Skip to main content
Top
Published in: BMC Musculoskeletal Disorders 1/2019

Open Access 01-12-2019 | Clavicle Fracture | Research article

Biomechanical comparison between solid and cannulated intramedullary devices for midshaft clavicle fixation

Authors: Sheng-Hao Wang, Hsiu-Jen Lin, Hsain-Chung Shen, Ru-Yu Pan, Jui-Jung Yang

Published in: BMC Musculoskeletal Disorders | Issue 1/2019

Login to get access

Abstract

Background

A method of closed reduction and internal fixation with cannulated screws was proposed as a surgical treatment of midshaft clavicle fractures. However, there are no mechanical studies about the cannulated screw used in the fixation of midshaft clavicle fracture. We conducted this study to compare the construct bending stiffness of a fixation midshaft clavicle fracture with a Knowles pin, cannulated screw and reconstruction plate. In addition, purchase lengths of both intramedullary devices were measured.

Methods

After transverse osteotomy over the midpoint for fracture simulation, eighteen synthetic clavicles were assigned to 3 groups and fixed with reconstruction plate, Knowles pin or cannulated screw. Purchase length was defined as the engaged length of the intramedullary portion of the two intramedullary devices Stiffness, yield load and maximum load of the cantilever bending test were calculated of each tested synthetic bones.

Results

The Knowles pin group had a significantly longer average intramedullary purchase length compared with that of the cannulated screw group. The construct stiffness in the reconstruction plate group (5.6 ± 0.9 N/mm) was higher than that of the intramedullary devices; the Knowles pin group (3.1 ± 0.6 N/mm) provided a greater construct stiffness than did the cannulated screw group (1.7 ± 0.4 N/mm) (p = 0.007). The cannulated screw group had the lowest yield and maximum load compared with the reconstruction plate and Knowles pin groups. Both the reconstruction plate and Knowles pin failed at the implant-bone interface. However, the cannulated screw group failed at the osteotomy site with broken implants.

