Skip to main content
Top
Published in: BMC Musculoskeletal Disorders 1/2019

Open Access 01-12-2019 | Osteoarthrosis | Research article

Changes in viscoelastic properties of articular cartilage in early stage of osteoarthritis, as determined by optical coherence tomography-based strain rate tomography

Authors: Suguru Nakamura, Mitsuhiko Ikebuchi, Souichi Saeki, Daisuke Furukawa, Kumi Orita, Nobuo Niimi, Yoshito Tsukahara, Hiroaki Nakamura

Published in: BMC Musculoskeletal Disorders | Issue 1/2019

Login to get access

Abstract

Background

Biomechanical changes in articular cartilage are associated with the onset of osteoarthritis. We developed an optical coherence tomography-based strain rate tomography method: stress relaxation optical coherence straingraphy (SR-OCSA). The purpose of this study was to establish an approach for measuring mechanical properties of articular cartilage using SR-OCSA, and to investigate the distribution of viscoelastic properties of articular cartilage in early osteoarthritis.

Methods

Anterior cruciate ligament transection surgery was performed on the left knees of 8–9-month-old New Zealand white rabbits. SR-OCSA was used to visualize and measure the viscoelastic properties of articular cartilage via attenuation coefficient of strain rate (ACSR). Using the same conditions as in the SR-OCSA test, an indentation test was conducted, and relaxation time was measured to evaluate the relationship between ACSR and relaxation time.

Results

SR-OCSA could nondestructively detect and visualize changes in the distribution of viscoelastic properties of articular cartilage in early osteoarthritis. SR-OCSA captured significant increases in ACSR in cartilage at 2 weeks after surgery, when a histologically slight osteoarthritis sign was present. As cartilage degeneration progressed, ACSR increased, whereas relaxation time decreased in a time-dependent manner. Moreover, ACSR negatively correlated with relaxation time. In particular, ACSR was elevated around the tidemark and the elevation tended to move as cartilage degeneration progressed.

