):641–9.CrossRef
19.
go back to reference Arnoczky SP, Lavagnino M, Egerbacher M, Caballero O, Gardner K. Matrix metalloproteinase inhibitors prevent a decrease in the mechanical properties of stress-deprived tendons: an in vitro experimental study. Am J Sports Med. 2007;35(5):763–9.PubMedCrossRef Arnoczky SP, Lavagnino M, Egerbacher M, Caballero O, Gardner K. Matrix metalloproteinase inhibitors prevent a decrease in the mechanical properties of stress-deprived tendons: an in vitro experimental study. Am J Sports Med. 2007;35(5):763–9.PubMedCrossRef
20.
go back to reference Morizaki Y, Vanhees M, Thoreson AR, Larson D, Zhao C, An KN, Amadio PC. The response of the rabbit subsynovial connective tissue to a stress-relaxation test. Journal of orthopaedic research : official publication of the Orthopaedic Research Society. 2012;30(3):443–7.CrossRef Morizaki Y, Vanhees M, Thoreson AR, Larson D, Zhao C, An KN, Amadio PC. The response of the rabbit subsynovial connective tissue to a stress-relaxation test. Journal of orthopaedic research : official publication of the Orthopaedic Research Society. 2012;30(3):443–7.CrossRef
21.
go back to reference Pathan M, Keerthikumar S, Ang CS, Gangoda L, Quek CY, Williamson NA, Mouradov D, Sieber OM, Simpson RJ, Salim A, et al. FunRich: An open access standalone functional enrichment and interaction network analysis tool. Proteomics. 2015;15(15):2597–601.PubMedCrossRef Pathan M, Keerthikumar S, Ang CS, Gangoda L, Quek CY, Williamson NA, Mouradov D, Sieber OM, Simpson RJ, Salim A, et al. FunRich: An open access standalone functional enrichment and interaction network analysis tool. Proteomics. 2015;15(15):2597–601.PubMedCrossRef
22.
go back to reference Galloway MT, Lalley AL, Shearn JT. The role of mechanical loading in tendon development, maintenance, injury, and repair. J Bone Joint Surg Am. 2013;95(17):1620–8.PubMedPubMedCentralCrossRef Galloway MT, Lalley AL, Shearn JT. The role of mechanical loading in tendon development, maintenance, injury, and repair. J Bone Joint Surg Am. 2013;95(17):1620–8.PubMedPubMedCentralCrossRef
23.
go back to reference D'Addona A, Maffulli N, Formisano S, Rosa D. Inflammation in tendinopathy. Surgeon. 2017;15(5):297–302.PubMedCrossRef D'Addona A, Maffulli N, Formisano S, Rosa D. Inflammation in tendinopathy. Surgeon. 2017;15(5):297–302.PubMedCrossRef
24.
go back to reference Abreu EL, Leigh D, Derwin KA. Effect of altered mechanical load conditions on the structure and function of cultured tendon fascicles. Journal of orthopaedic research : official publication of the Orthopaedic Research Society. 2008;26(3):364–73.CrossRef Abreu EL, Leigh D, Derwin KA. Effect of altered mechanical load conditions on the structure and function of cultured tendon fascicles. Journal of orthopaedic research : official publication of the Orthopaedic Research Society. 2008;26(3):364–73.CrossRef
25.
go back to reference Rojas A, Mardones R, Pritzker K, van Wijnen AJ, Galindo MA, Las Heras F. Dickkopf-1 reduces hypertrophic changes in human chondrocytes derived from bone marrow stem cells. Gene. 2019;687:228–37.PubMedCrossRef Rojas A, Mardones R, Pritzker K, van Wijnen AJ, Galindo MA, Las Heras F. Dickkopf-1 reduces hypertrophic changes in human chondrocytes derived from bone marrow stem cells. Gene. 2019;687:228–37.PubMedCrossRef
26.