Conclusion

This study suggests that fixation of midshaft clavicle fractures with cannulated screws may lead to early failure due to inadequate mechanical strength. Ideal intramedullary clavicle devices should supply adequate intramedullary purchase lengths and mechanical strength.
Literature
1.
go back to reference Nordqvist A, Petersson C. The incidence of fractures of the clavicle. Clin Orthop Relat Res. 1994;(300):127-132. Nordqvist A, Petersson C. The incidence of fractures of the clavicle. Clin Orthop Relat Res. 1994;(300):127-132.
2.
go back to reference Kim W, McKee MD. Management of acute clavicle fractures. Orthop Clin North Am. 2008;39(4):491–505 vii.CrossRef Kim W, McKee MD. Management of acute clavicle fractures. Orthop Clin North Am. 2008;39(4):491–505 vii.CrossRef
3.
go back to reference Hill JM, McGuire MH, Crosby LA. Closed treatment of displaced middle-third fractures of the clavicle gives poor results. J Bone Jt Surg British Vol. 1997;79(4):537–9.CrossRef Hill JM, McGuire MH, Crosby LA. Closed treatment of displaced middle-third fractures of the clavicle gives poor results. J Bone Jt Surg British Vol. 1997;79(4):537–9.CrossRef
4.
go back to reference Robinson CM, Court-Brown CM, McQueen MM, Wakefield AE. Estimating the risk of nonunion following nonoperative treatment of a clavicular fracture. J Bone Jt Surg Am Vol. 2004;86-a(7):1359–65.CrossRef Robinson CM, Court-Brown CM, McQueen MM, Wakefield AE. Estimating the risk of nonunion following nonoperative treatment of a clavicular fracture. J Bone Jt Surg Am Vol. 2004;86-a(7):1359–65.CrossRef
5.
go back to reference McKee RC, Whelan DB, Schemitsch EH, McKee MD. Operative versus nonoperative care of displaced midshaft clavicular fractures: a meta-analysis of randomized clinical trials. J Bone Joint Surg Am. 2012;94(8):675–84.CrossRef McKee RC, Whelan DB, Schemitsch EH, McKee MD. Operative versus nonoperative care of displaced midshaft clavicular fractures: a meta-analysis of randomized clinical trials. J Bone Joint Surg Am. 2012;94(8):675–84.CrossRef
6.
go back to reference Chen PY, Lin CC, Wang CC, Tsai CL. Closed reduction with intramedullary fixation for midclavicular fractures. Orthopedics. 2004;27(5):459–62.PubMed Chen PY, Lin CC, Wang CC, Tsai CL. Closed reduction with intramedullary fixation for midclavicular fractures. Orthopedics. 2004;27(5):459–62.PubMed
7.
go back to reference Chuang TY, Ho WP, Hsieh PH, Lee PC, Chen CH, Chen YJ. Closed reduction and internal fixation for acute midshaft clavicular fractures using cannulated screws. J Trauma. 2006;60(6):1315–20; discussion 1320-1311.CrossRef Chuang TY, Ho WP, Hsieh PH, Lee PC, Chen CH, Chen YJ. Closed reduction and internal fixation for acute midshaft clavicular fractures using cannulated screws. J Trauma. 2006;60(6):1315–20; discussion 1320-1311.CrossRef
8.
go back to reference Krishnan SG, Garofalo R, Flanagin B, Castagna A. Intramedullary clavicle fixation with single large fragmentary screw. Musculoskelet Surg. 2015;99(Suppl 1):S25–30.CrossRef Krishnan SG, Garofalo R, Flanagin B, Castagna A. Intramedullary clavicle fixation with single large fragmentary screw. Musculoskelet Surg. 2015;99(Suppl 1):S25–30.CrossRef
9.
go back to reference Kim YS, Lee HJ, Kim JI, Yang H, Jin HK, Patel HK, Kim JH, Park I. Arthroscopic fixation of the clavicle shaft fracture. J Orthop Surg (Hong Kong). 2017;25(1):2309499016684411. Kim YS, Lee HJ, Kim JI, Yang H, Jin HK, Patel HK, Kim JH, Park I. Arthroscopic fixation of the clavicle shaft fracture. J Orthop Surg (Hong Kong). 2017;25(1):2309499016684411.
10.
go back to reference Harnroongroj T, Jeerathanyasakun Y. Intramedullary pin fixation in clavicular fractures: a study comparing the use of small and large pins. J Orthop Surg (Hong Kong). 2000;8(2):7–11.CrossRef Harnroongroj T, Jeerathanyasakun Y. Intramedullary pin fixation in clavicular fractures: a study comparing the use of small and large pins. J Orthop Surg (Hong Kong). 2000;8(2):7–11.CrossRef