Conclusions

SR-OCSA could tomographically and nondestructively detect and visualize changes in the distribution of viscoelastic properties of articular cartilage in early osteoarthritis. The mechanical properties around the tidemark were degraded as cartilage degeneration progressed. Thus, SR-OCSA provides important data needed to understand the biomechanics of early osteoarthritis.
Literature
1.
go back to reference Felson DT, Neogi T. Osteoarthritis: is it a disease of cartilage or of bone? Arthritis Rheum. 2004;50:341–4.CrossRef Felson DT, Neogi T. Osteoarthritis: is it a disease of cartilage or of bone? Arthritis Rheum. 2004;50:341–4.CrossRef
2.
go back to reference Tonge DP, Pearson MJ, Jones SW. The hallmarks of osteoarthritis and the potential to develop personalised disease-modifying pharmacological therapeutics. Osteoarthr Cartil. 2014;22:609–21.CrossRef Tonge DP, Pearson MJ, Jones SW. The hallmarks of osteoarthritis and the potential to develop personalised disease-modifying pharmacological therapeutics. Osteoarthr Cartil. 2014;22:609–21.CrossRef
3.
go back to reference Chu CR, A a W, Coyle CH, Bowers ME. Early diagnosis to enable early treatment of pre-osteoarthritis. Arthritis Res Ther. 2012;14:212.CrossRef Chu CR, A a W, Coyle CH, Bowers ME. Early diagnosis to enable early treatment of pre-osteoarthritis. Arthritis Res Ther. 2012;14:212.CrossRef
4.
go back to reference KELLGREN JH, LAWRENCE JS. Radiological assessment of osteo-arthrosis. Ann Rheum Dis. 1957;16:494–502.CrossRef KELLGREN JH, LAWRENCE JS. Radiological assessment of osteo-arthrosis. Ann Rheum Dis. 1957;16:494–502.CrossRef
5.
go back to reference Lakin BA, Snyder BD, Grinstaff MW. Assessing cartilage biomechanical properties: techniques for evaluating the functional performance of cartilage in health and disease. Annu Rev Biomed Eng. 2017;19:27–55.CrossRef Lakin BA, Snyder BD, Grinstaff MW. Assessing cartilage biomechanical properties: techniques for evaluating the functional performance of cartilage in health and disease. Annu Rev Biomed Eng. 2017;19:27–55.CrossRef
6.
go back to reference Mow VC, Guo XE. Mechano-electrochemical properties of articular cartilage: their Inhomogeneities and anisotropies. Annu Rev Biomed Eng. 2002;4:175–209.CrossRef Mow VC, Guo XE. Mechano-electrochemical properties of articular cartilage: their Inhomogeneities and anisotropies. Annu Rev Biomed Eng. 2002;4:175–209.CrossRef
7.
go back to reference Waldstein W, Perino G, Gilbert SL, Maher SA, Windhager R, Boettner F. OARSI osteoarthritis cartilage histopathology assessment system: A biomechanical evaluation in the human knee. J Orthop Res. 2016;34:135–40.CrossRef Waldstein W, Perino G, Gilbert SL, Maher SA, Windhager R, Boettner F. OARSI osteoarthritis cartilage histopathology assessment system: A biomechanical evaluation in the human knee. J Orthop Res. 2016;34:135–40.CrossRef
8.
go back to reference Doyran B, Tong W, Li Q, Jia H, Zhang X, Chen C, et al. Nanoindentation modulus of murine cartilage: a sensitive indicator of the initiation and progression of post-traumatic osteoarthritis. Osteoarthr Cartil. 2017;25:108–17.CrossRef Doyran B, Tong W, Li Q, Jia H, Zhang X, Chen C, et al. Nanoindentation modulus of murine cartilage: a sensitive indicator of the initiation and progression of post-traumatic osteoarthritis. Osteoarthr Cartil. 2017;25:108–17.CrossRef
9.
go back to reference Chu CR, Williams A, Tolliver D, Kwoh CK, Bruno S, Irrgang JJ. Clinical optical coherence tomography of early articular cartilage degeneration in patients with degenerative meniscal tears. Arthritis Rheum. 2010;62:1412–20.CrossRef Chu CR, Williams A, Tolliver D, Kwoh CK, Bruno S, Irrgang JJ. Clinical optical coherence tomography of early articular cartilage degeneration in patients with degenerative meniscal tears. Arthritis Rheum. 2010;62:1412–20.CrossRef
10.
go back to reference Han CW, Chu CR, Adachi N, Usas A, Fu FH, Huard J, et al. Analysis of rabbit articular cartilage repair after chondrocyte implantation using optical coherence tomography. Osteoarthr Cartil. 2003;11:111–21.CrossRef Han CW, Chu CR, Adachi N, Usas A, Fu FH, Huard J, et al. Analysis of rabbit articular cartilage repair after chondrocyte implantation using optical coherence tomography. Osteoarthr Cartil. 2003;11:111–21.CrossRef