go back to reference Wang H, Ip W, Boissy R, Grood ES. Cell orientation response to cyclically deformed substrates: experimental validation of a cell model. J Biomech. 1995;28(12):1543–52.PubMedCrossRef Wang H, Ip W, Boissy R, Grood ES. Cell orientation response to cyclically deformed substrates: experimental validation of a cell model. J Biomech. 1995;28(12):1543–52.PubMedCrossRef
27.
go back to reference Ralphs JR, Waggett AD, Benjamin M. Actin stress fibres and cell-cell adhesion molecules in tendons: organisation in vivo and response to mechanical loading of tendon cells in vitro. Matrix biology : journal of the International Society for Matrix Biology. 2002;21(1):67–74.CrossRef Ralphs JR, Waggett AD, Benjamin M. Actin stress fibres and cell-cell adhesion molecules in tendons: organisation in vivo and response to mechanical loading of tendon cells in vitro. Matrix biology : journal of the International Society for Matrix Biology. 2002;21(1):67–74.CrossRef
28.
go back to reference Garvin J, Qi J, Maloney M, Banes AJ. Novel system for engineering bioartificial tendons and application of mechanical load. Tissue Eng. 2003;9(5):967–79.PubMedCrossRef Garvin J, Qi J, Maloney M, Banes AJ. Novel system for engineering bioartificial tendons and application of mechanical load. Tissue Eng. 2003;9(5):967–79.PubMedCrossRef
29.
go back to reference Leigh DR, Abreu EL, Derwin KA. Changes in gene expression of individual matrix metalloproteinases differ in response to mechanical unloading of tendon fascicles in explant culture. J Orthop Res. 2008;26(10):1306–12.PubMedPubMedCentralCrossRef Leigh DR, Abreu EL, Derwin KA. Changes in gene expression of individual matrix metalloproteinases differ in response to mechanical unloading of tendon fascicles in explant culture. J Orthop Res. 2008;26(10):1306–12.PubMedPubMedCentralCrossRef
30.
go back to reference Nabeshima Y, Grood ES, Sakurai A, Herman JH. Uniaxial tension inhibits tendon collagen degradation by collagenase in vitro. Journal of orthopaedic research : official publication of the Orthopaedic Research Society. 1996;14(1):123–30.CrossRef Nabeshima Y, Grood ES, Sakurai A, Herman JH. Uniaxial tension inhibits tendon collagen degradation by collagenase in vitro. Journal of orthopaedic research : official publication of the Orthopaedic Research Society. 1996;14(1):123–30.CrossRef
31.
go back to reference Nakamura T, Takagi S, Kamon T, Yamasaki KI, Fujisato T. Development and evaluation of a removable tissue-engineered muscle with artificial tendons. J Biosci Bioeng. 2017;123(2):265–71.PubMedCrossRef Nakamura T, Takagi S, Kamon T, Yamasaki KI, Fujisato T. Development and evaluation of a removable tissue-engineered muscle with artificial tendons. J Biosci Bioeng. 2017;123(2):265–71.PubMedCrossRef
32.
go back to reference Taylor SE, Vaughan-Thomas A, Clements DN, Pinchbeck G, Macrory LC, Smith RK, Clegg PD. Gene expression markers of tendon fibroblasts in normal and diseased tissue compared to monolayer and three dimensional culture systems. BMC Musculoskelet Disord. 2009;10:27.PubMedPubMedCentralCrossRef Taylor SE, Vaughan-Thomas A, Clements DN, Pinchbeck G, Macrory LC, Smith RK, Clegg PD. Gene expression markers of tendon fibroblasts in normal and diseased tissue compared to monolayer and three dimensional culture systems. BMC Musculoskelet Disord. 2009;10:27.PubMedPubMedCentralCrossRef
33.
go back to reference Yoshida R, Cheng M, Murray MM. Increasing platelet concentration in platelet-rich plasma inhibits anterior cruciate ligament cell function in three-dimensional culture. Journal of orthopaedic research : official publication of the Orthopaedic Research Society. 2014;32(2):291–5.CrossRef Yoshida R, Cheng M, Murray MM. Increasing platelet concentration in platelet-rich plasma inhibits anterior cruciate ligament cell function in three-dimensional culture. Journal of orthopaedic research : official publication of the Orthopaedic Research Society. 2014;32(2):291–5.CrossRef
34.