11.
go back to reference Gardner MP, Chong AC, Pollock AG, Wooley PH. Mechanical evaluation of large-size fourth-generation composite femur and tibia models. Ann Biomed Eng. 2010;38(3):613–20.CrossRef Gardner MP, Chong AC, Pollock AG, Wooley PH. Mechanical evaluation of large-size fourth-generation composite femur and tibia models. Ann Biomed Eng. 2010;38(3):613–20.CrossRef
12.
go back to reference Heiner AD. Structural properties of fourth-generation composite femurs and tibias. J Biomech. 2008;41(15):3282–4.CrossRef Heiner AD. Structural properties of fourth-generation composite femurs and tibias. J Biomech. 2008;41(15):3282–4.CrossRef
13.
go back to reference Smith SD, Wijdicks CA, Jansson KS, Boykin RE, Martetschlaeger F, de Meijer PP, Millett PJ, Hackett TR. Stability of mid-shaft clavicle fractures after plate fixation versus intramedullary repair and after hardware removal. Knee Surg Sports Traumatol Arthrosc. 2014;22(2):448–55.CrossRef Smith SD, Wijdicks CA, Jansson KS, Boykin RE, Martetschlaeger F, de Meijer PP, Millett PJ, Hackett TR. Stability of mid-shaft clavicle fractures after plate fixation versus intramedullary repair and after hardware removal. Knee Surg Sports Traumatol Arthrosc. 2014;22(2):448–55.CrossRef
14.
go back to reference Renfree T, Conrad B, Wright T. Biomechanical comparison of contemporary clavicle fixation devices. J Hand Surg Am. 2010;35(4):639–44.CrossRef Renfree T, Conrad B, Wright T. Biomechanical comparison of contemporary clavicle fixation devices. J Hand Surg Am. 2010;35(4):639–44.CrossRef
15.
go back to reference Houwert RM, Wijdicks FJ, Steins Bisschop C, Verleisdonk EJ, Kruyt M. Plate fixation versus intramedullary fixation for displaced mid-shaft clavicle fractures: a systematic review. Int Orthop. 2012;36(3):579–85.CrossRef Houwert RM, Wijdicks FJ, Steins Bisschop C, Verleisdonk EJ, Kruyt M. Plate fixation versus intramedullary fixation for displaced mid-shaft clavicle fractures: a systematic review. Int Orthop. 2012;36(3):579–85.CrossRef
16.
go back to reference Drosdowech DS, Manwell SE, Ferreira LM, Goel DP, Faber KJ, Johnson JA. Biomechanical analysis of fixation of middle third fractures of the clavicle. J Orthop Trauma. 2011;25(1):39–43.CrossRef Drosdowech DS, Manwell SE, Ferreira LM, Goel DP, Faber KJ, Johnson JA. Biomechanical analysis of fixation of middle third fractures of the clavicle. J Orthop Trauma. 2011;25(1):39–43.CrossRef
17.
go back to reference Hulsmans MH, van Heijl M, Houwert RM, Burger BJ, Verleisdonk EJM, Veeger DJ, van der Meijden OA. Surgical fixation of midshaft clavicle fractures: a systematic review of biomechanical studies. Injury. 2018;49(4):753–65.CrossRef Hulsmans MH, van Heijl M, Houwert RM, Burger BJ, Verleisdonk EJM, Veeger DJ, van der Meijden OA. Surgical fixation of midshaft clavicle fractures: a systematic review of biomechanical studies. Injury. 2018;49(4):753–65.CrossRef
18.
go back to reference Liu PC, Chien SH, Chen JC, Hsieh CH, Chou PH, Lu CC. Minimally invasive fixation of displaced midclavicular fractures with titanium elastic nails. J Orthop Trauma. 2010;24(4):217–23.CrossRef Liu PC, Chien SH, Chen JC, Hsieh CH, Chou PH, Lu CC. Minimally invasive fixation of displaced midclavicular fractures with titanium elastic nails. J Orthop Trauma. 2010;24(4):217–23.CrossRef
19.
go back to reference Calafi LA, Antkowiak T, Curtiss S, Neu CP, Moehring D. A biomechanical comparison of the surgical implant generation network (SIGN) tibial nail with the standard hollow nail. Injury. 2010;41(7):753–7.CrossRef Calafi LA, Antkowiak T, Curtiss S, Neu CP, Moehring D. A biomechanical comparison of the surgical implant generation network (SIGN) tibial nail with the standard hollow nail. Injury. 2010;41(7):753–7.CrossRef
20.