11.
go back to reference Jahr H, Brill N, Nebelung S. Detecting early stage osteoarthritis by optical coherence tomography? Biomarkers. 2015;20:590–6.CrossRef Jahr H, Brill N, Nebelung S. Detecting early stage osteoarthritis by optical coherence tomography? Biomarkers. 2015;20:590–6.CrossRef
12.
go back to reference Nebelung S, Brill N, Marx U, Quack V, Tingart M, Schmitt R, et al. Three-dimensional imaging and analysis of human cartilage degeneration using optical coherence tomography. J Orthop Res. 2015;33:651–9.CrossRef Nebelung S, Brill N, Marx U, Quack V, Tingart M, Schmitt R, et al. Three-dimensional imaging and analysis of human cartilage degeneration using optical coherence tomography. J Orthop Res. 2015;33:651–9.CrossRef
13.
go back to reference Bear DM, Williams A, Chu CT, Coyle CH, Chu CR. Optical coherence tomography grading correlates with MRI T2 mapping and extracellular matrix content. J Orthop Res. 2010;28:546–52.PubMedPubMedCentral Bear DM, Williams A, Chu CT, Coyle CH, Chu CR. Optical coherence tomography grading correlates with MRI T2 mapping and extracellular matrix content. J Orthop Res. 2010;28:546–52.PubMedPubMedCentral
14.
go back to reference Hara Y, Ogura Y, Yamashita T, Furukawa D, Saeki S. Visualization of viscoelastic behavior in skin equivalent using optical coherence tomography-based straingraphy. Skin Res Technol. 2018;24:334–9.CrossRef Hara Y, Ogura Y, Yamashita T, Furukawa D, Saeki S. Visualization of viscoelastic behavior in skin equivalent using optical coherence tomography-based straingraphy. Skin Res Technol. 2018;24:334–9.CrossRef
15.
go back to reference Kraus VB, Huebner JL, DeGroot J, Bendele A. The OARSI histopathology initiative - recommendations for histological assessments of osteoarthritis in the Guinea pig. Osteoarthr Cartil. 2010;18:S53–65.CrossRef Kraus VB, Huebner JL, DeGroot J, Bendele A. The OARSI histopathology initiative - recommendations for histological assessments of osteoarthritis in the Guinea pig. Osteoarthr Cartil. 2010;18:S53–65.CrossRef
16.
go back to reference Loeser RF. Osteoarthritis year in review 2013: biology. Osteoarthr Cartil. 2013;21:1436–42.CrossRef Loeser RF. Osteoarthritis year in review 2013: biology. Osteoarthr Cartil. 2013;21:1436–42.CrossRef
17.
go back to reference Malfait AM. Osteoarthritis year in review 2015: biology. Osteoarthr Cartil. 2016;24:21–6.CrossRef Malfait AM. Osteoarthritis year in review 2015: biology. Osteoarthr Cartil. 2016;24:21–6.CrossRef
18.
go back to reference Setton LA, Elliott DM, Mow VC. Altered mechanics of cartilage with osteoarthritis: human osteoarthritis and an experimental model of joint degeneration. Osteoarthr Cartil. 1999;7:2–14.CrossRef Setton LA, Elliott DM, Mow VC. Altered mechanics of cartilage with osteoarthritis: human osteoarthritis and an experimental model of joint degeneration. Osteoarthr Cartil. 1999;7:2–14.CrossRef
19.
go back to reference Guilak F, Ratcliffe A, Lane N, Rosenwasser MP, Mow VC. Mechanical and biochemical-changes in the superficial zone of articular-cartilage in canine experimental osteoarthritis. J Orthop Res. 1994;12:474–84.CrossRef Guilak F, Ratcliffe A, Lane N, Rosenwasser MP, Mow VC. Mechanical and biochemical-changes in the superficial zone of articular-cartilage in canine experimental osteoarthritis. J Orthop Res. 1994;12:474–84.CrossRef
20.
go back to reference Saarakkala S, Julkunen P, Kiviranta P, Mäkitalo J, Jurvelin JS, Korhonen RK. Depth-wise progression of osteoarthritis in human articular cartilage: investigation of composition, structure and biomechanics. Osteoarthr Cartil. 2010;18:73–81.CrossRef Saarakkala S, Julkunen P, Kiviranta P, Mäkitalo J, Jurvelin JS, Korhonen RK. Depth-wise progression of osteoarthritis in human articular cartilage: investigation of composition, structure and biomechanics. Osteoarthr Cartil. 2010;18:73–81.CrossRef
21.