go back to reference Cheng M, Wang H, Yoshida R, Murray MM. Platelets and plasma proteins are both required to stimulate collagen gene expression by anterior cruciate ligament cells in three-dimensional culture. Tissue Eng A. 2010;16(5):1479–89.CrossRef Cheng M, Wang H, Yoshida R, Murray MM. Platelets and plasma proteins are both required to stimulate collagen gene expression by anterior cruciate ligament cells in three-dimensional culture. Tissue Eng A. 2010;16(5):1479–89.CrossRef
35.
go back to reference Qiu Y, Lei J, Koob TJ, Temenoff JS: Cyclic tension promotes fibroblastic differentiation of human MSCs cultured on collagen-fibre scaffolds. J Tissue Eng Regen Med 2014. Qiu Y, Lei J, Koob TJ, Temenoff JS: Cyclic tension promotes fibroblastic differentiation of human MSCs cultured on collagen-fibre scaffolds. J Tissue Eng Regen Med 2014.
36.
go back to reference Juncosa-Melvin N, Shearn JT, Boivin GP, Gooch C, Galloway MT, West JR, Nirmalanandhan VS, Bradica G, Butler DL. Effects of mechanical stimulation on the biomechanics and histology of stem cell-collagen sponge constructs for rabbit patellar tendon repair. Tissue Eng. 2006;12(8):2291–300.PubMedCrossRef Juncosa-Melvin N, Shearn JT, Boivin GP, Gooch C, Galloway MT, West JR, Nirmalanandhan VS, Bradica G, Butler DL. Effects of mechanical stimulation on the biomechanics and histology of stem cell-collagen sponge constructs for rabbit patellar tendon repair. Tissue Eng. 2006;12(8):2291–300.PubMedCrossRef
37.
go back to reference Juncosa-Melvin N, Matlin KS, Holdcraft RW, Nirmalanandhan VS, Butler DL. Mechanical stimulation increases collagen type I and collagen type III gene expression of stem cell-collagen sponge constructs for patellar tendon repair. Tissue Eng. 2007;13(6):1219–26.PubMedCrossRef Juncosa-Melvin N, Matlin KS, Holdcraft RW, Nirmalanandhan VS, Butler DL. Mechanical stimulation increases collagen type I and collagen type III gene expression of stem cell-collagen sponge constructs for patellar tendon repair. Tissue Eng. 2007;13(6):1219–26.PubMedCrossRef
38.
go back to reference Chokalingam K, Juncosa-Melvin N, Hunter SA, Gooch C, Frede C, Florert J, Bradica G, Wenstrup R, Butler DL. Tensile stimulation of murine stem cell-collagen sponge constructs increases collagen type I gene expression and linear stiffness. Tissue Eng A. 2009;15(9):2561–70.CrossRef Chokalingam K, Juncosa-Melvin N, Hunter SA, Gooch C, Frede C, Florert J, Bradica G, Wenstrup R, Butler DL. Tensile stimulation of murine stem cell-collagen sponge constructs increases collagen type I gene expression and linear stiffness. Tissue Eng A. 2009;15(9):2561–70.CrossRef
Metadata
Title
A multi-chamber tissue culture device for load-dependent parallel evaluation of tendon explants
Authors
Endre Soreide
Janet M. Denbeigh
Eric A. Lewallen
Roman Thaler
Rebekah M. Samsonraj
Dakota L. Jones
Wei Xu
Dirk Larson
Lars Nordsletten
Sanjeev Kakar
Andre J. van Wijnen
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Musculoskeletal Disorders / Issue 1/2019
Electronic ISSN: 1471-2474
DOI
https://doi.org/10.1186/s12891-019-2896-2

Other articles of this Issue 1/2019

BMC Musculoskeletal Disorders 1/2019 Go to the issue