go back to reference Golish SR, Oliviero JA, Francke EI, Miller MD. A biomechanical study of plate versus intramedullary devices for midshaft clavicle fixation. J Orthop Surg Res. 2008;3:28.CrossRef Golish SR, Oliviero JA, Francke EI, Miller MD. A biomechanical study of plate versus intramedullary devices for midshaft clavicle fixation. J Orthop Surg Res. 2008;3:28.CrossRef
21.
go back to reference Bong MR, Kummer FJ, Koval KJ, Egol KA. Intramedullary nailing of the lower extremity: biomechanics and biology. J Am Acad Orthop Surg. 2007;15(2):97–106.CrossRef Bong MR, Kummer FJ, Koval KJ, Egol KA. Intramedullary nailing of the lower extremity: biomechanics and biology. J Am Acad Orthop Surg. 2007;15(2):97–106.CrossRef
22.
go back to reference Mellema JJ, Doornberg JN, Guitton TG, Ring D. Biomechanical studies: science (f) or common sense? Injury. 2014;45(12):2035–9.CrossRef Mellema JJ, Doornberg JN, Guitton TG, Ring D. Biomechanical studies: science (f) or common sense? Injury. 2014;45(12):2035–9.CrossRef
23.
go back to reference Wang XH, Cheng L, Guo WJ, Li AB, Cheng GJ, Lei T, Zhao YM. Plate versus intramedullary fixation Care of Displaced Midshaft Clavicular Fractures: a meta-analysis of prospective randomized controlled trials. Medicine. 2015;94(41):e1792.CrossRef Wang XH, Cheng L, Guo WJ, Li AB, Cheng GJ, Lei T, Zhao YM. Plate versus intramedullary fixation Care of Displaced Midshaft Clavicular Fractures: a meta-analysis of prospective randomized controlled trials. Medicine. 2015;94(41):e1792.CrossRef
24.
go back to reference Ludewig PM, Behrens SA, Meyer SM, Spoden SM, Wilson LA. Three-dimensional clavicular motion during arm elevation: reliability and descriptive data. J Orthop Sports Phys Ther. 2004;34(3):140–9.CrossRef Ludewig PM, Behrens SA, Meyer SM, Spoden SM, Wilson LA. Three-dimensional clavicular motion during arm elevation: reliability and descriptive data. J Orthop Sports Phys Ther. 2004;34(3):140–9.CrossRef
25.
go back to reference King PR, Ikram A, Lamberts RP. The treatment of clavicular shaft fractures with an innovative locked intramedullary device. J Shoulder Elb Surg. 2015;24(1):e1–6.CrossRef King PR, Ikram A, Lamberts RP. The treatment of clavicular shaft fractures with an innovative locked intramedullary device. J Shoulder Elb Surg. 2015;24(1):e1–6.CrossRef
26.
go back to reference Wilson DJ, Scully WF, Min KS, Harmon TA, Eichinger JK, Arrington ED. Biomechanical analysis of intramedullary vs. superior plate fixation of transverse midshaft clavicle fractures. J Shoulder Elb Surg. 2016;25(6):949–53.CrossRef Wilson DJ, Scully WF, Min KS, Harmon TA, Eichinger JK, Arrington ED. Biomechanical analysis of intramedullary vs. superior plate fixation of transverse midshaft clavicle fractures. J Shoulder Elb Surg. 2016;25(6):949–53.CrossRef
27.
go back to reference Palmer DK, Husain A, Phipatanakul WP, Wongworawat MD. Failure of a new intramedullary device in fixation of clavicle fractures: a report of two cases and review of the literature. J Shoulder Elb Surg. 2011;20(4):e1–4.CrossRef Palmer DK, Husain A, Phipatanakul WP, Wongworawat MD. Failure of a new intramedullary device in fixation of clavicle fractures: a report of two cases and review of the literature. J Shoulder Elb Surg. 2011;20(4):e1–4.CrossRef
28.
go back to reference Wilson DJ, Weaver DL, Balog TP, Arrington ED. Early postoperative failure of a new intramedullary fixation device for midshaft clavicle fractures. Orthopedics. 2013;36(11):e1450–3.CrossRef Wilson DJ, Weaver DL, Balog TP, Arrington ED. Early postoperative failure of a new intramedullary fixation device for midshaft clavicle fractures. Orthopedics. 2013;36(11):e1450–3.CrossRef
Metadata
Title
Biomechanical comparison between solid and cannulated intramedullary devices for midshaft clavicle fixation
Authors
Sheng-Hao Wang
Hsiu-Jen Lin
Hsain-Chung Shen
Ru-Yu Pan
Jui-Jung Yang
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Musculoskeletal Disorders / Issue 1/2019
Electronic ISSN: 1471-2474
DOI
https://doi.org/10.1186/s12891-019-2560-x

Other articles of this Issue 1/2019

BMC Musculoskeletal Disorders 1/2019 Go to the issue