go back to reference Sah RL, Yang AS, Chen AC, Hant JJ, Halili RB, Yoshioka M, et al. Physical properties of rabbit articular cartilage after transection of the anterior cruciate ligament. J Orthop Res. 1997;15:197–203.CrossRef Sah RL, Yang AS, Chen AC, Hant JJ, Halili RB, Yoshioka M, et al. Physical properties of rabbit articular cartilage after transection of the anterior cruciate ligament. J Orthop Res. 1997;15:197–203.CrossRef
22.
go back to reference Desrochers J, Amrein MW, Matyas JR. Viscoelasticity of the articular cartilage surface in early osteoarthritis. Osteoarthr Cartil. 2012;20:413–21.CrossRef Desrochers J, Amrein MW, Matyas JR. Viscoelasticity of the articular cartilage surface in early osteoarthritis. Osteoarthr Cartil. 2012;20:413–21.CrossRef
23.
go back to reference Korhonen RK, Laasanen MS, Töyräs J, Lappalainen R, Helminen HJ, Jurvelin JS. Fibril reinforced poroelastic model predicts specifically mechanical behavior of normal, proteoglycan depleted and collagen degraded articular cartilage. J Biomech. 2003;36:1373–9.CrossRef Korhonen RK, Laasanen MS, Töyräs J, Lappalainen R, Helminen HJ, Jurvelin JS. Fibril reinforced poroelastic model predicts specifically mechanical behavior of normal, proteoglycan depleted and collagen degraded articular cartilage. J Biomech. 2003;36:1373–9.CrossRef
24.
go back to reference Wilson W, Van Donkelaar CC, Van Rietbergen R, Huiskes R. The role of computational models in the search for the mechanical behavior and damage mechanisms of articular cartilage. Med Eng Phys. 2005;27:810–26.CrossRef Wilson W, Van Donkelaar CC, Van Rietbergen R, Huiskes R. The role of computational models in the search for the mechanical behavior and damage mechanisms of articular cartilage. Med Eng Phys. 2005;27:810–26.CrossRef
25.
go back to reference Schinagl RM, Gurskis D, Chen AC, Sah RL. Depth-dependent confined compression modulus of full-thickness bovine articular cartilage. J Orthop Res. 1997;15:499–506.CrossRef Schinagl RM, Gurskis D, Chen AC, Sah RL. Depth-dependent confined compression modulus of full-thickness bovine articular cartilage. J Orthop Res. 1997;15:499–506.CrossRef
26.
go back to reference Mäkelä JTA, Rezaeian ZS, Mikkonen S, Madden R, Han SK, Jurvelin JS, et al. Site-dependent changes in structure and function of lapine articular cartilage 4 weeks after anterior cruciate ligament transection. Osteoarthr Cartil. 2014;22:869–78.CrossRef Mäkelä JTA, Rezaeian ZS, Mikkonen S, Madden R, Han SK, Jurvelin JS, et al. Site-dependent changes in structure and function of lapine articular cartilage 4 weeks after anterior cruciate ligament transection. Osteoarthr Cartil. 2014;22:869–78.CrossRef
27.
go back to reference Florea C, Malo MKH, Rautiainen J, Mäkelä JTA, Fick JM, Nieminen MT, et al. Alterations in subchondral bone plate, trabecular bone and articular cartilage properties of rabbit femoral condyles at 4 weeks after anterior cruciate ligament transection. Osteoarthr Cartil. 2015;23:414–22.CrossRef Florea C, Malo MKH, Rautiainen J, Mäkelä JTA, Fick JM, Nieminen MT, et al. Alterations in subchondral bone plate, trabecular bone and articular cartilage properties of rabbit femoral condyles at 4 weeks after anterior cruciate ligament transection. Osteoarthr Cartil. 2015;23:414–22.CrossRef
28.
go back to reference Hargrave-Thomas E, van Sloun F, Dickinson M, Broom N, Thambyah A. Multi-scalar mechanical testing of the calcified cartilage and subchondral bone comparing healthy vs early degenerative states. Osteoarthr Cartil. 2015;23:1755–62.CrossRef Hargrave-Thomas E, van Sloun F, Dickinson M, Broom N, Thambyah A. Multi-scalar mechanical testing of the calcified cartilage and subchondral bone comparing healthy vs early degenerative states. Osteoarthr Cartil. 2015;23:1755–62.CrossRef
Metadata
Title
Changes in viscoelastic properties of articular cartilage in early stage of osteoarthritis, as determined by optical coherence tomography-based strain rate tomography
Authors
Suguru Nakamura
Mitsuhiko Ikebuchi
Souichi Saeki
Daisuke Furukawa
Kumi Orita
Nobuo Niimi
Yoshito Tsukahara
Hiroaki Nakamura
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Musculoskeletal Disorders / Issue 1/2019
Electronic ISSN: 1471-2474
DOI
https://doi.org/10.1186/s12891-019-2789-4

Other articles of this Issue 1/2019

BMC Musculoskeletal Disorders 1/2019 Go to the issue